Review Article

P2X7 受体作为重度抑郁症的潜在靶点

卷 22, 期 10, 2021

发表于: 20 January, 2021

页: [1108 - 1120] 页: 13

弟呕挨: 10.2174/1389450122666210120141908

价格: $65

摘要

重度抑郁症(MDD)是一种常见的精神障碍。虽然遗传、生化和心理因素与MDD的发生有关,但普遍认为慢性应激引起的脑部一系列病理变化是MDD的主要原因。然而,慢性压力引起的 MDD 的具体机制在很大程度上被破坏了。最近的研究发现,脑内小胶质细胞促炎细胞因子的增加和炎症通路的变化是 MDD 的潜在病理生理机制。 P2X7 受体 (P2X7R) 及其介导的信号通路在小胶质细胞激活中起关键作用。本综述旨在展示和讨论有关 P2X7R 在 MDD 中作用的累积数据。首先总结了P2X7R与MDD相关性的研究进展。随后,我们介绍了 MDD 中 P2X7R 介导的小胶质细胞激活以及 P2X7R 在由慢性压力引起的血脑屏障 (BBB) 通透性增加中的作用。最后,我们还讨论了慢性压力后 P2X7R 表达变化的潜在机制。总之,P2X7R 是调节小胶质细胞活化的关键分子。慢性应激通过分泌白细胞介素-1β(IL-1β)等炎症细胞因子激活海马小胶质细胞,增加血脑屏障通透性,从而促进MDD的发生和发展,表明P2X7R可能是MDD的一个有前景的治疗靶点。

关键词: 重度抑郁症、P2X7 受体、小胶质细胞、血脑屏障、慢性压力和炎症细胞因子。

图形摘要

[1]
Kupferberg A, Bicks L, Hasler G. Social functioning in major depressive disorder. Neurosci Biobehav Rev 2016; 69: 313-32.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.002] [PMID: 27395342]
[2]
Li H, Luo X, Ke X, et al. Major depressive disorder and suicide risk among adult outpatients at several general hospitals in a Chinese Han population. PLoS One 2017; 12(10)
[http://dx.doi.org/10.1371/journal.pone.0186143] [PMID: 29016669]
[3]
Nemeroff CB, Kalali A, Keller MB, et al. Impact of publicity concerning pediatric suicidality data on physician practice patterns in the United States. Arch Gen Psychiatry 2007; 64(4): 466-72.
[http://dx.doi.org/10.1001/archpsyc.64.4.466] [PMID: 17404123]
[4]
Farooq RK, Tanti A, Ainouche S, et al. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. PSYCHONEUROENDOCRINO 2018.
[5]
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3(11)
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[6]
Deussing JM, Arzt E. P2X7 Receptor: A Potential Therapeutic Target for Depression? Trends Mol Med 2018; 24(9): 736-47.
[http://dx.doi.org/10.1016/j.molmed.2018.07.005] [PMID: 30093269]
[7]
Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry 2019; 6(3): 211-24.
[http://dx.doi.org/10.1016/S2215-0366(18)30511-X] [PMID: 30792114]
[8]
Smith K. Mental health: a world of depression. Nature 2014; 515(7526): 181.
[http://dx.doi.org/10.1038/515180a] [PMID: 25391942]
[9]
Hammen C. Stress and depression. Annu Rev Clin Psychol 2005; 1: 293-319.
[http://dx.doi.org/10.1146/annurev.clinpsy.1.102803.143938] [PMID: 17716090]
[10]
Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156(6): 837-41.
[http://dx.doi.org/10.1176/ajp.156.6.837] [PMID: 10360120]
[11]
Krügel U. Purinergic receptors in psychiatric disorders. Neuropharmacology 2016; 104: 212-25.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.032] [PMID: 26518371]
[12]
Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301(5634): 805-9.
[http://dx.doi.org/10.1126/science.1083328] [PMID: 12907793]
[13]
Uher R, Tansey KE, Dew T, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry 2014; 171(12): 1278-86.
[http://dx.doi.org/10.1176/appi.ajp.2014.14010094] [PMID: 25017001]
[14]
Carvalho LA, Torre JP, Papadopoulos AS, et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord 2013; 148(1): 136-40.
[http://dx.doi.org/10.1016/j.jad.2012.10.036] [PMID: 23200297]
[15]
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016; 17(8): 497-511.
[http://dx.doi.org/10.1038/nrn.2016.69] [PMID: 27277867]
[16]
Khemissi W, Farooq RK, Le Guisquet AM, Sakly M, Belzung C. Dysregulation of the hypothalamus-pituitary-adrenal axis predicts some aspects of the behavioral response to chronic fluoxetine: association with hippocampal cell proliferation. Front Behav Neurosci 2014; 8: 340.
[http://dx.doi.org/10.3389/fnbeh.2014.00340] [PMID: 25324748]
[17]
Horowitz MA, Zunszain PA. Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci 2015; 1351: 68-79.
[http://dx.doi.org/10.1111/nyas.12781] [PMID: 25943397]
[18]
Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 2013; 70(1): 31-41.
[http://dx.doi.org/10.1001/2013.jamapsychiatry.4] [PMID: 22945416]
[19]
Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry 2018; 23(2): 335-43.
[http://dx.doi.org/10.1038/mp.2016.167] [PMID: 27752078]
[20]
Kohler O, Krogh J, Mors O, Benros ME. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr Neuropharmacol 2016; 14(7): 732-42.
[http://dx.doi.org/10.2174/1570159X14666151208113700] [PMID: 27640518]
[21]
Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 2009; 24(1): 27-53.
[http://dx.doi.org/10.1007/s11011-008-9118-1] [PMID: 19085093]
[22]
Eyre H, Baune BT. Neuroimmunological effects of physical exercise in depression. Brain Behav Immun 2012; 26(2): 251-66.
[http://dx.doi.org/10.1016/j.bbi.2011.09.015] [PMID: 21986304]
[23]
Réus GZ, Fries GR, Stertz L, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 2015; 300: 141-54.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.018] [PMID: 25981208]
[24]
Zunszain PA, Hepgul N, Pariante CM. Inflammation and depression. Curr Top Behav Neurosci 2013; 14: 135-51.
[http://dx.doi.org/10.1007/7854_2012_211] [PMID: 22553073]
[25]
Alcocer-Gómez E, de Miguel M, Casas-Barquero N, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 2014; 36: 111-7.
[http://dx.doi.org/10.1016/j.bbi.2013.10.017] [PMID: 24513871]
[26]
Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 2014; 41: 90-100.
[http://dx.doi.org/10.1016/j.bbi.2014.04.007] [PMID: 24859041]
[27]
Weinberger JF, Raison CL, Rye DB, et al. Inhibition of tumor necrosis factor improves sleep continuity in patients with treatment resistant depression and high inflammation. Brain Behav Immun 2015; 47: 193-200.
[http://dx.doi.org/10.1016/j.bbi.2014.12.016] [PMID: 25529904]
[28]
Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 2002; 83(4): 973-83.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01210.x] [PMID: 12421370]
[29]
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009; 29(13): 3974-80.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[30]
Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013; 36(4): 209-17.
[http://dx.doi.org/10.1016/j.tins.2012.11.007] [PMID: 23260014]
[31]
Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol 2010; 119(1): 89-105.
[http://dx.doi.org/10.1007/s00401-009-0622-0] [PMID: 20012873]
[32]
Vaváková M, Ďuračková Z, Trebatická J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxid Med Cell Longev 2015; 2015
[http://dx.doi.org/10.1155/2015/898393] [PMID: 26078821]
[33]
Obuchowicz E, Kowalski J, Labuzek K, Krysiak R, Pendzich J, Herman ZS. Amitriptyline and nortriptyline inhibit interleukin-1 release by rat mixed glial and microglial cell cultures. Int J Neuropsychopharmacol 2006; 9(1): 27-35.
[http://dx.doi.org/10.1017/S146114570500547X] [PMID: 15963243]
[34]
Horikawa H, Kato TA, Mizoguchi Y, et al. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(7): 1306-16.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.015] [PMID: 20654672]
[35]
Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016; 64(10): 1772-87.
[http://dx.doi.org/10.1002/glia.23001] [PMID: 27219534]
[36]
Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2013; 14(11): 1262-76.
[http://dx.doi.org/10.2174/13894501113149990208] [PMID: 24020974]
[37]
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9(1): 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[38]
Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[39]
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479: 196-207.
[http://dx.doi.org/10.1016/j.cca.2018.01.032] [PMID: 29366837]
[40]
Zhang K, Liu J, You X, et al. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice. Neurosci Lett 2016; 613: 60-5.
[http://dx.doi.org/10.1016/j.neulet.2015.12.043] [PMID: 26724370]
[41]
Lucae S, Salyakina D, Barden N, et al. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 2006; 15(16): 2438-45.
[http://dx.doi.org/10.1093/hmg/ddl166] [PMID: 16822851]
[42]
Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 2009; 198(1): 83-90.
[http://dx.doi.org/10.1016/j.bbr.2008.10.018] [PMID: 18996151]
[43]
Boucher AA, Arnold JC, Hunt GE, et al. Resilience and reduced c-Fos expression in P2X7 receptor knockout mice exposed to repeated forced swim test. Neuroscience 2011; 189: 170-7.
[http://dx.doi.org/10.1016/j.neuroscience.2011.05.049] [PMID: 21664437]
[44]
Csölle C, Baranyi M, Zsilla G, et al. Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors. PLoS One 2013; 8(6)
[http://dx.doi.org/10.1371/journal.pone.0066547] [PMID: 23805233]
[45]
Lord B, Aluisio L, Shoblock JR, et al. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther 2014; 351(3): 628-41.
[http://dx.doi.org/10.1124/jpet.114.218487] [PMID: 25271258]
[46]
Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012; 122(4): 1164-71.
[http://dx.doi.org/10.1172/JCI58644] [PMID: 22466658]
[47]
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19(8): 312-8.
[http://dx.doi.org/10.1016/0166-2236(96)10049-7] [PMID: 8843599]
[48]
Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem 2007; 14(11): 1189-97.
[http://dx.doi.org/10.2174/092986707780597961] [PMID: 17504139]
[49]
Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 2014; 158(1): 15-24.
[http://dx.doi.org/10.1016/j.cell.2014.06.008] [PMID: 24995975]
[50]
Miyamoto A, Wake H, Moorhouse AJ, Nabekura J. Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 2013; 7: 70.
[http://dx.doi.org/10.3389/fncel.2013.00070] [PMID: 23720611]
[51]
Stein DJ, Vasconcelos MF, Albrechet-Souza L, Ceresér KMM, de Almeida RMM. Microglial over-activation by social defeat stress contributes to anxiety- and depressive-like behaviors. Front Behav Neurosci 2017; 11: 207.
[http://dx.doi.org/10.3389/fnbeh.2017.00207] [PMID: 29114211]
[52]
Gong Y, Tong L, Yang R, et al. Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation. Neuropharmacology 2018; 135: 223-33.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.023] [PMID: 29574097]
[53]
Deak T, Kudinova A, Lovelock DF, Gibb BE, Hennessy MB. A multispecies approach for understanding neuroimmune mechanisms of stress. Dialogues Clin Neurosci 2017; 19(1): 37-53.
[http://dx.doi.org/10.31887/DCNS.2017.19.1/tdeak] [PMID: 28566946]
[54]
Koolhaas JM, de Boer SF, Buwalda B, et al. Social stress models in rodents: Towards enhanced validity. Neurobiol Stress 2017; 6104-12.
[http://dx.doi.org/10.1016/j.ynstr.2016.09.003] [PMID: 28229113]
[55]
Tong L, Gong Y, Wang P, et al. Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem Res 2017; 42(10): 2698-711.
[http://dx.doi.org/10.1007/s11064-017-2270-4] [PMID: 28434164]
[56]
Kreisel T, Frank MG, Licht T, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014; 19(6): 699-709.
[http://dx.doi.org/10.1038/mp.2013.155] [PMID: 24342992]
[57]
Holmes SE, Hinz R, Conen S, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry 2018; 83(1): 61-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.005] [PMID: 28939116]
[58]
Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018; 23(1): 36-47.
[http://dx.doi.org/10.1038/mp.2017.232] [PMID: 29203847]
[59]
Bollinger JL, Bergeon Burns CM, Wellman CL. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav Immun 2016; 52: 88-97.
[http://dx.doi.org/10.1016/j.bbi.2015.10.003] [PMID: 26441134]
[60]
Yue N, Huang H, Zhu X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 2017; 14(1): 102.
[http://dx.doi.org/10.1186/s12974-017-0865-y] [PMID: 28486969]
[61]
Iwata M, Ishida H, Kaneko K, et al. Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine. Pharmacol Biochem Behav 2016.
[http://dx.doi.org/10.1016/j.pbb.2016.10.005]
[62]
Arakawa S, Shirayama Y, Fujita Y, et al. Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol Biochem Behav 2012; 100(3): 601-6.
[http://dx.doi.org/10.1016/j.pbb.2011.09.008] [PMID: 21967886]
[63]
Wang YL, Han QQ, Gong WQ, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation 2018; 15(1): 21.
[http://dx.doi.org/10.1186/s12974-018-1054-3] [PMID: 29343269]
[64]
Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 2010; 58(1): 93-102.
[http://dx.doi.org/10.1002/glia.20904] [PMID: 19533603]
[65]
Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006; 83(2): 470S-4S.
[http://dx.doi.org/10.1093/ajcn/83.2.470S] [PMID: 16470015]
[66]
Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007; 7(2): 161-7.
[http://dx.doi.org/10.1038/nri2015] [PMID: 17220915]
[67]
Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience 1976; 1(4): 239-48.
[http://dx.doi.org/10.1016/0306-4522(76)90054-3] [PMID: 11370511]
[68]
Giuliani AL, Sarti AC, Falzoni S, Di Virgilio F. The P2X7 Receptor-Interleukin-1 Liaison. Front Pharmacol 2017; 8: 123.
[http://dx.doi.org/10.3389/fphar.2017.00123] [PMID: 28360855]
[69]
Burnstock G. Purinergic signalling: from discovery to current developments. Exp Physiol 2014; 99(1): 16-34.
[http://dx.doi.org/10.1113/expphysiol.2013.071951] [PMID: 24078669]
[70]
Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 1997; 272(9): 5482-6.
[http://dx.doi.org/10.1074/jbc.272.9.5482] [PMID: 9038151]
[71]
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017; 47(1): 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[72]
Hejjas K, Szekely A, Domotor E, et al. Association between depression and the Gln460Arg polymorphism of P2RX7 gene: a dimensional approach. Am J Med Genet B Neuropsychiatr Genet 2009; 150B(2): 295-9.
[http://dx.doi.org/10.1002/ajmg.b.30799] [PMID: 18543274]
[73]
Czamara D, Müller-Myhsok B, Lucae S. The P2RX7 polymorphism rs2230912 is associated with depression: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82: 272-7.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.003] [PMID: 29122639]
[74]
Virgilio FD, Jiang LH, Roger S, et al. Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells. METHOD ENZYMOL 2019; pp. 629115-50.
[http://dx.doi.org/10.1016/bs.mie.2019.07.043]
[75]
North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82(4): 1013-67.
[http://dx.doi.org/10.1152/physrev.00015.2002] [PMID: 12270951]
[76]
Di A, Xiong S, Ye Z, et al. The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 2018; 49(1): 56-65.e4.
[http://dx.doi.org/10.1016/j.immuni.2018.04.032] [PMID: 29958799]
[77]
Burnstock G, Kennedy C. P2X receptors in health and disease. Adv Pharmacol 2011; 61: 333-72.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00011-4] [PMID: 21586364]
[78]
Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 2004; 240: 31-304.
[http://dx.doi.org/10.1016/S0074-7696(04)40002-3] [PMID: 15548415]
[79]
Deuchars SA, Atkinson L, Brooke RE, et al. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 2001; 21(18): 7143-52.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07143.2001] [PMID: 11549725]
[80]
Papp L, Balázsa T, Köfalvi A, et al. P2X receptor activation elicits transporter-mediated noradrenaline release from rat hippocampal slices. J Pharmacol Exp Ther 2004; 310(3): 973-80.
[http://dx.doi.org/10.1124/jpet.104.066712] [PMID: 15084650]
[81]
Sperlágh B, Szabó G, Erdélyi F, Baranyi M, Vizi ES. Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system. Br J Pharmacol 2003; 139(3): 623-33.
[http://dx.doi.org/10.1038/sj.bjp.0705285] [PMID: 12788822]
[82]
Metzger MW, Walser SM, Aprile-Garcia F, et al. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signal 2017; 13(2): 153-70.
[http://dx.doi.org/10.1007/s11302-016-9546-z] [PMID: 27858314]
[83]
Anderson CM, Nedergaard M. Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 2006; 29(5): 257-62.
[http://dx.doi.org/10.1016/j.tins.2006.03.003] [PMID: 16564580]
[84]
Trang T, Beggs S, Salter MW. ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol 2012; 234(2): 354-61.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.012] [PMID: 22116040]
[85]
Sperlágh B, Köfalvi A, Deuchars J, et al. Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 2002; 81(6): 1196-211.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00920.x] [PMID: 12068068]
[86]
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2014; 66(3): 638-75.
[http://dx.doi.org/10.1124/pr.113.008003] [PMID: 24928329]
[87]
García-Huerta P, Díaz-Hernandez M, Delicado EG, Pimentel-Santillana M, Miras-Portugal MT, Gómez-Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem 2012; 287(53): 44628-44.
[http://dx.doi.org/10.1074/jbc.M112.390971] [PMID: 23139414]
[88]
Engel T, Gomez-Villafuertes R, Tanaka K, et al. Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 2012; 26(4): 1616-28.
[http://dx.doi.org/10.1096/fj.11-196089] [PMID: 22198387]
[89]
Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 2008; 105(2): 751-6.
[http://dx.doi.org/10.1073/pnas.0708092105] [PMID: 18178625]
[90]
Koo JW, Duman RS. Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr Opin Investig Drugs 2009; 10(7): 664-71.
[PMID: 19579172]
[91]
Otrokocsi L, Kittel Á, Sperlágh B. P2X7 receptors drive spine synapse plasticity in the learned helplessness model of depression. Int J Neuropsychopharmacol 2017; 20(10): 813-22.
[http://dx.doi.org/10.1093/ijnp/pyx046] [PMID: 28633291]
[92]
Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29(2): 201-17.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.003] [PMID: 15694227]
[93]
Wei L, Syed Mortadza SA, Yan J, et al. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev 2018; 87: 192-205.
[http://dx.doi.org/10.1016/j.neubiorev.2018.02.005] [PMID: 29453990]
[94]
Rech JC, Bhattacharya A, Letavic MA, Savall BM. The evolution of P2X7 antagonists with a focus on CNS indications. Bioorg Med Chem Lett 2016; 26(16): 3838-45.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.048] [PMID: 27426304]
[95]
Zhang L, Su TP, Choi K, et al. P11 (S100A10) as a potential biomarker of psychiatric patients at risk of suicide. J Psychiatr Res 2011; 45(4): 435-41.
[http://dx.doi.org/10.1016/j.jpsychires.2010.08.012] [PMID: 20863517]
[96]
Mingam R, De Smedt V, Amédée T, et al. In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1 beta in the murine brain. Brain Behav Immun 2008; 22(2): 234-44.
[http://dx.doi.org/10.1016/j.bbi.2007.08.007] [PMID: 17905568]
[97]
Albalawi F, Lu W, Beckel JM, Lim JC, McCaughey SA, Mitchell CH. The p2x7 receptor primes il-1β and the nlrp3 inflammasome in astrocytes exposed to mechanical strain. Front Cell Neurosci 2017; 11: 227.
[http://dx.doi.org/10.3389/fncel.2017.00227] [PMID: 28848393]
[98]
Erhardt A, Lucae S, Unschuld PG, et al. Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders. J Affect Disord 2007; 101(1-3): 159-68.
[http://dx.doi.org/10.1016/j.jad.2006.11.016] [PMID: 17197037]
[99]
Denlinger LC, Coursin DB, Schell K, et al. Human P2X7 pore function predicts allele linkage disequilibrium. Clin Chem 2006; 52(6): 995-1004.
[http://dx.doi.org/10.1373/clinchem.2005.065425] [PMID: 16613995]
[100]
Aprile-Garcia F, Metzger MW, Paez-Pereda M, et al. Co-expression of wild-type p2x7r with gln460arg variant alters receptor function. PLoS One 2016; 11(3)
[http://dx.doi.org/10.1371/journal.pone.0151862] [PMID: 26986975]
[101]
Backlund L, Lavebratt C, Frisén L, et al. P2RX7: expression responds to sleep deprivation and associates with rapid cycling in bipolar disorder type 1. PLoS One 2012; 7(8)
[http://dx.doi.org/10.1371/journal.pone.0043057] [PMID: 22952630]
[102]
Halmai Z, Dome P, Vereczkei A, et al. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J Affect Disord 2013; 150(1): 104-9.
[http://dx.doi.org/10.1016/j.jad.2013.02.033] [PMID: 23602648]
[103]
Viikki M, Kampman O, Anttila S, et al. P2RX7 polymorphisms Gln460Arg and His155Tyr are not associated with major depressive disorder or remission after SSRI or ECT. Neurosci Lett 2011; 493(3): 127-30.
[http://dx.doi.org/10.1016/j.neulet.2011.02.023] [PMID: 21335057]
[104]
Grigoroiu-Serbanescu M, Herms S, Mühleisen TW, et al. Variation in P2RX7 candidate gene (rs2230912) is not associated with bipolar I disorder and unipolar major depression in four European samples. Am J Med Genet B Neuropsychiatr Genet 2009; 150B(7): 1017-21.
[http://dx.doi.org/10.1002/ajmg.b.30952] [PMID: 19330776]
[105]
Wilkinson SM, Gunosewoyo H, Barron ML, et al. The first CNS-active carborane: A novel P2X7 receptor antagonist with antidepressant activity. ACS Chem Neurosci 2014; 5(5): 335-9.
[http://dx.doi.org/10.1021/cn500054n] [PMID: 24689484]
[106]
Csölle C, Andó RD, Kittel Á, et al. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol 2013; 16(1): 213-33.
[http://dx.doi.org/10.1017/S1461145711001933] [PMID: 22243662]
[107]
Bennett MR. Synaptic P2X7 receptor regenerative-loop hypothesis for depression. Aust N Z J Psychiatry 2007; 41(7): 563-71.
[http://dx.doi.org/10.1080/00048670701399994] [PMID: 17558618]
[108]
Morandini AC, Savio LE, Coutinho-Silva R. The role of P2X7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases. Biomed J 2014; 37(4): 169-77.
[http://dx.doi.org/10.4103/2319-4170.127803] [PMID: 25116711]
[109]
Gentile D, Natale M, Lazzerini PE, Capecchi PL, Laghi-Pasini F. The role of P2X7 receptors in tissue fibrosis: a brief review. Purinergic Signal 2015; 11(4): 435-40.
[http://dx.doi.org/10.1007/s11302-015-9466-3] [PMID: 26318434]
[110]
Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal 2016; 12(1): 59-67.
[http://dx.doi.org/10.1007/s11302-015-9493-0] [PMID: 26739702]
[111]
Cotrina ML, Nedergaard M. Physiological and pathological functions of P2X7 receptor in the spinal cord. Purinergic Signal 2009; 5(2): 223-32.
[http://dx.doi.org/10.1007/s11302-009-9138-2] [PMID: 19205927]
[112]
Illes P, Khan TM, Rubini P. Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37(30): 7049-62.
[http://dx.doi.org/10.1523/JNEUROSCI.3103-16.2017] [PMID: 28747388]
[113]
Jarvis MF. The neural-glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 2010; 33(1): 48-57.
[http://dx.doi.org/10.1016/j.tins.2009.10.003] [PMID: 19914722]
[114]
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2013; 368(13): 1260.
[http://dx.doi.org/10.1056/NEJMc1300259] [PMID: 23534573]
[115]
Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A. Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc Natl Acad Sci USA 2004; 101(26): 9745-50.
[http://dx.doi.org/10.1073/pnas.0308558101] [PMID: 15192144]
[116]
Jalilian I, Peranec M, Curtis BL, et al. Activation of the damage-associated molecular pattern receptor P2X7 induces interleukin-1β release from canine monocytes. Vet Immunol Immunopathol 2012; 149(1-2): 86-91.
[http://dx.doi.org/10.1016/j.vetimm.2012.05.004] [PMID: 22652409]
[117]
Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 2006; 176(7): 3877-83.
[http://dx.doi.org/10.4049/jimmunol.176.7.3877] [PMID: 16547218]
[118]
He Y, Taylor N, Fourgeaud L, Bhattacharya A. The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammation 2017; 14(1): 135.
[http://dx.doi.org/10.1186/s12974-017-0904-8] [PMID: 28716092]
[119]
Cassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 2009; 21(4): 194-8.
[http://dx.doi.org/10.1016/j.smim.2009.05.002] [PMID: 19501527]
[120]
Kaufmann FN, Costa AP, Ghisleni G, et al. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64: 367-83.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[121]
Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol 2017; 45: 128-34.
[http://dx.doi.org/10.1016/j.intimp.2017.02.007] [PMID: 28213267]
[122]
Tan S, Wang Y, Chen K, Long Z, Zou J. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biol Pharm Bull 2017; 40(8): 1260-7.
[http://dx.doi.org/10.1248/bpb.b17-00131] [PMID: 28769008]
[123]
Alcocer-Gómez E, Núñez-Vasco J, Casas-Barquero N, et al. Gene expression profile in major depressive disorder shows reduced mitochondrial biogenesis. CNS Neurosci Ther 2016; 22(7): 636-8.
[http://dx.doi.org/10.1111/cns.12568] [PMID: 27234291]
[124]
Stokes L, Spencer SJ, Jenkins TA. Understanding the role of P2X7 in affective disorders-are glial cells the major players? Front Cell Neurosci 2015; 9: 258.
[http://dx.doi.org/10.3389/fncel.2015.00258] [PMID: 26217184]
[125]
Park JH, Kim YC. P2X7 receptor antagonists: a patent review (2010-2015). Expert Opin Ther Pat 2017; 27(3): 257-67.
[http://dx.doi.org/10.1080/13543776.2017.1246538] [PMID: 27724045]
[126]
Bhattacharya A, Wang Q, Ao H, et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 2013; 170(3): 624-40.
[http://dx.doi.org/10.1111/bph.12314] [PMID: 23889535]
[127]
Pereira VS, Casarotto PC, Hiroaki-Sato VA, Sartim AG, Guimarães FS, Joca SR. Antidepressant- and anticompulsive-like effects of purinergic receptor blockade: involvement of nitric oxide. Eur Neuropsychopharmacol 2013; 23(12): 1769-78.
[http://dx.doi.org/10.1016/j.euroneuro.2013.01.008] [PMID: 23434291]
[128]
Gubert C, Fries GR, Pfaffenseller B, et al. Role of p2x7 receptor in an animal model of mania induced by d-amphetamine. Mol Neurobiol 2016; 53(1): 611-20.
[http://dx.doi.org/10.1007/s12035-014-9031-z] [PMID: 25502294]
[129]
You Z, Luo C, Zhang W, et al. Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 2011; 225(1): 135-41.
[http://dx.doi.org/10.1016/j.bbr.2011.07.006] [PMID: 21767575]
[130]
Bhattacharya A, Jones D. Emerging role of the P2X7-NLRP3-IL1beta pathway in mood disorders. Psychoneuroendocrino 2018; 9895-100.
[131]
Iwata M, Ota KT, Li XY, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2x7 receptor. Biol Psychiatry 2016; 80(1): 12-22.
[http://dx.doi.org/10.1016/j.biopsych.2015.11.026] [PMID: 26831917]
[132]
Feng L, Chen Y, Ding R, et al. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation 2015; 12: 190.
[http://dx.doi.org/10.1186/s12974-015-0409-2] [PMID: 26475134]
[133]
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19(12): 1584-96.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[134]
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14(11): 1398-405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[135]
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 2013; 61(12): 1939-58.
[http://dx.doi.org/10.1002/glia.22575] [PMID: 24123158]
[136]
Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 2008; 41(5): 345-52.
[http://dx.doi.org/10.5483/BMBRep.2008.41.5.345] [PMID: 18510863]
[137]
da Fonseca AC, Matias D, Garcia C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014; 8: 362.
[http://dx.doi.org/10.3389/fncel.2014.00362] [PMID: 25404894]
[138]
Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 2010; 6(7): 393-403.
[http://dx.doi.org/10.1038/nrneurol.2010.74] [PMID: 20551947]
[139]
Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Zhang J. The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats. J Neurol Sci 2014; 342(1-2): 93-100.
[http://dx.doi.org/10.1016/j.jns.2014.04.032] [PMID: 24819916]
[140]
Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 2014; 8: 260.
[http://dx.doi.org/10.3389/fncel.2014.00260] [PMID: 25225473]
[141]
Takenouchi T, Sugama S, Iwamaru Y, Hashimoto M, Kitani H. Modulation of the ATP-lnduced release and processing of IL-1beta in microglial cells. Crit Rev Immunol 2009; 29(4): 335-45.
[http://dx.doi.org/10.1615/CritRevImmunol.v29.i4.40] [PMID: 19673687]
[142]
Gu BJ, Wiley JS. Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 2006; 107(12): 4946-53.
[http://dx.doi.org/10.1182/blood-2005-07-2994] [PMID: 16514055]
[143]
Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 2000; 123(Pt 4): 698-709.
[http://dx.doi.org/10.1093/brain/123.4.698] [PMID: 10734001]
[144]
Mori T, Wang X, Aoki T, Lo EH. Downregulation of matrix metalloproteinase-9 and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury. J Neurotrauma 2002; 19(11): 1411-9.
[http://dx.doi.org/10.1089/089771502320914642] [PMID: 12490006]
[145]
Wang YC, Cui Y, Cui JZ, et al. Neuroprotective effects of brilliant blue G on the brain following traumatic brain injury in rats. Mol Med Rep 2015; 12(2): 2149-54.
[http://dx.doi.org/10.3892/mmr.2015.3607] [PMID: 25873133]
[146]
Kimbler DE, Shields J, Yanasak N, Vender JR, Dhandapani KM. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One 2012; 7(7)
[http://dx.doi.org/10.1371/journal.pone.0041229] [PMID: 22815977]
[147]
Yang F, Zhao K, Zhang X, Zhang J, Xu B. ATP induces disruption of tight junction proteins via il-1 beta-dependent mmp-9 activation of human blood-brain barrier in vitro. Neural Plast 2016; 2016
[http://dx.doi.org/10.1155/2016/8928530] [PMID: 27795859]
[148]
Skaper SD. Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 2011; 10(1): 44-56.
[http://dx.doi.org/10.2174/187152711794488638] [PMID: 21143139]
[149]
Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 2007; 151(5): 571-9.
[http://dx.doi.org/10.1038/sj.bjp.0707265] [PMID: 17471177]
[150]
Wang X, Arcuino G, Takano T, et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 2004; 10(8): 821-7.
[http://dx.doi.org/10.1038/nm1082] [PMID: 15258577]
[151]
Jiang LH, Mackenzie AB, North RA, Surprenant A. Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. Mol Pharmacol 2000; 58(1): 82-8.
[http://dx.doi.org/10.1124/mol.58.1.82] [PMID: 10860929]
[152]
Salas E, Carrasquero LM, Olivos-Oré LA, et al. Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture. J Pharmacol Exp Ther 2013; 347(3): 802-15.
[http://dx.doi.org/10.1124/jpet.113.209452] [PMID: 24101734]
[153]
Eyo UB, Miner SA, Ahlers KE, Wu LJ, Dailey ME. P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology 2013; 73: 311-9.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.032] [PMID: 23770338]
[154]
Buell G, Chessell IP, Michel AD, et al. Blockade of human P2X7 receptor function with a monoclonal antibody. Blood 1998; 92(10): 3521-8.
[http://dx.doi.org/10.1182/blood.V92.10.3521] [PMID: 9808543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy