Review Article

肿瘤发生过程中 DNA 甲基转移酶 1 和 microRNA 之间的相互作用

卷 22, 期 10, 2021

发表于: 20 January, 2021

页: [1129 - 1148] 页: 20

弟呕挨: 10.2174/1389450122666210120141546

价格: $65

摘要

癌症是由基因组变化引起的遗传疾病;然而,表观遗传改变在肿瘤发生和癌症进展过程中与这些变化协同作用。表观遗传变异作为肿瘤进展、转移和治疗抗性的重要调节因子而受到越来越多的关注。 CpG 岛的异常 DNA 甲基化是各种肿瘤抑制基因的表观遗传介导的基因沉默的中心事件。 DNA 甲基转移酶 1 (DNMT1) 主要在细胞增殖中半甲基化 DNA 底物上的 CpG 岛上发生甲基化。 DNMT1 已被证明在各种癌症类型中过表达,并表现出促进肿瘤的潜力。 DNMT1 靶向癌症治疗的主要缺点是核苷和非核苷类 DNMT1 抑制剂引起的不良反应。本文重点介绍了各种 microRNA (miRNA) 对 DNMT1 的调节,这些 microRNAs 可能被指定为未来的 DNMT1 调节剂,并重点介绍了 DNMT1 如何调节参与肿瘤抑制的各种 miRNA。重要的是,本综述探讨了 DNMT1 和某些 miRNA 之间相互抑制在致瘤潜力中的作用。因此,本综述旨在利用某些 miRNA 与传统的 DNMT1 抑制剂结合作为一种新型癌症疗法,提出一种有效且具有战略意义的方法。还确定了选择与 DNMT1 调控相关的 miRNA 候选物,这些候选物不仅可以作为癌症诊断和预后的潜在生物标志物,还可以预测癌细胞中异常甲基化活性的存在。

关键词: DNA 甲基转移酶、DNMT1、表观遗传学、miRNA、癌症、癌症治疗。

图形摘要

[1]
Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: Moving forward. PLoS Genet 2018; 14(6)
[http://dx.doi.org/10.1371/journal.pgen.1007362] [PMID: 29879107]
[2]
Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis 2001; 22(14): 2838-43.
[http://dx.doi.org/10.1002/1522-2683(200108)22:14<2838::AID-ELPS2838>3.0.CO;2-M] [PMID: 11565778]
[3]
Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 2002; 87(2): 117-25.
[http://dx.doi.org/10.1002/jcb.10286] [PMID: 12244565]
[4]
Molognoni F, Cruz AT, Meliso FM, et al. Epigenetic reprogramming as a key contributor to melanocyte malignant transformation. Epigenetics 2011; 6(4): 450-64.
[http://dx.doi.org/10.4161/epi.6.4.14917] [PMID: 21343701]
[5]
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[6]
Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358(11): 1148-59.
[http://dx.doi.org/10.1056/NEJMra072067] [PMID: 18337604]
[7]
Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet 2012; 81(4): 303-11.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01809.x] [PMID: 22082348]
[8]
Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19(5): 698-711.
[http://dx.doi.org/10.1016/j.devcel.2010.10.005] [PMID: 21074720]
[9]
van Vliet J, Oates NA, Whitelaw E. Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci 2007; 64(12): 1531-8.
[http://dx.doi.org/10.1007/s00018-007-6526-z] [PMID: 17458502]
[10]
Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 2007; 16(Spec No 1): R50-9.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[11]
Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res 2007; 61(5 Pt 2): 24R-9R.
[http://dx.doi.org/10.1203/pdr.0b013e3180457684] [PMID: 17413852]
[12]
Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67(4): 1424-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4218] [PMID: 17308079]
[13]
Daniel FI, Cherubini K, Yurgel LS, de Figueiredo MAZ, Salum FG. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer 2011; 117(4): 677-87.
[http://dx.doi.org/10.1002/cncr.25482] [PMID: 20945317]
[14]
Robertson KD. DNA methylation and chromatin - unraveling the tangled web. Oncogene 2002; 21(35): 5361-79.
[http://dx.doi.org/10.1038/sj.onc.1205609] [PMID: 12154399]
[15]
Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000; 16(4): 168-74.
[http://dx.doi.org/10.1016/S0168-9525(99)01971-X] [PMID: 10729832]
[16]
Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005; 2(1)(Suppl. 1): S4-S11.
[http://dx.doi.org/10.1038/ncponc0354] [PMID: 16341240]
[17]
Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and MicroRNAs in Cancer. Int J Mol Sci 2018; 19(2): 459.
[PMID: 29401683]
[18]
Sasmita AO, Wong YP, Ling APK. Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac J Clin Oncol 2018; 14(1): 40-51.
[PMID: 28840962]
[19]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[PMID: 22781841]
[20]
Yasuda T, Shigeta Y, Harada R. The Dynamics of S-adenosyl-methionine and S-adenosyl-homo-cysteine in Mouse Dnmt1 is Driven from their Structural Flexibilities. Chem Lett 2020; 49(X)
[21]
Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res 2016; 44(18): 8556-75.
[http://dx.doi.org/10.1093/nar/gkw723] [PMID: 27521372]
[22]
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3): 247-57.
[http://dx.doi.org/10.1016/S0092-8674(00)81656-6] [PMID: 10555141]
[23]
Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274(46): 33002-10.
[http://dx.doi.org/10.1074/jbc.274.46.33002] [PMID: 10551868]
[24]
Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 2009; 10(3): 192-206.
[http://dx.doi.org/10.1038/nrm2640] [PMID: 19234478]
[25]
Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans 2018; 46(5): 1191-202.
[http://dx.doi.org/10.1042/BST20170574] [PMID: 30154093]
[26]
Takebayashi S, Tamura T, Matsuoka C, Okano M. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Mol Cell Biol 2007; 27(23): 8243-58.
[http://dx.doi.org/10.1128/MCB.00899-07] [PMID: 17893328]
[27]
Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 2002; 22(7): 2124-35.
[http://dx.doi.org/10.1128/MCB.22.7.2124-2135.2002] [PMID: 11884600]
[28]
Song J, Teplova M, Ishibe-Murakami S, Patel DJ. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 2012; 335(6069): 709-12.
[http://dx.doi.org/10.1126/science.1214453] [PMID: 22323818]
[29]
Zhang Z-M, Liu S, Lin K, et al. Crystal structure of human DNA methyltransferase 1. J Mol Biol 2015; 427(15): 2520-31.
[http://dx.doi.org/10.1016/j.jmb.2015.06.001] [PMID: 26070743]
[30]
D’Aiuto L, Marzulli M, Mohan KN, et al. Dissection of structure and function of the N-terminal domain of mouse DNMT1 using regional frame-shift mutagenesis. PLoS One 2010; 5(3)
[http://dx.doi.org/10.1371/journal.pone.0009831] [PMID: 20352123]
[31]
Bhattacharjee D, Shenoy S, Bairy KL. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics. Scientifica (Cairo) 2016; 2016(10)
[http://dx.doi.org/10.1155/2016/6072357] [PMID: 27119045]
[32]
Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017; 49(4)
[http://dx.doi.org/10.1038/emm.2017.10] [PMID: 28450738]
[33]
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 24(20): 30109-7.
[PMID: 32461152]
[34]
Kangaspeska S, Stride B, Métivier R, et al. Transient cyclical methylation of promoter DNA. Nature 2008; 452(7183): 112-5.
[http://dx.doi.org/10.1038/nature06640] [PMID: 18322535]
[35]
Poulos RC, Olivier J, Wong JWH. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res 2017; 45(13): 7786-95.
[http://dx.doi.org/10.1093/nar/gkx463] [PMID: 28531315]
[36]
Chowdhury K, Kumar S, Sharma T, et al. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides. Gene 2018; 639: 85-95.
[http://dx.doi.org/10.1016/j.gene.2017.10.001] [PMID: 28986316]
[37]
Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics 2012; 13(Suppl. 8): S7.
[http://dx.doi.org/10.1186/1471-2164-13-S8-S7] [PMID: 23281708]
[38]
Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009; 1(2): 239-59.
[http://dx.doi.org/10.2217/epi.09.33] [PMID: 20495664]
[39]
Jair K-W, Bachman KE, Suzuki H, et al. De novo CpG island methylation in human cancer cells. Cancer Res 2006; 66(2): 682-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1980] [PMID: 16423997]
[40]
Saito Y, Kanai Y, Nakagawa T, et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 2003; 105(4): 527-32.
[http://dx.doi.org/10.1002/ijc.11127] [PMID: 12712445]
[41]
Peng D-F, Kanai Y, Sawada M, et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis 2006; 27(6): 1160-8.
[http://dx.doi.org/10.1093/carcin/bgi361] [PMID: 16537562]
[42]
Zhou D, Wan Y, Xie D, Wang Y, Wei J, Yan Q, et al. DNMT1 mediates chemosensitivity by reducing methylation of miRNA-20a promoter in glioma cells. Experimental   molecular medicine 2015; 47(9): e182.
[http://dx.doi.org/10.1038/emm.2015.57]
[43]
Sun J, Tian X, Zhang J, et al. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2 : MiR-152-3p regulate glioma cell apoptosis and invasion. J Exp Clin Cancer Res 2017; 36(1): 100.
[http://dx.doi.org/10.1186/s13046-017-0567-4] [PMID: 28764788]
[44]
Li Y, Chen F, Chu J, et al. MiR-148-3p inhibits growth of glioblastoma targeting DNA methyltransferase-1 (DNMT1). Oncol Res 2019; 27(8): 911-21.
[http://dx.doi.org/10.3727/096504019X15516966905337] [PMID: 30982493]
[45]
Zhang P, Sun H, Yang B, et al. miR-152 regulated glioma cell proliferation and apoptosis via Runx2 mediated by DNMT1. Biomed Pharmacother 2017; 92: 690-5.
[http://dx.doi.org/10.1016/j.biopha.2017.05.096] [PMID: 28595085]
[46]
Calbo J, Meuwissen R, Van Montfort E, Van Tellingen O, Berns A, Eds. Genotype–phenotype relationships in a mouse model for human small-cell lung cancer Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press 2005.
[47]
Yan F, Shen N, Pang J, et al. A regulatory circuit composed of DNA methyltransferases and receptor tyrosine kinases controls lung cancer cell aggressiveness. Oncogene 2017; 36(50): 6919-28.
[http://dx.doi.org/10.1038/onc.2017.305] [PMID: 28869603]
[48]
Sui C, Meng F, Li Y, Jiang Y. miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J Transl Med 2015; 13(1): 132.
[http://dx.doi.org/10.1186/s12967-015-0488-y] [PMID: 25927928]
[49]
Su C-W, Chang Y-C, Chien M-H, et al. Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death Dis 2019; 10(11): 793.
[http://dx.doi.org/10.1038/s41419-019-2016-0] [PMID: 31624299]
[50]
Li Z, Li Y, Li Y, et al. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol 2017; 31(9)
[http://dx.doi.org/10.1002/jbt.21933] [PMID: 28544374]
[51]
Shi Y-K, Guo Y-H. MiR-139-5p suppresses osteosarcoma cell growth and invasion through regulating DNMT1. Biochem Biophys Res Commun 2018; 503(2): 459-66.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.124] [PMID: 29673587]
[52]
Qi D, Li J, Que B, et al. Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell Int 2016; 16(1): 81.
[http://dx.doi.org/10.1186/s12935-016-0356-8] [PMID: 27777512]
[53]
Zeng B, Zhang X, Zhao J, et al. The role of DNMT1/hsa-miR-124-3p/BCAT1 pathway in regulating growth and invasion of esophageal squamous cell carcinoma. BMC Cancer 2019; 19(1): 609.
[http://dx.doi.org/10.1186/s12885-019-5815-x] [PMID: 31226958]
[54]
Fan H, Zhao Z-J, Cheng J, Su X-W, Wu Q-X, Shan Y-F. Overexpression of DNA methyltransferase 1 and its biological significance in primary hepatocellular carcinoma. World J Gastroenterol 2009; 15(16): 2020-6.
[http://dx.doi.org/10.3748/wjg.15.2020] [PMID: 19399937]
[55]
Piyathilake CJ, Badiga S, Borak SG, et al. A higher degree of expression of DNA methyl transferase 1 in cervical cancer is associated with poor survival outcome. Int J Womens Health 2017; 9: 413-20.
[http://dx.doi.org/10.2147/IJWH.S133441] [PMID: 28652820]
[56]
Cao YL, Zhuang T, Xing BH, Li N, Li Q. Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct 2017; 35(6): 296-303.
[http://dx.doi.org/10.1002/cbf.3276] [PMID: 28791708]
[57]
Chen B-F, Chan W-Y. The de novo DNA methyltransferase DNMT3A in development and cancer. Epigenetics 2014; 9(5): 669-77.
[http://dx.doi.org/10.4161/epi.28324] [PMID: 24589714]
[58]
Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349(21): 2042-54.
[http://dx.doi.org/10.1056/NEJMra023075] [PMID: 14627790]
[59]
Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300(5618): 489-92.
[http://dx.doi.org/10.1126/science.1083558] [PMID: 12702876]
[60]
Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 1984; 81(22): 6993-7.
[http://dx.doi.org/10.1073/pnas.81.22.6993] [PMID: 6209710]
[61]
Kaminskas E, FARRELL A, Wang YC, Sridhara R, Pazdur R. FDA Commentary. Oncologist 2005; 10: 176-82.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[62]
Momparler RL, Ed. Pharmacology of 5-Aza-2′-deoxycytidine (decitabine) Seminars in hematology. Elsevier 2005.
[63]
Santini V, Kantarjian HM, Issa J-P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001; 134(7): 573-86.
[http://dx.doi.org/10.7326/0003-4819-134-7-200104030-00011] [PMID: 11281740]
[64]
Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20(1): 85-93.
[http://dx.doi.org/10.1016/0092-8674(80)90237-8] [PMID: 6156004]
[65]
Zhao Q, Fan J, Hong W, Li L, Wu M. Inhibition of cancer cell proliferation by 5-fluoro-2′-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus 2012; 1(1): 65.
[http://dx.doi.org/10.1186/2193-1801-1-65] [PMID: 23397046]
[66]
Hurd PJ, Whitmarsh AJ, Baldwin GS, et al. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol 1999; 286(2): 389-401.
[http://dx.doi.org/10.1006/jmbi.1998.2491] [PMID: 9973559]
[67]
Cheng JC, Weisenberger DJ, Gonzales FA, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 2004; 24(3): 1270-8.
[http://dx.doi.org/10.1128/MCB.24.3.1270-1278.2004] [PMID: 14729971]
[68]
Brueckner B, Kuck D, Lyko F. DNA methyltransferase inhibitors for cancer therapy. Cancer J 2007; 13(1): 17-22.
[http://dx.doi.org/10.1097/PPO.0b013e31803c7245] [PMID: 17464242]
[69]
Johnson WD, Harder JB, Naylor J, McCormick DL, Detrisac CJ, Glaze ER, et al. A pharmacokinetic/pharmacodynamic approach to evaluating the safety of zebularine in non-human primates. AACR 2006.
[70]
Beisler JA, Abbasi MM, Driscoll JS. Dihydro-5-azacytidine hydrochloride, a biologically active and chemically stable analog of 5-azacytidine. Cancer Treat Rep 1976; 60(11): 1671-4.
[PMID: 66095]
[71]
Brueckner B, Rius M, Markelova MR, et al. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther 2010; 9(5): 1256-64.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1202] [PMID: 20442313]
[72]
Griffiths EA, Choy G, Redkar S, Taverna P, Azab M, Karpf AR. SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Future 2013; 38(8): 535-43.
[PMID: 26190889]
[73]
Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 2005; 280(49): 40749-56.
[http://dx.doi.org/10.1074/jbc.M505593200] [PMID: 16230360]
[74]
Li YC, Wang Y, Li DD, Zhang Y, Zhao TC, Li CF. Procaine is a specific DNA methylation inhibitor with anti-tumor effect for human gastric cancer. J Cell Biochem 2018; 119(2): 2440-9.
[http://dx.doi.org/10.1002/jcb.26407] [PMID: 28926119]
[75]
Yiannakopoulou EC. Targeting DNA methylation with green tea catechins. Pharmacology 2015; 95(3-4): 111-6.
[http://dx.doi.org/10.1159/000375503] [PMID: 25792496]
[76]
Brueckner B, Garcia Boy R, Siedlecki P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005; 65(14): 6305-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2957] [PMID: 16024632]
[77]
Sun N, Zhang J, Zhang C, Zhao B, Jiao A. DNMTs inhibitor SGI-1027 induces apoptosis in Huh7 human hepatocellular carcinoma cells. Oncol Lett 2018; 16(5): 5799-806.
[http://dx.doi.org/10.3892/ol.2018.9390] [PMID: 30344731]
[78]
Datta J, Ghoshal K, Denny WA, et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 2009; 69(10): 4277-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3669] [PMID: 19417133]
[79]
Kaminskas E, Farrell A, Abraham S, et al. FDA. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 2005; 11(10): 3604-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2135] [PMID: 15897554]
[80]
Kumar S, Nag A, Mandal CC. A Comprehensive Review on miR-200c, A Promising Cancer Biomarker with Therapeutic Potential. Curr Drug Targets 2015; 16(12): 1381-403.
[http://dx.doi.org/10.2174/1389450116666150325231419] [PMID: 25808651]
[81]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[82]
Sharma T, Hamilton R, Mandal CC. miR-214: a potential biomarker and therapeutic for different cancers. Future Oncol 2015; 11(2): 349-63.
[http://dx.doi.org/10.2217/fon.14.193] [PMID: 25591843]
[83]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[84]
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[85]
Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18(24): 3016-27.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[86]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-6.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[87]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[88]
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-31.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[89]
Bueno MJ, Pérez de Castro I, Malumbres M. Control of cell proliferation pathways by microRNAs. Cell Cycle 2008; 7(20): 3143-8.
[http://dx.doi.org/10.4161/cc.7.20.6833] [PMID: 18843198]
[90]
Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlynček M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010; 223(1): 49-56.
[PMID: 20039279]
[91]
Sharma T, Radosevich JA, Mandal CC. Dual Role of microRNAs in Autophagy of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 18(10)
[PMID: 32427088]
[92]
Jiang C, Chen X, Alattar M, Wei J, Liu H. MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer. Cancer Gene Ther 2015; 22(6): 291-301.
[http://dx.doi.org/10.1038/cgt.2015.19] [PMID: 25998522]
[93]
Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res 2008; 10(2): 203.
[http://dx.doi.org/10.1186/bcr1867] [PMID: 18373886]
[94]
Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009; 125(11): 2737-43.
[http://dx.doi.org/10.1002/ijc.24638] [PMID: 19521961]
[95]
Lawrie CH. MicroRNA expression in lymphoma. Expert Opin Biol Ther 2007; 7(9): 1363-74.
[http://dx.doi.org/10.1517/14712598.7.9.1363] [PMID: 17727326]
[96]
Catto JW, Alcaraz A, Bjartell AS, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 2011; 59(5): 671-81.
[http://dx.doi.org/10.1016/j.eururo.2011.01.044] [PMID: 21296484]
[97]
Dey N, Das F, Ghosh-Choudhury N, et al. microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 2012; 7(6)
[http://dx.doi.org/10.1371/journal.pone.0037366] [PMID: 22685542]
[98]
Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 2012; 33(10): 1897-908.
[http://dx.doi.org/10.1093/carcin/bgs198] [PMID: 22678116]
[99]
Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 2008; 26(4): 462-9.
[http://dx.doi.org/10.1038/nbt1392] [PMID: 18362881]
[100]
Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem 2009; 55(4): 623-31.
[http://dx.doi.org/10.1373/clinchem.2008.112805] [PMID: 19246618]
[101]
Zhu A, Xia J, Zuo J, et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol 2012; 29(4): 2701-9.
[http://dx.doi.org/10.1007/s12032-011-0134-3] [PMID: 22167392]
[102]
Suzuki H, Maruyama R, Yamamoto E, Kai M. DNA methylation and microRNA dysregulation in cancer. Mol Oncol 2012; 6(6): 567-78.
[http://dx.doi.org/10.1016/j.molonc.2012.07.007] [PMID: 22902148]
[103]
Li H, Yu G, Shi R, et al. Cisplatin-induced epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy. Mol Cancer 2014; 13(1): 8.
[http://dx.doi.org/10.1186/1476-4598-13-8] [PMID: 24423412]
[104]
Yu G, Yao W, Xiao W, Li H, Xu H, Lang B. MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. J Exp Clin Cancer Res 2014; 33(1): 779.
[http://dx.doi.org/10.1186/s13046-014-0115-4] [PMID: 25551284]
[105]
Zhu W, Long JL, Yin YT, et al. MicroRNA-34a suppresses the invasion and migration of colorectal cancer cells by enhancing EGR1 and inhibiting vimentin. Exp Ther Med 2019; 18(4): 2459-66.
[http://dx.doi.org/10.3892/etm.2019.7826] [PMID: 31555358]
[106]
Liang X, Xu C, Wang W, Li X. The DNMT1/miR-34a Axis Is Involved in the Stemness of Human Osteosarcoma Cells and Derived Stem-Like Cells. Stem cells international 2019.
[107]
Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7(16): 2591-600.
[http://dx.doi.org/10.4161/cc.7.16.6533] [PMID: 18719384]
[108]
Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26(34): 5017-22.
[http://dx.doi.org/10.1038/sj.onc.1210293] [PMID: 17297439]
[109]
He J, Xu Q, Jing Y, et al. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 2012; 13(12): 1116-22.
[http://dx.doi.org/10.1038/embor.2012.162] [PMID: 23146892]
[110]
Wu S, Liu F, Xie L, Peng Y, Lv X, Zhu Y, et al. miR-125b suppresses proliferation and invasion by targeting MCL1 in gastric cancer. BioMed research internationalmiR-125b suppresses proliferation and invasion by targeting MCL1 in gastric cancer 2015.
[111]
Feliciano A, Castellvi J, Artero-Castro A, et al. miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-α, CCNJ, and MEGF9. PLoS One 2013; 8(10)
[http://dx.doi.org/10.1371/journal.pone.0076247] [PMID: 24098452]
[112]
Lee M, Kim EJ, Jeon MJ. MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1. Oncotarget 2016; 7(8): 8726-42.
[http://dx.doi.org/10.18632/oncotarget.6474] [PMID: 26646586]
[113]
Yang M, Tang X, Wang Z, Wu X, Tang D, Wang D. miR-125 inhibits colorectal cancer proliferation and invasion by targeting TAZ. Biosci Rep 2019; 39(12)
[http://dx.doi.org/10.1042/BSR20190193] [PMID: 31782506]
[114]
Jin L, Zhang Z, Li Y, et al. miR-125b is associated with renal cell carcinoma cell migration, invasion and apoptosis. Oncol Lett 2017; 13(6): 4512-20.
[http://dx.doi.org/10.3892/ol.2017.5985] [PMID: 28599452]
[115]
Horwich A, Shipley J, Huddart R. Testicular germ-cell cancer. Lancet 2006; 367(9512): 754-65.
[http://dx.doi.org/10.1016/S0140-6736(06)68305-0] [PMID: 16517276]
[116]
Cheung HH, Lee TL, Davis AJ, Taft DH, Rennert OM, Chan WY. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br J Cancer 2010; 102(2): 419-27.
[http://dx.doi.org/10.1038/sj.bjc.6605505] [PMID: 20051947]
[117]
Han S, Gonzalo DH, Feely M, et al. The pancreatic tumor microenvironment drives changes in miRNA expression that promote cytokine production and inhibit migration by the tumor associated stroma. Oncotarget 2016; 8(33): 54054-67.
[http://dx.doi.org/10.18632/oncotarget.10722] [PMID: 28903323]
[118]
Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011; 30(25): 2888-99.
[http://dx.doi.org/10.1038/onc.2011.13] [PMID: 21317930]
[119]
Hou J, Lin L, Zhou W, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19(2): 232-43.
[http://dx.doi.org/10.1016/j.ccr.2011.01.001] [PMID: 21316602]
[120]
Zhan Y, Zheng N, Teng F, et al. MiR-199a/b-5p inhibits hepatocellular carcinoma progression by post-transcriptionally suppressing ROCK1. Oncotarget 2017; 8(40): 67169-80.
[http://dx.doi.org/10.18632/oncotarget.18052] [PMID: 28978024]
[121]
Li SQ, Wang ZH, Mi XG, Liu L, Tan Y. MiR-199a/b-3p suppresses migration and invasion of breast cancer cells by downregulating PAK4/MEK/ERK signaling pathway. IUBMB Life 2015; 67(10): 768-77.
[http://dx.doi.org/10.1002/iub.1433] [PMID: 26399456]
[122]
Yang L, Luo P, Song Q, Fei X. DNMT1/miR-200a/GOLM1 signaling pathway regulates lung adenocarcinoma cells proliferation. Biomed Pharmacother 2018; 99: 839-47.
[http://dx.doi.org/10.1016/j.biopha.2018.01.161] [PMID: 29710483]
[123]
Wang C, Kang L, Wang X, Liu Y, Zhao X. Expression of miR-200a and chemotherapeutic treatment efficacy of glioma. Oncol Lett 2018; 15(4): 5767-71.
[http://dx.doi.org/10.3892/ol.2018.8063] [PMID: 29556307]
[124]
Suo HB, Zhang KC, Zhao J. MiR-200a promotes cell invasion and migration of ovarian carcinoma by targeting PTEN. Eur Rev Med Pharmacol Sci 2018; 22(13): 4080-9.
[PMID: 30024595]
[125]
Yu H, Yang W. MiR-211 is epigenetically regulated by DNMT1 mediated methylation and inhibits EMT of melanoma cells by targeting RAB22A. Biochem Biophys Res Commun 2016; 476(4): 400-5.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.133] [PMID: 27237979]
[126]
Chu T-H, Yang C-C, Liu C-J, Lui M-T, Lin S-C, Chang K-W. miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer Lett 2013; 337(1): 115-24.
[http://dx.doi.org/10.1016/j.canlet.2013.05.032] [PMID: 23726841]
[127]
Ye L, Wang H, Liu B. miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol 2016; 37(1): 1151-7.
[http://dx.doi.org/10.1007/s13277-015-3835-y] [PMID: 26277787]
[128]
Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS. Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 2012; 3(11): 1439-54.
[http://dx.doi.org/10.18632/oncotarget.683] [PMID: 23183822]
[129]
Qu X, Gao D, Ren Q, Jiang X, Bai J, Sheng L. miR-211 inhibits proliferation, invasion and migration of cervical cancer via targeting SPARC. Oncol Lett 2018; 16(1): 853-60.
[http://dx.doi.org/10.3892/ol.2018.8735] [PMID: 29963155]
[130]
Yang C, Zheng J, Xue Y, et al. The effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 axis regulating glioblastoma angiogenesis. Front Mol Neurosci 2018; 10: 437.
[http://dx.doi.org/10.3389/fnmol.2017.00437] [PMID: 29375300]
[131]
Wu C-T, Lin W-Y, Chang Y-H, Lin P-Y, Chen W-C, Chen M-F. DNMT1-dependent suppression of microRNA424 regulates tumor progression in human bladder cancer. Oncotarget 2015; 6(27): 24119-31.
[http://dx.doi.org/10.18632/oncotarget.4431] [PMID: 26090723]
[132]
Zhang M, Gao C, Yang Y, et al. MiR-424 promotes non-small cell lung cancer progression and metastasis through regulating the tumor suppressor gene TNFAIP1. Cell Physiol Biochem 2017; 42(1): 211-21.
[http://dx.doi.org/10.1159/000477314] [PMID: 28535539]
[133]
Li Q, Qiu X-M, Li Q-H, et al. MicroRNA-424 may function as a tumor suppressor in endometrial carcinoma cells by targeting E2F7. Oncol Rep 2015; 33(5): 2354-60.
[http://dx.doi.org/10.3892/or.2015.3812] [PMID: 25708247]
[134]
Xu J, Li Y, Wang F, et al. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene 2013; 32(8): 976-87.
[http://dx.doi.org/10.1038/onc.2012.121] [PMID: 22469983]
[135]
Yu L, Ding GF, He C, Sun L, Jiang Y, Zhu L. MicroRNA-424 is down-regulated in hepatocellular carcinoma and suppresses cell migration and invasion through c-Myb. PLoS One 2014; 9(3)
[http://dx.doi.org/10.1371/journal.pone.0091661] [PMID: 24675898]
[136]
Jin C, Li M, Ouyang Y, Tan Z, Jiang Y. MiR-424 functions as a tumor suppressor in glioma cells and is down-regulated by DNA methylation. J Neurooncol 2017; 133(2): 247-55.
[http://dx.doi.org/10.1007/s11060-017-2438-4] [PMID: 28508328]
[137]
Shi H, Chen X, Jiang H, et al. miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1. Oncol Lett 2018; 15(4): 4944-50.
[http://dx.doi.org/10.3892/ol.2018.7907] [PMID: 29541249]
[138]
Liu J, Zhang X, Huang Y, et al. miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. Oncol Lett 2019; 17(2): 1453-60.
[PMID: 30675199]
[139]
Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104(40): 15805-10.
[http://dx.doi.org/10.1073/pnas.0707628104] [PMID: 17890317]
[140]
Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113(25): 6411-8.
[http://dx.doi.org/10.1182/blood-2008-07-170589] [PMID: 19211935]
[141]
Wang C, Bian Z, Wei D, Zhang JG. miR-29b regulates migration of human breast cancer cells. Mol Cell Biochem 2011; 352(1-2): 197-207.
[http://dx.doi.org/10.1007/s11010-011-0755-z] [PMID: 21359530]
[142]
Liu Q, Geng P, Shi L, Wang Q, Wang P. miR-29 promotes osteosarcoma cell proliferation and migration by targeting PTEN. Oncol Lett 2019; 17(1): 883-90.
[PMID: 30655843]
[143]
Zhang Z, Li W, Jiang D, Liu C, Lai Z. MicroRNA-139-5p inhibits cell viability, migration and invasion and suppresses tumor growth by targeting HDGF in non-small cell lung cancer. Oncol Lett 2020; 19(3): 1806-14.
[http://dx.doi.org/10.3892/ol.2020.11296] [PMID: 32194674]
[144]
Mondanizadeh M, Arefian E, Mosayebi G, Saidijam M, Khansarinejad B, Hashemi SM. MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem 2015; 116(6): 943-53.
[http://dx.doi.org/10.1002/jcb.25045] [PMID: 25559917]
[145]
Chen Z, Liu S, Tian L, et al. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 2015; 6(35): 38139-50.
[http://dx.doi.org/10.18632/oncotarget.5709] [PMID: 26497367]
[146]
Wen SY, Lin Y, Yu YQ, et al. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene 2015; 34(6): 717-25.
[http://dx.doi.org/10.1038/onc.2014.9] [PMID: 24608427]
[147]
Tang H, Liu P, Yang L, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther 2014; 13(12): 3185-97.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0243] [PMID: 25319390]
[148]
Liu M, Lang N, Chen X, et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett 2011; 301(2): 151-60.
[http://dx.doi.org/10.1016/j.canlet.2010.11.009] [PMID: 21186079]
[149]
Zhi Q, Zhu J, Guo X, et al. Metastasis-related miR-185 is a potential prognostic biomarker for hepatocellular carcinoma in early stage. Biomed Pharmacother 2013; 67(5): 393-8.
[http://dx.doi.org/10.1016/j.biopha.2013.03.022] [PMID: 23648054]
[150]
Tang H, Wang Z, Liu X, et al. LRRC4 inhibits glioma cell growth and invasion through a miR-185-dependent pathway. Curr Cancer Drug Targets 2012; 12(8): 1032-42.
[http://dx.doi.org/10.2174/156800912803251180] [PMID: 22834685]
[151]
Qu F, Cui X, Hong Y, et al. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem 2013; 377(1-2): 121-30.
[http://dx.doi.org/10.1007/s11010-013-1576-z] [PMID: 23417242]
[152]
Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 2001; 82(2): 299-304.
[http://dx.doi.org/10.1006/gyno.2001.6284] [PMID: 11531283]
[153]
Dong-Xu W, Jia L, Su-Juan Z. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer. Indian J Cancer 2015; 52(7)(Suppl. 3): E182-5.
[http://dx.doi.org/10.4103/0019-509X.186576] [PMID: 27453420]
[154]
Qadir XV, Han C, Lu D, Zhang J, Wu T. miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. Am J Pathol 2014; 184(8): 2355-64.
[http://dx.doi.org/10.1016/j.ajpath.2014.05.004] [PMID: 24911372]
[155]
Tang Q, Li M, Chen L, Bi F, Xia H. miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells. Int J Oncol 2018; 53(4): 1732-42.
[http://dx.doi.org/10.3892/ijo.2018.4493] [PMID: 30066855]
[156]
Zheng Q, Cui X, Zhang D, Yang Y, Yan X, Liu M, et al. miR-200b inhibits proliferation and metastasis of breast cancer by targeting fucosyltransferase IV and α1, 3-fucosylated glycans. Oncogenesis 2017; 6(7): e358.
[157]
Pan Y, Liang H, Chen W, et al. microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs. RNA Biol 2015; 12(3): 276-89.
[http://dx.doi.org/10.1080/15476286.2015.1017208] [PMID: 25826661]
[158]
Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 2010; 31(5): 766-76.
[http://dx.doi.org/10.1093/carcin/bgp250] [PMID: 19843643]
[159]
Cheng Y, Li Y, Nian Y, Liu D, Dai F, Zhang J. STAT3 is involved in miR-124-mediated suppressive effects on esophageal cancer cells. BMC Cancer 2015; 15(1): 306.
[http://dx.doi.org/10.1186/s12885-015-1303-0] [PMID: 25928665]
[160]
Wang X, Wu Q, Xu B, et al. MiR-124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine-tuning UHRF1. FEBS J 2015; 282(22): 4376-88.
[http://dx.doi.org/10.1111/febs.13502] [PMID: 26310391]
[161]
Yuan L, Li S, Zhou Q, et al. MiR-124 inhibits invasion and induces apoptosis of ovarian cancer cells by targeting programmed cell death 6. Oncol Lett 2017; 14(6): 7311-7.
[http://dx.doi.org/10.3892/ol.2017.7157] [PMID: 29344168]
[162]
Zhao Y, Yan M, Chen C, et al. MiR-124 aggravates failing hearts by suppressing CD151-facilitated angiogenesis in heart. Oncotarget 2018; 9(18): 14382-96.
[http://dx.doi.org/10.18632/oncotarget.24205] [PMID: 29581851]
[163]
Qi MM, Ge F, Chen XJ, Tang C, Ma J. MiR-124 changes the sensitivity of lung cancer cells to cisplatin through targeting STAT3. Eur Rev Med Pharmacol Sci 2019; 23(12): 5242-50.
[PMID: 31298375]
[164]
ICHIHARA A, KOYAMA E. Transaminase of branched chain amino acids. J Biochem 1966; 59(2): 160-9.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a128277] [PMID: 5943594]
[165]
Taylor RT, Jenkins WT. Leucine aminotransferase. II. Purification and characterization. J Biol Chem 1966; 241(19): 4396-405.
[PMID: 5922965]
[166]
Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 2009; 69(10): 4443-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4025] [PMID: 19435910]
[167]
Wilting SM, van Boerdonk RA, Henken FE, et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 2010; 9(1): 167.
[http://dx.doi.org/10.1186/1476-4598-9-167] [PMID: 20579385]
[168]
Wang XX, Zhang H, Li Y. Preliminary study on the role of miR‑148a and DNMT1 in the pathogenesis of acute myeloid leukemia. Mol Med Rep 2019; 19(4): 2943-52.
[http://dx.doi.org/10.3892/mmr.2019.9913] [PMID: 30720097]
[169]
Hibino Y, Sakamoto N, Naito Y, et al. Significance of miR-148a in colorectal neoplasia: downregulation of miR-148a contributes to the carcinogenesis and cell invasion of colorectal cancer. Pathobiology 2015; 82(5): 233-41.
[http://dx.doi.org/10.1159/000438826] [PMID: 26389729]
[170]
Zhang Y, Sun B, Zhao L, et al. Up-regulation of miRNA-148a inhibits proliferation, invasion, and migration while promoting apoptosis of cervical cancer cells by down-regulating RRS1. Biosci Rep 2019; 39(5): BSR20181815.
[http://dx.doi.org/10.1042/BSR20181815] [PMID: 30910849]
[171]
Wang X, Liang Z, Xu X, et al. miR-148a-3p represses proliferation and EMT by establishing regulatory circuits between ERBB3/AKT2/c-myc and DNMT1 in bladder cancer. Cell Death Dis 2016; 7(12): e2503.
[http://dx.doi.org/10.1038/cddis.2016.373] [PMID: 27906180]
[172]
Tian Y, Wei W, Li L, Yang R. Down-regulation of miR-148a promotes metastasis by DNA methylation and is associated with prognosis of skin cancer by targeting TGIF2. Med Sci Monit 2015; 21: 3798-805.
[http://dx.doi.org/10.12659/MSM.894826] [PMID: 26638007]
[173]
Li H-P, Huang H-Y, Lai Y-R, et al. Silencing of miRNA-148a by hypermethylation activates the integrin-mediated signaling pathway in nasopharyngeal carcinoma. Oncotarget 2014; 5(17): 7610-24.
[http://dx.doi.org/10.18632/oncotarget.2282] [PMID: 25277193]
[174]
Long X-R, He Y, Huang C, Li J. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis. Int J Oncol 2014; 44(6): 1915-22.
[http://dx.doi.org/10.3892/ijo.2014.2373] [PMID: 24714841]
[175]
Wang Y, Hu Y, Guo J, Wang L. miR-148a-3p suppresses the proliferation and invasion of esophageal cancer by targeting DNMT1. Genet Test Mol Biomarkers 2019; 23(2): 98-104.
[http://dx.doi.org/10.1089/gtmb.2018.0285] [PMID: 30735457]
[176]
Yan J, Guo X, Xia J, et al. MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. Med Oncol 2014; 31(3): 879.
[http://dx.doi.org/10.1007/s12032-014-0879-6] [PMID: 24515776]
[177]
Zuo J, Xia J, Ju F, et al. MicroRNA-148a can regulate runt-related transcription factor 3 gene expression via modulation of DNA methyltransferase 1 in gastric cancer. Mol Cells 2013; 35(4): 313-9.
[http://dx.doi.org/10.1007/s10059-013-2314-9] [PMID: 23549984]
[178]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013; 5(1): 3-13.
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[179]
Kim J, Zhang Y, Skalski M, et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 2014; 74(5): 1541-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1449] [PMID: 24425048]
[180]
Yuan K, Lian Z, Sun B, Clayton MM, Ng IO, Feitelson MA. Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PLoS One 2012; 7(4)
[http://dx.doi.org/10.1371/journal.pone.0035331] [PMID: 22496917]
[181]
Xiang Y, Ma N, Wang D, et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 2014; 33(3): 378-86.
[http://dx.doi.org/10.1038/onc.2012.575] [PMID: 23318422]
[182]
Tsuruta T, Kozaki K, Uesugi A, et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 2011; 71(20): 6450-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0364] [PMID: 21868754]
[183]
Friedrich M, Pracht K, Mashreghi MF, Jäck HM, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 2017; 47(12): 2026-38.
[http://dx.doi.org/10.1002/eji.201747132] [PMID: 28880997]
[184]
Wang Q-M, Lian G-Y, Song Y, Peng Z-D, Xu S-H, Gong Y. Downregulation of miR-152 contributes to DNMT1-mediated silencing of SOCS3/SHP-1 in non-Hodgkin lymphoma. Cancer Gene Ther 2019; 26(7-8): 195-207.
[http://dx.doi.org/10.1038/s41417-018-0057-7] [PMID: 30470842]
[185]
Duan Q, Wang X, Gong W, et al. ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer. PLoS One 2012; 7(2)
[http://dx.doi.org/10.1371/journal.pone.0031518] [PMID: 22359598]
[186]
Peng R-Q, Wan H-Y, Li H-F, Liu M, Li X, Tang H. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem 2012; 287(17): 14301-9.
[http://dx.doi.org/10.1074/jbc.M111.337642] [PMID: 22399294]
[187]
Penna E, Orso F, Cimino D, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 2011; 30(10): 1990-2007.
[http://dx.doi.org/10.1038/emboj.2011.102] [PMID: 21468029]
[188]
Song J, Gao L, Yang G, et al. MiR-199a regulates cell proliferation and survival by targeting FZD7. PLoS One 2014; 9(10)
[http://dx.doi.org/10.1371/journal.pone.0110074] [PMID: 25313882]
[189]
Zhou M, Wang S, Hu L, Liu F, Zhang Q, Zhang D. miR-199a-5p suppresses human bladder cancer cell metastasis by targeting CCR7. BMC Urol 2016; 16(1): 64.
[http://dx.doi.org/10.1186/s12894-016-0181-3] [PMID: 27814720]
[190]
Wang X, Chen J, Li F, et al. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of β-catenin. Biochem Biophys Res Commun 2012; 428(4): 525-31.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.039] [PMID: 23068095]
[191]
Qiang R, Wang F, Shi L-Y, et al. Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int J Biochem Cell Biol 2011; 43(4): 632-41.
[http://dx.doi.org/10.1016/j.biocel.2011.01.002] [PMID: 21216304]
[192]
Lee Y-B, Bantounas I, Lee D-Y, Phylactou L, Caldwell MA, Uney JB. Twist-1 regulates the miR-199a/214 cluster during development. Nucleic Acids Res 2009; 37(1): 123-8.
[http://dx.doi.org/10.1093/nar/gkn920] [PMID: 19029138]
[193]
Pesta M, Klecka J, Kulda V, et al. Importance of miR-20a expression in prostate cancer tissue. Anticancer Res 2010; 30(9): 3579-83.
[PMID: 20944140]
[194]
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73(20): 3839-59.
[http://dx.doi.org/10.1007/s00018-016-2253-7] [PMID: 27147467]
[195]
Shaffer J, Schlumpberger M, Lader E. miRNA profiling from blood—challenges and recommendations. Qiagen Scientific article 2012; 1-10.
[196]
Wire B. Mirna Therapeutics Halts Phase 1 Clinical Study of MRX3. Retrieved March 2016; 5
[197]
Hong DS, Kang Y-K, Brenner AJ, Sachdev JC, Ejadi S, Borad MJ, et al. MRX34, a liposomal miR-34 mimic, in patients with advanced solid tumors: Final dose-escalation results from a first-in-human phase I trial of microRNA therapy. American Society of Clinical Oncology 2016.
[198]
Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 2017; 35(2): 180-8.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[199]
Reid G, Williams M, Kirschner MB, Mugridge N, Weiss J, Brahmbhatt H, et al. Targeted delivery of a synthetic microRNA-based mimic as an approach to cancer therapy. AACR 2015.
[200]
van Zandwijk N, Pavlakis N, Kao S, Clarke S, Lee A, Brahmbhatt H, et al. Mesomir 1: a phase I study of targomirs in patients with refractory malignant pleural mesothelioma (MPM) and lung cancer (NSCLC). Ann Oncol 2015; 26: ii16.
[http://dx.doi.org/10.1093/annonc/mdv090.2]
[201]
Querfeld C, Pacheco T, Foss FM, Halwani AS, Porcu P, Seto AG, et al. Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL. DC: American Society of Hematology Washington 2016.
[http://dx.doi.org/10.1182/blood.V128.22.1829.1829]
[202]
Foss FM, Querfeld C, Porcu P, Kim YH, Pacheco T, Halwani AS, et al. Phase 1 trial evaluating MRG-106, a synthetic inhibitor of microRNA-155, in patients with cutaneous t-cell lymphoma (CTCL). J Clin Oncol 2017; 35: 7564.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.7564]
[203]
Chen B-F, Suen Y-K, Gu S, Li L, Chan W-Y. A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci Rep 2014; 4(1): 6413.
[http://dx.doi.org/10.1038/srep06413] [PMID: 25231260]
[204]
Wang B, Du R, Xiao X, et al. Microrna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1. Oncotarget 2017; 8(20): 33475-86.
[http://dx.doi.org/10.18632/oncotarget.16509] [PMID: 28380423]
[205]
Gailhouste L, Liew LC, Hatada I, Nakagama H, Ochiya T. Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis 2018; 9(5): 468.
[http://dx.doi.org/10.1038/s41419-018-0487-z] [PMID: 29700299]
[206]
McCormack SE, Warlick ED. Epigenetic approaches in the treatment of myelodysplastic syndromes: clinical utility of azacitidine. OncoTargets Ther 2010; 3: 157-65.
[PMID: 20856790]
[207]
Tsai H-C, Li H, Van Neste L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21(3): 430-46.
[http://dx.doi.org/10.1016/j.ccr.2011.12.029] [PMID: 22439938]
[208]
Gore SD, Jones C, Kirkpatrick P. Decitabine. Nature Publishing Group 2006.
[http://dx.doi.org/10.1038/nrd2180]
[209]
Malik P, Cashen AF. Decitabine in the treatment of acute myeloid leukemia in elderly patients. Cancer Manag Res 2014; 6: 53-61.
[PMID: 24520204]
[210]
Ghoshal K, Bai S. DNA methyltransferases as targets for cancer therapy. Drugs of today (Barcelona, Spain : 1998) 2007; 43(6): 395-422.
[http://dx.doi.org/10.1358/dot.2007.43.6.1062666]
[211]
Howell PM, Liu Z, Khong HT. Demethylating agents in the treatment of cancer. Pharmaceuticals (Basel) 2010; 3(7): 2022-44.
[http://dx.doi.org/10.3390/ph3072022] [PMID: 27713340]
[212]
Samuels BL, Herndon JE II, Harmon DC, et al. Dihydro-5-azacytidine and cisplatin in the treatment of malignant mesothelioma: a phase II study by the Cancer and Leukemia Group B. Cancer 1998; 82(8): 1578-84.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980415)82:8<1578::AID-CNCR21>3.0.CO;2-0] [PMID: 9554537]
[213]
Curt GA, Kelley JA, Fine RL, et al. A phase I and pharmacokinetic study of dihydro-5-azacytidine (NSC 264880). Cancer Res 1985; 45(7): 3359-63.
[PMID: 2408749]
[214]
Beumer JH, Eiseman JL, Parise RA, et al. Pharmacokinetics, metabolism, and oral bioavailability of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine in mice. Clin Cancer Res 2006; 12(24): 7483-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1250] [PMID: 17138702]
[215]
Cheng JC, Matsen CB, Gonzales FA, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003; 95(5): 399-409.
[http://dx.doi.org/10.1093/jnci/95.5.399] [PMID: 12618505]
[216]
Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat 2010; 120(3): 581-92.
[http://dx.doi.org/10.1007/s10549-009-0420-3] [PMID: 19459041]
[217]
Issa JJ, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol 2015; 16(9): 1099-110.
[http://dx.doi.org/10.1016/S1470-2045(15)00038-8] [PMID: 26296954]
[218]
Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003; 63(16): 4984-9.
[PMID: 12941824]
[219]
Graça I, Sousa EJ, Costa-Pinheiro P, et al. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget 2014; 5(15): 5950-64.
[http://dx.doi.org/10.18632/oncotarget.1909] [PMID: 24797896]
[220]
Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 2005; 5(1): 44.
[http://dx.doi.org/10.1186/1471-2407-5-44] [PMID: 15862127]
[221]
de la Cruz-Hernandez E. DNA demethylating activity of hydralazine in cancer cell lines. Life Sciences and Medicine Research 2011.
[222]
Quddus J, Johnson KJ, Gavalchin J, et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 1993; 92(1): 38-53.
[http://dx.doi.org/10.1172/JCI116576] [PMID: 7686923]
[223]
Sheng J, Shi W, Guo H, et al. The Inhibitory Effect of (-)-Epigallocatechin-3-Gallate on Breast Cancer Progression via Reducing SCUBE2 Methylation and DNMT Activity. Molecules 2019; 24(16): 2899.
[http://dx.doi.org/10.3390/molecules24162899] [PMID: 31404982]
[224]
Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63(22): 7563-70.
[PMID: 14633667]
[225]
Borutinskaitė V, Virkšaitė A, Gudelytė G, Navakauskienė R. Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells. Leuk Lymphoma 2018; 59(2): 469-78.
[http://dx.doi.org/10.1080/10428194.2017.1339881] [PMID: 28641467]
[226]
Lambert JD, Kennett MJ, Sang S, Reuhl KR, Ju J, Yang CS. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol 2010; 48(1): 409-16.
[http://dx.doi.org/10.1016/j.fct.2009.10.030] [PMID: 19883714]
[227]
Graça I, Sousa EJ, Baptista T, et al. Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des 2014; 20(11): 1803-11.
[http://dx.doi.org/10.2174/13816128113199990516] [PMID: 23888969]
[228]
Lu Z-W, Du M-Y, Qian L-X, et al. MiR-152 functioning as a tumor suppressor that interacts with DNMT1 in nasopharyngeal carcinoma. OncoTargets Ther 2018; 11: 1733-41.
[http://dx.doi.org/10.2147/OTT.S154464] [PMID: 29628766]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy