Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exosomal hsa-miR-129-2 and hsa-miR-889 from a 6-microRNA Signature Might be a Potential Biomarker for Predicting the Prognosis of Papillary Thyroid Carcinoma

Author(s): Ying Xin, Kexin Meng, Haiwei Guo, Bin Chen, Chuanming Zheng, Xin Shou and Kun Yu*

Volume 25, Issue 5, 2022

Published on: 25 January, 2021

Page: [819 - 830] Pages: 12

DOI: 10.2174/1386207324666210125110732

Price: $65

Abstract

Background: Papillary thyroid carcinoma (PTC) is a subtype of thyroid cancer with increasing incidence over time.

Objective: This study aimed to build a risk score (RS) system for PTC patients.

Methods: PTC microRNA (miRNA) and messenger RNA (mRNA) expression data were extracted from The Cancer Genome Atlas (TCGA) database. The 491 PTC samples were randomly divided into training and validation sets. Using the limma software package, differentially expressed mRNAs (DEGs) and miRNAs (DEMs) between the tumor and control groups were screened. In order to construct an RS system, a survival package was used to select independent miRNAs related to prognosis. Enrichment analysis was performed, and a miRNA-mRNA co-expression network was constructed. High-throughput sequencing was also used to verify the prognostic miRNAs in exosomes.

Results: We found 1363 DEGs and 171 DEMs between the tumor and control groups. After identifying 26 DEMs significantly related to prognosis, 6 independent prognosis-associated miRNAs were selected to build an RS system. The areas under the curves of the overall survival rates of the training, validation, and entire sets were 0.847, 0.772, and 0.819, respectively. By conducting pathway analysis using the miRNA-mRNA co-expression network, one overlapping factor and five overlapping pathways were obtained. In addition, high-throughput sequencing revealed that the hsa-miR-129-2, hsa-miR-548j, hsa-miR-6734, and hsa-miR-889 expression levels in TCGA tumor tissues and exosomes were consistent, and those of hsa-miR-129-2 and hsa-miR- 889 between patients and controls were significantly different in exosomes.

Conclusion: The six-miRNA RS system in exosomes may comprise independent signatures for predicting PTC patient prognosis.

Keywords: papillary thyroid carcinoma, differential expression analysis, risk score system, co-expression network, enrichment analysis, exosomes

Graphical Abstract

[1]
Tuttle, R.M.; Leboeuf, R.; Martorella, A.J. Papillary thyroid cancer: monitoring and therapy. Endocrinol. Metab. Clin. North Am., 2007, 36(3), 753-778. vii.
[http://dx.doi.org/10.1016/j.ecl.2007.04.004] [PMID: 17673127]
[2]
Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013. JAMA, 2017, 317(13), 1338-1348.
[http://dx.doi.org/10.1001/jama.2017.2719] [PMID: 28362912]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[5]
Yapa, S.; Mulla, O.; Green, V.; England, J.; Greenman, J. The Role of Chemokines in Thyroid Carcinoma. Thyroid, 2017, 27(11), 1347-1359.
[http://dx.doi.org/10.1089/thy.2016.0660] [PMID: 28891394]
[6]
Ren, H.; Shen, Y.; Hu, D.; He, W.; Zhou, J.; Cao, Y.; Mao, Y.; Dou, Y.; Xiong, W.; Xiao, Q.; Zhang, Y.; Su, X. Co-existence of BRAFV600E and TERT promoter mutations in papillary thyroid carcinoma is associated with tumor aggressiveness, but not with lymph node metastasis. Cancer Manag. Res., 2018, 10, 1005-1013.
[http://dx.doi.org/10.2147/CMAR.S159583] [PMID: 29760568]
[7]
Luo, D.; Chen, H.; Li, X.; Lu, P.; Long, M.; Peng, X.; Lin, S.; Tan, L.; Zhu, Y.; Ouyang, N.; Li, H. Activation of the ROCK1/MMP-9 pathway is associated with the invasion and poor prognosis in papillary thyroid carcinoma. Int. J. Oncol., 2017, 51(4), 1209-1218.
[http://dx.doi.org/10.3892/ijo.2017.4100] [PMID: 28848996]
[8]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[9]
Chengfeng, X.; Gengming, C.; Junjia, Z.; Yunxia, L. MicroRNA signature predicts survival in papillary thyroid carcinoma. J. Cell. Biochem., 2019, 120(10), 17050-17058.
[http://dx.doi.org/10.1002/jcb.28966] [PMID: 31099134]
[10]
Chou, C.K.; Yang, K.D.; Chou, F.F.; Huang, C.C.; Lan, Y.W.; Lee, Y.F.; Kang, H.Y.; Liu, R.T. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab., 2013, 98(2), E196-E205.
[http://dx.doi.org/10.1210/jc.2012-2666] [PMID: 23264400]
[11]
Mardente, S.; Mari, E.; Consorti, F.; Di Gioia, C.; Negri, R.; Etna, M.; Zicari, A.; Antonaci, A. HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol. Rep., 2012, 28(6), 2285-2289.
[http://dx.doi.org/10.3892/or.2012.2058] [PMID: 23023232]
[12]
Jin, J.; Zhang, J.; Xue, Y.; Luo, L.; Wang, S.; Tian, H. miRNA-15a regulates the proliferation and apoptosis of papillary thyroid carcinoma via regulating AKT pathway. OncoTargets Ther., 2019, 12, 6217-6226.
[http://dx.doi.org/10.2147/OTT.S213210] [PMID: 31496725]
[13]
Liu, T.; You, X.; Sui, J.; Shen, B.; Zhang, Y.; Zhang, X.M.; Yang, S.; Yao, Y.Z.; Yang, F.; Yin, L.H.; Pu, Y.P.; Liang, G.Y. Prognostic value of a two-microRNA signature for papillary thyroid cancer and a bioinformatic analysis of their possible functions. J. Cell. Biochem., 2018.
[PMID: 30390338]
[14]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[15]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[16]
Armstrong, D.A.; Green, B.B.; Seigne, J.D.; Schned, A.R.; Marsit, C.J. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol. Cancer, 2015, 14, 194.
[http://dx.doi.org/10.1186/s12943-015-0466-2] [PMID: 26576778]
[17]
Shao, N.; Xue, L.; Wang, R.; Luo, K.; Zhi, F.; Lan, Q. miR-454-3p Is an Exosomal Biomarker and Functions as a Tumor Suppressor in Glioma. Mol. Cancer Ther., 2019, 18(2), 459-469.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0725] [PMID: 30413650]
[18]
Hannafon, B.N.; Trigoso, Y.D.; Calloway, C.L.; Zhao, Y.D.; Lum, D.H.; Welm, A.L.; Zhao, Z.J.; Blick, K.E.; Dooley, W.C.; Ding, W.Q. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res., 2016, 18(1), 90.
[http://dx.doi.org/10.1186/s13058-016-0753-x] [PMID: 27608715]
[19]
Wu, F.; Li, F.; Lin, X.; Xu, F.; Cui, R.R.; Zhong, J.Y.; Zhu, T.; Shan, S.K.; Liao, X.B.; Yuan, L.Q.; Mo, Z.H. Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocr. Relat. Cancer, 2019, 26(5), 525-538.
[http://dx.doi.org/10.1530/ERC-19-0008] [PMID: 30870812]
[20]
Luo, D.; Zhan, S.; Xia, W.; Huang, L.; Ge, W.; Wang, T. Proteomics study of serum exosomes from papillary thyroid cancer patients. Endocr. Relat. Cancer, 2018, 25(10), 879-891.
[http://dx.doi.org/10.1530/ERC-17-0547] [PMID: 29895528]
[21]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[22]
Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 1998, 95(25), 14863-14868.
[http://dx.doi.org/10.1073/pnas.95.25.14863] [PMID: 9843981]
[23]
Wang, L.; Cao, C.; Ma, Q.; Zeng, Q.; Wang, H.; Cheng, Z.; Zhu, G.; Qi, J.; Ma, H.; Nian, H.; Wang, Y. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol., 2014, 14, 169.
[http://dx.doi.org/10.1186/1471-2229-14-169] [PMID: 24939556]
[24]
Wang, P.; Wang, Y.; Hang, B.; Zou, X.; Mao, J-H. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget, 2016, 7(34), 55343-55351.
[http://dx.doi.org/10.18632/oncotarget.10533] [PMID: 27419373]
[25]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(Database issue), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[26]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[27]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[28]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[29]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res., 2019, 47(D1), D948-D954.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[30]
Gao, X.; Chen, Z.; Li, A.; Zhang, X.; Cai, X. MiR-129 regulates growth and invasion by targeting MAL2 in papillary thyroid carcinoma. Biomed. Pharmacother., 2018, 105, 1072-1078.
[http://dx.doi.org/10.1016/j.biopha.2018.06.050] [PMID: 30021343]
[31]
Bandres, E.; Agirre, X.; Bitarte, N.; Ramirez, N.; Zarate, R.; Roman-Gomez, J.; Prosper, F.; Garcia-Foncillas, J. Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer, 2009, 125(11), 2737-2743.
[http://dx.doi.org/10.1002/ijc.24638] [PMID: 19521961]
[32]
Huang, Y.W.; Liu, J.C.; Deatherage, D.E.; Luo, J.; Mutch, D.G.; Goodfellow, P.J.; Miller, D.S.; Huang, T.H. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res., 2009, 69(23), 9038-9046.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1499] [PMID: 19887623]
[33]
Shen, R.; Pan, S.; Qi, S.; Lin, X.; Cheng, S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem. Biophys. Res. Commun., 2010, 394(4), 1047-1052.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.121] [PMID: 20331975]
[34]
Han, X.; Tang, Y.; Dai, Y.; Hu, S.; Zhou, J.; Liu, X.; Zhu, J.; Wu, Y. MiR-889 promotes cell growth in human non-small cell lung cancer by regulating KLF9. Gene, 2019, 699, 94-101.
[http://dx.doi.org/10.1016/j.gene.2019.02.077] [PMID: 30849540]
[35]
Ge, D.; Chen, H.; Zheng, S.; Zhang, B.; Ge, Y.; Yang, L.; Cao, X. Hsa-miR-889-3p promotes the proliferation of osteosarcoma through inhibiting myeloid cell nuclear differentiation antigen expression. Biomed. Pharmacother., 2019, 114, 108819.
[http://dx.doi.org/10.1016/j.biopha.2019.108819] [PMID: 30951952]
[36]
Boufraqech, M.; Zhang, L.; Jain, M.; Patel, D.; Ellis, R.; Xiong, Y.; He, M.; Nilubol, N.; Merino, M.J.; Kebebew, E. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr. Relat. Cancer, 2014, 21(4), 517-531.
[http://dx.doi.org/10.1530/ERC-14-0077] [PMID: 24781864]
[37]
Chen, G.; Gao, Y.; Wang, G.; Dai, G.; Tong, L. MiR-145 inhibits the migration and invasion of papillary thyroid carcinoma cells through NF-κB pathway regulation. J. Cell. Biochem., 2020, 121(5-6), 3325-3332.
[http://dx.doi.org/10.1002/jcb.29604] [PMID: 31907977]
[38]
Liang, T.; Guo, L.; Liu, C. Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. J. Biomed. Biotechnol., 2012, 2012, 679563.
[http://dx.doi.org/10.1155/2012/679563] [PMID: 23091353]
[39]
Saffari, M.; Ghaderian, S.M.H.; Omrani, M.D.; Afsharpad, M.; Shankaie, K.; Samadaian, N. The Association of miR-let 7b and miR-548 with PTEN in Prostate Cancer. Urol. J., 2019, 16(3), 267-273.
[PMID: 30318571]
[40]
Shi, Y.; Qiu, M.; Wu, Y.; Hai, L. MiR-548-3p functions as an anti-oncogenic regulator in breast cancer. Biomed. Pharmacother., 2015, 75, 111-116.
[http://dx.doi.org/10.1016/j.biopha.2015.07.027] [PMID: 26297544]
[41]
Pan, Y.; Liang, W.; Zhao, X.; Liu, L.; Qing, Y.; Li, Y. miR-548b inhibits the proliferation and invasion of malignant gliomas by targeting metastasis tumor-associated protein-2. Neuroreport, 2016, 27(17), 1266-1273.
[http://dx.doi.org/10.1097/WNR.0000000000000690] [PMID: 27682888]
[42]
Kang, M.R.; Park, K.H.; Yang, J.O.; Lee, C.W.; Oh, S.J.; Yun, J.; Lee, M.Y.; Han, S.B.; Kang, J.S. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. PLoS One, 2016, 11(8), e0160961.
[http://dx.doi.org/10.1371/journal.pone.0160961] [PMID: 27509128]
[43]
Xia, P.; Xu, X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609.
[PMID: 26175931]
[44]
Xu, J.; Cai, J.; Jin, X.; Yang, J.; Shen, Q.; Ding, X.; Liang, Y. PIG3 plays an oncogenic role in papillary thyroid cancer by activating the PI3K/AKT/PTEN pathway. Oncol. Rep., 2015, 34(3), 1424-1430.
[http://dx.doi.org/10.3892/or.2015.4096] [PMID: 26133772]
[45]
Šelemetjev, S.; Bartolome, A.; Išić Denčić, T.; Đorić, I.; Paunović, I.; Tatić, S.; Cvejić, D. Overexpression of epidermal growth factor receptor and its downstream effector, focal adhesion kinase, correlates with papillary thyroid carcinoma progression. Int. J. Exp. Pathol., 2018, 99(2), 87-94.
[http://dx.doi.org/10.1111/iep.12268] [PMID: 29665129]
[46]
Ao, Z.X.; Chen, Y.C.; Lu, J.M.; Shen, J.; Peng, L.P.; Lin, X.; Peng, C.; Zeng, C.P.; Wang, X.F.; Zhou, R.; Chen, Z.; Xiao, H.M.; Deng, H.W. Identification of potential functional genes in papillary thyroid cancer by co-expression network analysis. Oncol. Lett., 2018, 16(4), 4871-4878.
[http://dx.doi.org/10.3892/ol.2018.9306] [PMID: 30250553]
[47]
Zhang, L.; Pan, L.; Xiang, B.; Zhu, H.; Wu, Y.; Chen, M.; Guan, P.; Zou, X.; Valencia, C.A.; Dong, B.; Li, J.; Xie, L.; Ma, H.; Wang, F.; Dong, T.; Shuai, X.; Niu, T.; Liu, T. Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma. Oncotarget, 2016, 7(21), 30876-30891.
[http://dx.doi.org/10.18632/oncotarget.9021] [PMID: 27129167]
[48]
Wen, S.W.; Sceneay, J.; Lima, L.G.; Wong, C.S.; Becker, M.; Krumeich, S.; Lobb, R.J.; Castillo, V.; Wong, K.N.; Ellis, S.; Parker, B.S.; Möller, A. The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Res., 2016, 76(23), 6816-6827.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0868] [PMID: 27760789]
[49]
Du, M.; Giridhar, K.V.; Tian, Y.; Tschannen, M.R.; Zhu, J.; Huang, C.C.; Kilari, D.; Kohli, M.; Wang, L. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget, 2017, 8(38), 63703-63714.
[http://dx.doi.org/10.18632/oncotarget.19476] [PMID: 28969022]
[50]
Huang, X.; Yuan, T.; Liang, M.; Du, M.; Xia, S.; Dittmar, R.; Wang, D.; See, W.; Costello, B.A.; Quevedo, F.; Tan, W.; Nandy, D.; Bevan, G.H.; Longenbach, S.; Sun, Z.; Lu, Y.; Wang, T.; Thibodeau, S.N.; Boardman, L.; Kohli, M.; Wang, L. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol., 2015, 67(1), 33-41.
[http://dx.doi.org/10.1016/j.eururo.2014.07.035] [PMID: 25129854]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy