Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

铁和阿霉素是活化线粒体通透性过渡孔的保护剂

卷 21, 期 6, 2021

发表于: 20 January, 2021

页: [514 - 525] 页: 12

弟呕挨: 10.2174/1568009621999210120192558

价格: $65

摘要

目标:本研究旨在检测铁、DOX及其复合物对线粒体通透性过渡孔(MPTP)开放的作用,并检测在接近线粒体依赖性铁垂的条件下MPTP可能的保护因子。 背景:阿霉素(DOX)的毒性主要与游离铁积累和线粒体功能障碍有关。DOX可引起铁下垂,由膜损伤引起的铁依赖细胞死亡。线粒体通透性过渡孔(MPTP)被认为是导致细胞凋亡、坏死和可能的铁下垂的共同途径。在铁存在的情况下,DOX对Ca2+诱导的MPTP开口的影响尚未研究。 目的:这项研究是在分离的肝脏和心脏线粒体上进行的。研究了MPTP和琥珀酸-泛素氧化还原酶作为DOX靶蛋白在线粒体依赖性铁弛缓症中的作用。铁螯合剂脱铁胺(DFO)、脂质自由基清除剂丁基-羟基甲苯(BHT)和钌红(Rr)可能是线粒体摄取亚铁离子的抑制剂,作为MPTP的保护剂。同时还考察了中碱化的作用。 方法:用Ca2+选择电极测量MPTP开放所需的阈值钙浓度的变化,用四苯基磷(TPP+)选择电极记录线粒体膜电位,并记录540 nm处的吸光度下降导致线粒体肿胀。通过还原琥珀酸脱氢酶(SDH)的电子受体DCPIP,测定其活性。 结论:MPTP和呼吸复合物II被确定为DOX对分离的线粒体铁依赖作用的主要靶点。所有的MPTP保护剂都可以消除或减弱铁和铁与DOX复合物对Ca2+诱导的MPTP开放的影响,在MPTP激活的不同阶段起作用。这些数据为调节DOX对线粒体的毒性影响提供了新的途径,目的是减少线粒体的功能障碍。

关键词: 阿霉素、铁、线粒体通透性过渡孔、丁羟甲苯、碱化、去铁胺

图形摘要

[1]
Ichikawa, Y.; Ghanefar, M.; Bayeva, M.; Wu, R.; Khechaduri, A.; Naga Prasad, S.V.; Mutharasan, R.K.; Naik, T.J.; Ardehali, H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest., 2014, 124(2), 617-630.
[http://dx.doi.org/10.1172/JCI72931] [PMID: 24382354]
[2]
Kuznetsov, A.V.; Margreiter, R.; Amberger, A.; Saks, V.; Grimm, M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim. Biophys. Acta, 2011, 1813(6), 1144-1152.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.002] [PMID: 21406203]
[3]
Pereira, G.C.; Pereira, S.P.; Pereira, C.V.; Lumini, J.A.; Magalhães, J.; Ascensão, A.; Santos, M.S.; Moreno, A.J.; Oliveira, P.J. Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific. PLoS One, 2012, 7(6), e38867.
[http://dx.doi.org/10.1371/journal.pone.0038867] [PMID: 22745682]
[4]
Zhou, S.; Starkov, A.; Froberg, M.K.; Leino, R.L.; Wallace, K.B. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res., 2001, 61(2), 771-777.
[PMID: 11212281]
[5]
Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev., 2014, 34(1), 106-135.
[http://dx.doi.org/10.1002/med.21280] [PMID: 23494977]
[6]
Saad, S.Y.; Najjar, T.A.; Al-Rikabi, A.C. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol. Res., 2001, 43(3), 211-218.
[http://dx.doi.org/10.1006/phrs.2000.0769] [PMID: 11401411]
[7]
Santos-Alves, E.; Rizo-Roca, D.; Marques-Aleixo, I.; Coxito, P.; Martins, S.; Guimarães, J.T.; Oliveira, P.J.; Torrella, J.R.; Magalhães, J.; Ascensão, A. Physical exercise positively modulates DOX-induced hepatic oxidative stress, mitochondrial dysfunction and quality control signaling. Mitochondrion, 2019, 47, 103-113.
[http://dx.doi.org/10.1016/j.mito.2019.05.008] [PMID: 31170523]
[8]
Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; Cheng, Q.; Zhang, P.; Dai, W.; Chen, J.; Yang, F.; Yang, H.T.; Linkermann, A.; Gu, W.; Min, J.; Wang, F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2672-2680.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[9]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[10]
Xu, X.; Persson, H.L.; Richardson, D.R. Molecular pharmacology of the interaction of anthracyclines with iron. Mol. Pharmacol., 2005, 68(2), 261-271.
[http://dx.doi.org/10.1124/mol.105.013383] [PMID: 15883202]
[11]
Gammella, E; Maccarinelli, F; Buratti, P; Recalcati, S; Cairo, G The role of iron in anthracycline cardiotoxicity. Front Pharmacol., 2014, 5, 25.
[http://dx.doi.org/10.3389/fphar.2014.00025]
[12]
Asensio-López, M.C.; Soler, F.; Sánchez-Más, J.; Pascual-Figal, D.; Fernández-Belda, F.; Lax, A. Early oxidative damage induced by doxorubicin: Source of production, protection by GKT137831 and effect on Ca(2+) transporters in HL-1 cardiomyocytes. Arch. Biochem. Biophys., 2016, 594, 26-36.
[http://dx.doi.org/10.1016/j.abb.2016.02.021] [PMID: 26906075]
[13]
Cardoso, S.; Santos, R.X.; Carvalho, C.; Correia, S.; Pereira, G.C.; Pereira, S.S.; Oliveira, P.J.; Santos, M.S.; Proença, T.; Moreira, P.I. Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic. Biol. Med., 2008, 45(10), 1395-1402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.008] [PMID: 18775776]
[14]
Gogvadze, V.; Walter, P.B.; Ames, B.N. The role of Fe2+-induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Arch. Biochem. Biophys., 2003, 414(2), 255-260.
[http://dx.doi.org/10.1016/S0003-9861(02)00750-6] [PMID: 12781777]
[15]
Finn, N.A.; Kemp, M.L. Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells. Mol. Biosyst., 2012, 8(2), 650-662.
[http://dx.doi.org/10.1039/C1MB05315A] [PMID: 22134636]
[16]
Oliveira, P.J.; Santos, M.S.; Wallace, K.B. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Mosc.), 2006, 71(2), 194-199.
[http://dx.doi.org/10.1134/S000629790602012X] [PMID: 16489925]
[17]
Wongjaikam, S.; Kumfu, S.; Khamseekaew, J.; Chattipakorn, S.C.; Chattipakorn, N. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine. Sci. Rep., 2017, 7, 44460.
[http://dx.doi.org/10.1038/srep44460] [PMID: 28287621]
[18]
Al-Shabanah, O.A.; Aleisa, A.M.; Hafez, M.M.; Al-Rejaie, S.S.; Al-Yahya, A.A.; Bakheet, S.A.; Al-Harbi, M.M.; Sayed-Ahmed, M.M. Desferrioxamine attenuates doxorubicin-induced acute cardiotoxicity through TFG-β/Smad p53 pathway in rat model. Oxid. Med. Cell. Longev., 2012, 2012, 619185.
[http://dx.doi.org/10.1155/2012/619185] [PMID: 22619697]
[19]
Xu, X.; Sutak, R.; Richardson, D.R. Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol. Pharmacol., 2008, 73(3), 833-844.
[http://dx.doi.org/10.1124/mol.107.041335] [PMID: 18029550]
[20]
Hasinoff, B.B.; Schnabl, K.L.; Marusak, R.A.; Patel, D.; Huebner, E. Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc. Toxicol., 2003, 3(2), 89-99.
[http://dx.doi.org/10.1385/CT:3:2:89] [PMID: 14501028]
[21]
Shi, W.; Deng, H.; Zhang, J.; Zhang, Y.; Zhang, X.; Cui, G. Mitochondria-targeting small molecules effectively prevent cardiotoxicity induced by doxorubicin. Molecules, 2018, 23(6), 1486.
[http://dx.doi.org/10.3390/molecules23061486] [PMID: 29921817]
[22]
Tadokoro, T.; Ikeda, M.; Ide, T.; Deguchi, H.; Ikeda, S.; Okabe, K.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.I.; Imai, H.; Tsutsui, H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight, 2020, 5(9), e132747.
[http://dx.doi.org/10.1172/jci.insight.132747] [PMID: 32376803]
[23]
Fedotcheva, N.I.; Mokhova, E.N. Mitochondrial models of pathologies with oxidative stress. Efficiency of alkalization to reduce mitochondrial damage. Biochemistry (Mosc.), 2013, 78(11), 1293-1297.
[http://dx.doi.org/10.1134/S0006297913110102] [PMID: 24460944]
[24]
Fedotcheva, T.A.; Teplova, V.V.; Fedotcheva, N.I. Activation of calcium-dependent cyclosporine-sensitive mitochondrial pores with doxorubicin in combination with iron ions. Биол. мембраны, 2018, 35(1), 79-84.
[http://dx.doi.org/10.7868/S0233475518010097]
[25]
Fedotcheva, N.I.; Teplova, V.V.; Fedotcheva, T.A.; Rzheznikov, V.M.; Shimanovskii, N.L. Effect of progesterone and its synthetic analogues on the activity of mitochondrial permeability transition pore in isolated rat liver mitochondria. Biochem. Pharmacol., 2009, 78(8), 1060-1068.
[http://dx.doi.org/10.1016/j.bcp.2009.05.028] [PMID: 19481064]
[26]
Dynnik, V.V.; Grishina, E.V.; Fedotcheva, N.I. The mitochondrial NO-synthase/guanylate cyclase/protein kinase G signaling system underpins the dual effects of nitric oxide on mitochondrial respiration and opening of the permeability transition pore. FEBS J., 2020, 287(8), 1525-1536.
[http://dx.doi.org/10.1111/febs.15090] [PMID: 31602795]
[27]
Guo, L.; Shestov, A.A.; Worth, A.J.; Nath, K.; Nelson, D.S.; Leeper, D.B.; Glickson, J.D.; Blair, I.A. Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J. Biol. Chem., 2016, 291(1), 42-57.
[http://dx.doi.org/10.1074/jbc.M115.697516] [PMID: 26521302]
[28]
Beloborodova, N.; Pautova, A.; Sergeev, A.; Fedotcheva, N. Serum levels of mitochondrial and microbial metabolites reflect mitochondrial dysfunction in different stages of sepsis. Metabolites, 2019, 9(10), 196.
[http://dx.doi.org/10.3390/metabo9100196] [PMID: 31547099]
[29]
Muraoka, S.; Miura, T. Inactivation of mitochondrial succinate dehydrogenase by adriamycin activated by horseradish peroxidase and hydrogen peroxide. Chem. Biol. Interact., 2003, 145(1), 67-75.
[http://dx.doi.org/10.1016/S0009-2797(02)00239-9] [PMID: 12606155]
[30]
Link, G.; Saada, A.; Pinson, A.; Konijn, A.M.; Hershko, C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J. Lab. Clin. Med., 1998, 131(5), 466-474.
[http://dx.doi.org/10.1016/S0022-2143(98)90148-2] [PMID: 9605112]
[31]
Zhang, X.; Lemasters, J.J. Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic. Biol. Med., 2013, 63, 243-253.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.004] [PMID: 23665427]
[32]
Zhang, L.; Wang, H.; Zhou, X.; Mao, L.; Ding, K.; Hu, Z. Role of mitochondrial calcium uniporter-mediated Ca2+ and iron accumulation in traumatic brain injury. J. Cell. Mol. Med., 2019, 23(4), 2995-3009.
[http://dx.doi.org/10.1111/jcmm.14206] [PMID: 30756474]
[33]
Sripetchwandee, J.; Sanit, J.; Chattipakorn, N.; Chattipakorn, S.C. Mitochondrial calcium uniporter blocker effectively prevents brain mitochondrial dysfunction caused by iron overload. Life Sci., 2013, 92(4-5), 298-304.
[http://dx.doi.org/10.1016/j.lfs.2013.01.004] [PMID: 23333832]
[34]
Huang, X.; Liu, Y.; Yang, X.; Lai, S.; Zhang, Y.; Gu, J.; Li, H.; Xie, Y.; Xia, Y. NH4Cl treatment prevents doxorubicin-induced myocardial dysfunction in vivo. Life Sci., 2019, 227, 94-100.
[http://dx.doi.org/10.1016/j.lfs.2019.04.044] [PMID: 31004659]
[35]
Ichas, F.; Mazat, J.P. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta, 1998, 1366(1-2), 33-50.
[http://dx.doi.org/10.1016/S0005-2728(98)00119-4] [PMID: 9714722]
[36]
Elustondo, P.A.; Negoda, A.; Kane, C.L.; Kane, D.A.; Pavlov, E.V. Spermine selectively inhibits high-conductance, but not low- conductance calcium-induced permeability transition pore. Biochim. Biophys. Acta, 2015, 1847(2), 231-240.
[http://dx.doi.org/10.1016/j.bbabio.2014.10.007] [PMID: 25448536]
[37]
Kakkar, P.; Mehrotra, S.; Viswanathan, P.N. tBHP induced in vitro swelling of rat liver mitochondria. Mol. Cell. Biochem., 1996, 154(1), 39-45.
[http://dx.doi.org/10.1007/BF00248459] [PMID: 8717415]
[38]
Lemarie, A.; Huc, L.; Pazarentzos, E.; Mahul-Mellier, A.L.; Grimm, S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ., 2011, 18(2), 338-349.
[http://dx.doi.org/10.1038/cdd.2010.93] [PMID: 20706275]
[39]
Andreadou, I.; Papaefthimiou, M.; Zira, A.; Constantinou, M.; Sigala, F.; Skaltsounis, A.L.; Tsantili-Kakoulidou, A.; Iliodromitis, E.K.; Kremastinos, D.T.; Mikros, E. Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural antioxidant oleuropein. NMR Biomed., 2009, 22(6), 585-592.
[http://dx.doi.org/10.1002/nbm.1370] [PMID: 19308947]
[40]
Danese, A.; Patergnani, S.; Bonora, M.; Wieckowski, M.R.; Previati, M.; Giorgi, C.; Pinton, P. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 615-627.
[http://dx.doi.org/10.1016/j.bbabio.2017.01.003] [PMID: 28087257]
[41]
Marchi, S.; Lupini, L.; Patergnani, S.; Rimessi, A.; Missiroli, S.; Bonora, M.; Bononi, A.; Corrà, F.; Giorgi, C.; De Marchi, E.; Poletti, F.; Gafà, R.; Lanza, G.; Negrini, M.; Rizzuto, R.; Pinton, P. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol., 2013, 23(1), 58-63.
[http://dx.doi.org/10.1016/j.cub.2012.11.026] [PMID: 23246404]
[42]
Patergnani, S.; Giorgi, C.; Maniero, S.; Missiroli, S.; Maniscalco, P.; Bononi, I.; Martini, F.; Cavallesco, G.; Tognon, M.; Pinton, P. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget, 2015, 6(27), 23427-23444.
[http://dx.doi.org/10.18632/oncotarget.4370] [PMID: 26156019]
[43]
Lytovchenko, O.; Kunji, E.R.S. Expression and putative role of mitochondrial transport proteins in cancer. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 641-654.
[http://dx.doi.org/10.1016/j.bbabio.2017.03.006] [PMID: 28342810]
[44]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107.
[http://dx.doi.org/10.1016/j.redox.2019.101107] [PMID: 30692038]
[45]
Fan, Z.; Wirth, A.K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8), e371.
[http://dx.doi.org/10.1038/oncsis.2017.65] [PMID: 28805788]
[46]
Jang, J.Y.; Choi, Y.; Jeon, Y.K.; Aung, K.C.; Kim, C.W. Over-expression of adenine nucleotide translocase 1 (ANT1) induces apoptosis and tumor regression in vivo. BMC Cancer, 2008, 8, 160.
[http://dx.doi.org/10.1186/1471-2407-8-160] [PMID: 18522758]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy