Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Smart Nanodevices for Point-of-Care Applications

Author(s): Rajasekhar Chokkareddy, Suvardhan Kanchi, Inamuddin* and Tariq A Altalhi

Volume 18, Issue 4, 2022

Published on: 20 January, 2021

Page: [415 - 429] Pages: 15

DOI: 10.2174/1573411017999210120180646

Price: $65

Abstract

Background: While significant advancement has made to reduce the percentage of mortality during the treatment of chronic diseases, however, there are several challenges associated with the healthcare sector for the improvement of human lifestyle. Recently, the development of specific, sensitive, accurate, quick, low-cost and easy-to-use diagnostic tools are in great demand. Nanodiagnostic is defined as an application of nanotechnology to medical diagnostics that offers several unique opportunities to treat chronic diseases successfully and more effectively.

Methods: This review is aimed at focusing a wide range of nano-based platforms, including smart nanomaterials and their nanodevices for point-of-care applications.

Results: The current state-of-the-art and most promising nanodiagnostics include miniaturized diagnostic tools, nanorobotics and drug delivery systems. The present review also highlights the drawbacks and potential developments that are associated with nanodiagnostics for point-of-care applications in the treatment of chronic diseases.

Conclusions: Even though several researchers have dedicated their time to developing highly advanced smart nanodevices for point-of-care applications, but reliability and continuous monitoring of patient’s health are questionable. Moreover, researchers and administrators need to focus on the designing of a roadmap for the availability of nanodevices to rural patients to undergo insitu diagnosis as well as reusability of the devices which could reduce the percentage of mortality and cost of the testing.

Keywords: Nanotechnology, smart nanodevices, point-of-care applications, drug delivery, pharmaceuticals, human lifestyle

Graphical Abstract

[1]
Förster, S.; Plantenberg, T. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. Engl., 2002, 41(5), 689-714.
[http://dx.doi.org/10.1002/1521-3773(20020301)41:5<688:AID-ANIE688>3.0.CO;2-3] [PMID: 12491318]
[2]
Cranford, S.; Buehler, M.J. Materiomics: biological protein materials, from nano to macro. Nanotechnol. Sci. Appl., 2010, 3, 127-148.
[PMID: 24198478]
[3]
Chokkareddy, R. Fabrication of sensors for the sensitive electrochemical detection of anti-tuberculosis drugs.Chemistry; Durban University of Technology, 2018.
[4]
Stair, R.; Reynolds, G. Principles of information systems; Cengage Learning, 2013.
[5]
Bunge, M. Scientific research II: The search for truth. Springer Science & Business Media, 2012, 1.
[6]
Toma, L. Polyoxomolybdates with emergent properties, 2018.
[7]
Henderson, J.D. Colombia’s Narcotics Nightmare: How the Drug Trade Destroyed Peace; McFarland, 2015.
[8]
European Guidelines on cardiovascular disease prevention in clinical practice (version 2012) The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur. J. Prev. Cardiol., 2012, pp. 585-667.
[9]
Lewis, W.H.; Elvin-Lewis, M.P. Medical botany: Plants affecting human health; John Wiley & Sons, 2003.
[10]
Stewart, C.; Konstantinov, K.; McKinnon, S.; Guatelli, S.; Lerch, M.; Rosenfeld, A.; Tehei, M.; Corde, S. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys. Med., 2016, 32(11), 1444-1452.
[http://dx.doi.org/10.1016/j.ejmp.2016.10.015] [PMID: 28327297]
[11]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[12]
Dubbs, P. Synthetic Antibody Detects Proteins; MIT: The United States of America, 2016.
[13]
Wan, S.; Kim, T.H.; Smith, K.J.; Delaney, R.; Park, G.S.; Guo, H.; Lin, E.; Plegue, T.; Kuo, N.; Steffes, J.; Leu, C.; Simeone, D.M.; Razimulava, N.; Parikh, N.D.; Nagrath, S.; Welling, T.H. New Labyrinth Microfluidic Device Detects Circulating Tumor Cells Expressing Cancer Stem Cell Marker and Circulating Tumor Microemboli in Hepatocellular Carcinoma. Sci. Rep., 2019, 9(1), 18575.
[http://dx.doi.org/10.1038/s41598-019-54960-y] [PMID: 31819089]
[14]
Santos, G.M.; Ferrara, F.I.S.; Zhao, F.; Rodrigues, D.F.; Shih, W-C. Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays. Opt. Mater. Express, 2016, 6(4), 1217-1229.
[http://dx.doi.org/10.1364/OME.6.001217]
[15]
Moraes Silva, S.; Tavallaie, R.; Sandiford, L.; Tilley, R.D.; Gooding, J.J. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem. Commun. (Camb.), 2016, 52(48), 7528-7540.
[http://dx.doi.org/10.1039/C6CC03225G] [PMID: 27182032]
[16]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[17]
Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(3), 293-301.
[http://dx.doi.org/10.1016/j.diabres.2010.01.026] [PMID: 20171754]
[18]
Vashist, S.K. Continuous glucose monitoring systems: A review. Diagnostics (Basel), 2013, 3(4), 385-412.
[http://dx.doi.org/10.3390/diagnostics3040385] [PMID: 26824930]
[19]
Murday, J.S.; Siegel, R.W.; Stein, J.; Wright, J.F. Translational nanomedicine: Status assessment and opportunities. Nanomedicine (Lond.), 2009, 5(3), 251-273.
[http://dx.doi.org/10.1016/j.nano.2009.06.001] [PMID: 19540359]
[20]
Fisher, E.; Boenink, M.; van der Burg, S.; Woodbury, N. Responsible healthcare innovation: Anticipatory governance of nanodiagnostics for theranostics medicine. Expert Rev. Mol. Diagn., 2012, 12(8), 857-870.
[http://dx.doi.org/10.1586/erm.12.125] [PMID: 23249203]
[21]
Maksimović, M. The roles of Nanotechnology and Internet of Nano things in healthcare transformation. Tecno Lógicas, 2017, 20(40), 139-153.
[http://dx.doi.org/10.22430/22565337.720]
[22]
Aston, D.; Bow, J.; Gangadean, D. Mechanical properties of selected nanostructured materials and complex bio-nano, hybrid and hierarchical systems. Int. Mater. Rev., 2013, 58(3), 167-202.
[http://dx.doi.org/10.1179/1743280412Y.0000000012]
[23]
de la Iglesia, D.; Harper, S.; Hoover, M.D.; Klaessig, F.; Lippell, P.; Maddux, B. Nanoinformatics 2020 roadmap, 2011.
[24]
Bar-Ilan, J. Informetrics at the beginning of the 21st century-A review. J. Informetrics, 2008, 2(1), 1-52.
[http://dx.doi.org/10.1016/j.joi.2007.11.001]
[25]
Maglio, P.P.; Kieliszewski, C.A.; Spohrer, J.C. Handbook of service science; , 2010.
[http://dx.doi.org/10.1007/978-1-4419-1628-0]
[26]
Emerich, D.F.; Thanos, C.G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng., 2006, 23(4), 171-184.
[http://dx.doi.org/10.1016/j.bioeng.2006.05.026] [PMID: 16843058]
[27]
Putheti, R.R.; Okigbo, R.; Chavanpatil, S. Nanotechnology importance in the pharmaceutical industry. Afr. J. Pure Appl. Chem.,, 2008, 2(3), 027-031.
[28]
Perkel, J.M. The ups and downs of nanobiotech: Balance is hard to find as researchers, investors, and environmentalists jockey for position. Scientist, 2004, 18(16), 14-19.
[29]
Subramani, K.; Mehta, M. Nanodiagnostics in microbiology and dentistry. Emerging Nanotechnologies in Dentistry; Elsevier, 2018, pp. 391-419.
[http://dx.doi.org/10.1016/B978-0-12-812291-4.00019-4]
[30]
Subramani, K.; Mehta, M. Nanodiagnostics in microbiology and dentistry. Emerging Nanotechnologies in Dentistry, 2nd Ed; Elsevier, 2018, pp. 391-419.
[http://dx.doi.org/10.1016/B978-0-12-812291-4.00019-4]
[31]
Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M. Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem., 2011, 2(8), 1754-1760.
[http://dx.doi.org/10.1039/c1py00179e]
[32]
Campbell, I.G.; Jones, T.A.; Foulkes, W.D.; Trowsdale, J. Folate-binding protein is a marker for ovarian cancer. Cancer Res., 1991, 51(19), 5329-5338.
[PMID: 1717147]
[33]
Weitman, S.D.; Lark, R.H.; Coney, L.R.; Fort, D.W.; Frasca, V.; Zurawski, V.R., Jr; Kamen, B.A. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res., 1992, 52(12), 3396-3401.
[PMID: 1596899]
[34]
Hong, S.; Leroueil, P.R.; Majoros, I.J.; Orr, B.G.; Baker, J.R., Jr; Banaszak Holl, M.M. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol., 2007, 14(1), 107-115.
[http://dx.doi.org/10.1016/j.chembiol.2006.11.015] [PMID: 17254956]
[35]
Tekade, R.K.; Dutta, T.; Gajbhiye, V.; Jain, N.K. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J. Microencapsul., 2009, 26(4), 287-296.
[http://dx.doi.org/10.1080/02652040802312572] [PMID: 18791906]
[36]
He, H.; Li, Y.; Jia, X-R.; Du, J.; Ying, X.; Lu, W-L.; Lou, J.N.; Wei, Y. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials, 2011, 32(2), 478-487.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.002] [PMID: 20934215]
[37]
Shi, X.; Wang, S.H.; Swanson, S.D.; Ge, S.; Cao, Z.; Van Antwerp, M.E. Dendrimer‐functionalized shell‐crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv. Mater., 2008, 20(9), 1671-1678.
[http://dx.doi.org/10.1002/adma.200702770]
[38]
Kurtoglu, Y.E.; Navath, R.S.; Wang, B.; Kannan, S.; Romero, R.; Kannan, R.M. Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials, 2009, 30(11), 2112-2121.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.054] [PMID: 19171376]
[39]
Cai, H.; Li, K.; Shen, M.; Wen, S.; Luo, Y.; Peng, C. Facile assembly of Fe3O4@ Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J. Mater. Chem., 202, 22(30), 15110-15120.
[http://dx.doi.org/10.1039/c2jm16851k]
[40]
Shi, X.; Thomas, T.P.; Myc, L.A.; Kotlyar, A.; Baker, J.R. Jr Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys., 2007, 9(42), 5712-5720.
[http://dx.doi.org/10.1039/b709147h] [PMID: 17960261]
[41]
Wang, S.H.; Shi, X.; Van Antwerp, M.; Cao, Z.; Swanson, S.D.; Bi, X. Dendrimer‐functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv. Funct. Mater., 2007, 17(16), 3043-3050.
[http://dx.doi.org/10.1002/adfm.200601139]
[42]
Fang, Y.; Peng, C.; Guo, R.; Zheng, L.; Qin, J.; Zhou, B.; Shen, M.; Lu, X.; Zhang, G.; Shi, X. Dendrimer-stabilized bismuth sulfide nanoparticles: Synthesis, characterization, and potential computed tomography imaging applications. Analyst (Lond.), 2013, 138(11), 3172-3180.
[http://dx.doi.org/10.1039/c3an00237c] [PMID: 23616984]
[43]
Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X. X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C, 2009, 114(1), 50-56.
[http://dx.doi.org/10.1021/jp9078986]
[44]
Peng, C.; Wang, H.; Guo, R.; Shen, M.; Cao, X.; Zhu, M. Acetylation of dendrimer‐entrapped gold nanoparticles: Synthesis, stability, and X‐ray attenuation properties. J. Appl. Polym. Sci., 2011, 119(3), 1673-1682.
[http://dx.doi.org/10.1002/app.32845]
[45]
Wang, H.; Zheng, L.; Peng, C.; Guo, R.; Shen, M.; Shi, X.; Zhang, G. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials, 2011, 32(11), 2979-2988.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.001] [PMID: 21277019]
[46]
Chang, Y.; Meng, X.; Zhao, Y.; Li, K.; Zhao, B.; Zhu, M.; Li, Y.; Chen, X.; Wang, J. Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J. Colloid Interface Sci., 2011, 363(1), 403-409.
[http://dx.doi.org/10.1016/j.jcis.2011.06.086] [PMID: 21821262]
[47]
Kurtoglu, Y.E.; Navath, R.S.; Wang, B.; Kannan, S.; Romero, R.; Kannan, R.M. Poly (amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery 2009, 30, pp(11), 2112-2121.
[48]
Graham, D.; Stevenson, R.; Thompson, D.G.; Barrett, L.; Dalton, C.; Faulds, K. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease. Faraday Discuss., 2011, 149(1), 291-299.
[http://dx.doi.org/10.1039/C005397J] [PMID: 21413187]
[49]
Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297(5586), 1536-1540.
[http://dx.doi.org/10.1126/science.297.5586.1536] [PMID: 12202825]
[50]
Qian, X.; Zhou, X.; Nie, S. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc., 2008, 130(45), 14934-14935.
[http://dx.doi.org/10.1021/ja8062502] [PMID: 18937463]
[51]
Foti, A.; D’Andrea, C.; Villari, V.; Micali, N.; Donato, M.G.; Fazio, B.; Maragò, O.M.; Gillibert, R.; Lamy de la Chapelle, M.; Gucciardi, P.G. Optical aggregation of gold nanoparticles for SERS detection of proteins and toxins in liquid environment: Towards ultrasensitive and selective detection. Materials (Basel), 2018, 11(3), 440.
[http://dx.doi.org/10.3390/ma11030440] [PMID: 29562606]
[52]
Han, X.X.; Huang, G.G.; Zhao, B.; Ozaki, Y. Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal. Chem., 2009, 81(9), 3329-3333.
[http://dx.doi.org/10.1021/ac900395x] [PMID: 19326907]
[53]
Dou, H.; Morehead, J.; Destache, C.J.; Kingsley, J.D.; Shlyakhtenko, L.; Zhou, Y.; Chaubal, M.; Werling, J.; Kipp, J.; Rabinow, B.E.; Gendelman, H.E. Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology, 2007, 358(1), 148-158.
[http://dx.doi.org/10.1016/j.virol.2006.08.012] [PMID: 16997345]
[54]
Hassen, W.M.; Chaix, C.; Abdelghani, A.; Bessueille, F.; Leonard, D.; Jaffrezic-Renault, N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens. Actuators B Chem., 2008, 134(2), 755-760.
[http://dx.doi.org/10.1016/j.snb.2008.06.020]
[55]
Dai Tran, L.; Nguyen, B.H.; Van Hieu, N.; Tran, H.V.; Le Nguyen, H.; Nguyen, P.X. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater. Sci. Eng. C, 2011, 31(2), 477-485.
[http://dx.doi.org/10.1016/j.msec.2010.11.007]
[56]
Lee, J.-H.; Oh, B.-K.; Choi, J.-W. Electrochemical sensor based on direct electron transfer of HIV-1 Virus at Au nanoparticle modified ITO electrode, 2013, 49531-535.
[http://dx.doi.org/10.1016/j.bios.2013.06.010]
[57]
Narang, J.; Malhotra, N.; Singh, G.; Pundir, C.S. Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens. Bioelectron., 2015, 66, 332-337.
[http://dx.doi.org/10.1016/j.bios.2014.11.038] [PMID: 25437372]
[58]
Lu, J.; Yao, C.; Yang, L.; Webster, T.J. Decreased platelet adhesion and enhanced endothelial cell functions on nano and submicron-rough titanium stents. Tissue Eng. Part A, 2012, 18(13-14), 1389-1398.
[http://dx.doi.org/10.1089/ten.tea.2011.0268] [PMID: 22607484]
[59]
Kim, J.; Kim, W.S. A paired stretchable printed sensor system for ambulatory blood pressure monitoring; Sens; Actuator A-Phys, 2016, pp. 238329-238336.
[60]
Xu, H.; Liu, J.; Zhang, J.; Zhou, G.; Luo, N.; Zhao, N. Flexible organic/inorganic hybrid near infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater. , 2016; 29, p. (31)1700975.
[http://dx.doi.org/10.1002/adma.201700975] [PMID: 28612929]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy