Abstract
Background: Over the past three decades, NMDA-receptor antagonists have been shown to be efficient drugs for treating pain, particularly pain resistant to conventional analgesics. Emphasis will be on the old-new drugs, ketamine and magnesium, and their combination as a novel approach for treating chronic pain.
Methods: The MEDLINE database was searched via PubMed for articles that were published up to March 1, 2020, with the keywords ‘ketamine’, ‘magnesium’, and ‘pain’ (in the title/abstract).
Results: Studies in animals, as well as humans, have shown that interactions of ketamine and magnesium can be additive, antagonistic, and synergistic. These discrepancies might be due to differences in magnesium and ketamine dosage, administration times, and the chronological order of drug administration. Different kinds of pain can also be the source of divergent results.
Conclusion: This review explains why studies performed with a combination of ketamine and magnesium have given inconsistent results. Because of the lack of efficacy of drugs available for pain, ketamine and magnesium in combination provide a novel therapeutic approach that needs to be standardized with a suitable dosing regimen, including the chronological order of drug administration.
Keywords: NMDA antagonist, pain, ketamine, magnesium, interaction, animals, humans.
CNS & Neurological Disorders - Drug Targets
Title:Interactions between Ketamine and Magnesium for the Treatment of Pain: Current State of the Art
Volume: 20 Issue: 5
Author(s): Katarina S. Vujović*, Sonja Vučković, Radan Stojanović, Nevena Divac, Branislava Medić, Aleksandar Vujović, Dragana Srebro and Milica Prostran
Affiliation:
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade,Serbia
Keywords: NMDA antagonist, pain, ketamine, magnesium, interaction, animals, humans.
Abstract:
Background: Over the past three decades, NMDA-receptor antagonists have been shown to be efficient drugs for treating pain, particularly pain resistant to conventional analgesics. Emphasis will be on the old-new drugs, ketamine and magnesium, and their combination as a novel approach for treating chronic pain.
Methods: The MEDLINE database was searched via PubMed for articles that were published up to March 1, 2020, with the keywords ‘ketamine’, ‘magnesium’, and ‘pain’ (in the title/abstract).
Results: Studies in animals, as well as humans, have shown that interactions of ketamine and magnesium can be additive, antagonistic, and synergistic. These discrepancies might be due to differences in magnesium and ketamine dosage, administration times, and the chronological order of drug administration. Different kinds of pain can also be the source of divergent results.
Conclusion: This review explains why studies performed with a combination of ketamine and magnesium have given inconsistent results. Because of the lack of efficacy of drugs available for pain, ketamine and magnesium in combination provide a novel therapeutic approach that needs to be standardized with a suitable dosing regimen, including the chronological order of drug administration.
Export Options
About this article
Cite this article as:
Vujović S. Katarina *, Vučković Sonja , Stojanović Radan , Divac Nevena , Medić Branislava , Vujović Aleksandar , Srebro Dragana and Prostran Milica , Interactions between Ketamine and Magnesium for the Treatment of Pain: Current State of the Art, CNS & Neurological Disorders - Drug Targets 2021; 20 (5) . https://dx.doi.org/10.2174/1871527320666210121144216
DOI https://dx.doi.org/10.2174/1871527320666210121144216 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Implications of Prion Protein Biology
Current Neurovascular Research Treatment Options in Alzheimer´s Disease: The GABA Story
Current Pharmaceutical Design Patent Selections
Recent Patents on CNS Drug Discovery (Discontinued) Natural Products of Dietary Origin as Lead Compounds in Virtual Screening and Drug Design
Current Pharmaceutical Biotechnology Neurochemical Imbalance in Epilepsy from Animal Model to Human
Current Psychopharmacology Ezogabine: Development and Role in the Management of Epileptic Seizures
Mini-Reviews in Medicinal Chemistry Cycle Helmets for Children- Education or Enforcement?
Current Pediatric Reviews Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide
Current Organic Synthesis Molecular Regulation and Pharmacology of Pacemaker Channels
Current Pharmaceutical Design Nicotinic Receptor Mutant Mice in the Study of Autonomic Function
Current Drug Targets - CNS & Neurological Disorders Serotonergic Drugs: Agonists/Antagonists at Specific Serotonergic Subreceptors for the Treatment of Cognitive, Depressant and Psychotic Symptoms in Alzheimer’s Disease
Current Pharmaceutical Design Clinical Uses of Melatonin: Evaluation of Human Trials
Current Medicinal Chemistry Herbal Insomnia Medications that Target GABAergic Systems: A Review of the Psychopharmacological Evidence
Current Neuropharmacology Interaction of Different Proteins with GABA<sub>A</sub> Receptor and their Modulatory Effect on Inhibitory Neural Transmission Leads to Epilepsy
CNS & Neurological Disorders - Drug Targets HCN Pacemaker Channels and Pain: A Drug Discovery Perspective
Current Pharmaceutical Design Nanotherapeutics in Neuropathologies: Obstacles, Challenges and Recent Advancements in CNS Targeted Drug Delivery Systems
Current Neuropharmacology Expression and Function of Cytochrome P450 in Brain Drug Metabolism
Current Drug Metabolism Histone Acetylation in Neurodevelopment
Current Pharmaceutical Design A Review of Lysergic Acid Diethylamide (LSD) in the Treatment of Addictions: Historical Perspectives and Future Prospects
Current Drug Abuse Reviews