Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

In vitro Evaluation and Molecular Dynamics, DFT Guided Investigation of Antimalarial Activity of Ethnomedicinally used Coptis teeta Wall

Author(s): Ashis Kumar Goswami, Hemanta Kumar Sharma*, Neelutpal Gogoi, Ankita Kashyap and Bhaskarjyoti Gogoi

Volume 25, Issue 2, 2022

Published on: 17 January, 2021

Page: [292 - 306] Pages: 15

DOI: 10.2174/1386207324666210118095503

Price: $65

Abstract

Background: Malaria is caused by different species of Plasmodium; among which P. falciparum is the most severe. Coptis teeta is an ethnomedicinal plant of enormous importance for tribes of northeast India.

Objective: In this study, the antimalarial activity of the methanol extracts of Coptis teeta was evaluated in vitro and lead identification was carried out via in silico study.

Methods: On the basis of the in vitro results, in silico analysis by application of different modules of Discovery Studio 2018 was performed on multiple targets of P. falciparum taking into consideration some of the compounds reported from C. teeta.

Results: The IC50 of the methanol extract of Coptis teeta was reported to be 0.08 μg/ml in 3D7 strain and 0.7 μg/ml in Dd2 strain of P. falciparum. From the docking study, noroxyhydrastatine was observed to have better binding affinity in comparison to chloroquine. The binding of noroxyhydrastinine with dihydroorotate dehydrogenase was further validated by molecular dynamics simulation and was observed to be significantly stable in comparison to the co-crystal inhibitor. During simulations, it was observed that noroxyhydrastinine retained the interactions, giving strong indications of its effectiveness against the P. falciparum proteins and stability in the binding pocket. From the Density-functional theory analysis, the bandgap energy of noroxyhydrastinine was found to be 0.186 Ha, indicating a favorable interaction.

Conclusion: The in silico analysis as an addition to the in vitro results provides strong evidence of noroxyhydrastinine as an antimalarial agent.

Keywords: Ethnomedicine, noroxyhydrastinine, berberine, Plasmodium falciparum, parasitaemia, docking

Graphical Abstract

[1]
The "World malaria report 2019" at a glance. Geneva: World Health Organisation, 2019. https://www.who.int/news-room/feature stories/detail/world-malaria-report-2019
[2]
Malaria. Geneva: World Health Organisation, 2020. https://www.who.int/news-room/fact-sheets/detail/malaria
[3]
White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113(8), 1084-1092.
[http://dx.doi.org/10.1172/JCI21682] [PMID: 15085184]
[4]
Coteron, J.M.; Marco, M.; Esquivias, J.; Deng, X.; White, K.L.; White, J.; Koltun, M.; El Mazouni, F.; Kokkonda, S.; Katneni, K.; Bhamidipati, R.; Shackleford, D.M.; Angulo-Barturen, I.; Ferrer, S.B.; Jiménez-Díaz, M.B.; Gamo, F.J.; Goldsmith, E.J.; Charman, W.N.; Bathurst, I.; Floyd, D.; Matthews, D.; Burrows, J.N.; Rathod, P.K.; Charman, S.A.; Phillips, M.A. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J. Med. Chem., 2011, 54(15), 5540-5561.
[http://dx.doi.org/10.1021/jm200592f] [PMID: 21696174]
[5]
Lima, R.B.S.; Rocha Silva, L.F. Melo, M.R.S.; Costa, J.S.; Picanço, N.S.; Lima, E.S.; Vasconsellos, C.M.; Boleti, A.P.A.; Santos, P.M.J.; Amorim, N.C.R.; Chaves, M.C.F.; Countinho, P.J.; Tadei, P.W.; Krettli, U.A.; Pohlit, M.A. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malar. J., 2015, 14(1), 1-14.
[6]
Kagyung, R.; Gajurel, P.R.; Rethy, P.; Singh, B. Ethnomedicinal plants used for gastro-intestinal diseases by Adi tribes of Dehang- Debang biosphere reserve in Arunachal Pradesh. 2010, 9(3), 496- 501.
[7]
Tangjang, S.; Namsa, N.D.; Aran, C.; Litin, A. An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India. J. Ethnopharmacol., 2011, 134(1), 18-25.
[http://dx.doi.org/10.1016/j.jep.2010.11.053] [PMID: 21129478]
[8]
Shankar, R.; Deb, S.; Sharma, B.K. Antimalarial plants of northeast India: An overview. J. Ayurveda Integr. Med., 2012, 3(1), 10-16.
[http://dx.doi.org/10.4103/0975-9476.93940] [PMID: 22529674]
[9]
Baruah, S.; Borthakur, S.K.; Gogoi, P.; Ahmed, M. Ethnomedicinal plants used by Adi-Minyong tribe of Arunachal Pradesh, eastern Himalaya. IJNPR, 2013, 4(3), 278-282.
[10]
Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin, Heidelberg, 2007, pp. 170-171.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[11]
Li, C.Y.; Tsai, S.I.; Damu, A.G.; Wu, T.S. A rapid and simple determination of protoberberine alkaloids in Rhizoma Coptidis by 1H NMR and its application for quality control of commercial prescriptions. J. Pharm. Biomed. Anal., 2009, 49(5), 1272-1276.
[http://dx.doi.org/10.1016/j.jpba.2009.02.028] [PMID: 19345543]
[12]
Ding, P.L.; Chen, L.Q.; Lu, Y.; Li, Y.G. Determination of protoberberine alkaloids in Rhizoma Coptidis by ERETIC 1H NMR method. J. Pharm. Biomed. Anal., 2012, 60, 44-50.
[PMID: 22119162]
[13]
Qian, X.C.; Zhang, L.; Tao, Y.; Huang, P.; Li, J.S.; Chai, C.; Li, W.; Di, L-Q.; Cai, B-C. Simultaneous determination of ten alkaloids of crude and wine-processed Rhizoma Coptidis aqueous extracts in rat plasma by UHPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study. J. Pharm. Biomed. Anal., 2015, 105, 64-73.
[http://dx.doi.org/10.1016/j.jpba.2014.11.049] [PMID: 25543284]
[14]
Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[15]
Talevi, A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol., 2015, 6, 205.
[http://dx.doi.org/10.3389/fphar.2015.00205] [PMID: 26441661]
[16]
Sijwali, P.S.; Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4384-4389.
[http://dx.doi.org/10.1073/pnas.0307720101] [PMID: 15070727]
[17]
Pandey, K.C.; Wang, S.X.; Sijwali, P.S.; Lau, A.L.; McKerrow, J.H.; Rosenthal, P.J. The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc. Natl. Acad. Sci. USA, 2005, 102(26), 9138-9143.
[http://dx.doi.org/10.1073/pnas.0502368102] [PMID: 15964982]
[18]
Silva, A.M.; Lee, A.Y.; Gulnik, S.V.; Maier, P.; Collins, J.; Bhat, T.N.; Collins, P.J.; Cachau, R.E.; Luker, K.E.; Gluzman, I.Y.; Francis, S.E.; Oksman, A.; Goldberg, D.E.; Erickson, J.W. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1996, 93(19), 10034-10039.
[http://dx.doi.org/10.1073/pnas.93.19.10034] [PMID: 8816746]
[19]
Baldwin, J.; Farajallah, A.M.; Malmquist, N.A.; Rathod, P.K.; Phillips, M.A. Malarial dihydroorotate dehydrogenase. Substrate and inhibitor specificity. J. Biol. Chem., 2002, 277(44), 41827-41834.
[http://dx.doi.org/10.1074/jbc.M206854200] [PMID: 12189151]
[20]
Peterson, D.S.; Walliker, D.; Wellems, T.E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA, 1988, 85(23), 9114-9118.
[http://dx.doi.org/10.1073/pnas.85.23.9114] [PMID: 2904149]
[21]
Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239.
[http://dx.doi.org/10.2174/187152610791163336] [PMID: 20334617]
[22]
Whittingham, J.L.; Leal, I.; Nguyen, C.; Kasinathan, G.; Bell, E.; Jones, A.F.; Berry, C.; Benito, A.; Turkenburg, J.P.; Dodson, E.J.; Ruiz Perez, L.M.; Wilkinson, A.J.; Johansson, N.G.; Brun, R.; Gilbert, I.H.; Gonzalez Pacanowska, D.; Wilson, K.S. dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. Structure, 2005, 13(2), 329-338.
[http://dx.doi.org/10.1016/j.str.2004.11.015] [PMID: 15698576]
[23]
Hampton, S.E.; Baragaña, B.; Schipani, A.; Bosch-Navarrete, C.; Musso-Buendía, J.A.; Recio, E.; Kaiser, M.; Whittingham, J.L.; Roberts, S.M.; Shevtsov, M.; Brannigan, J.A.; Kahnberg, P.; Brun, R.; Wilson, K.S.; González-Pacanowska, D.; Johansson, N.G.; Gilbert, I.H. Design, synthesis, and evaluation of 5′-diphenyl nucleoside analogues as inhibitors of the Plasmodium falciparum dUTPase. ChemMedChem, 2011, 6(10), 1816-1831.
[http://dx.doi.org/10.1002/cmdc.201100255] [PMID: 22049550]
[24]
Goswami, A.K.; Gogoi, N.; Shakya, A.; Sharma, H.K. Development and validation of High-Performance Thin-layer Chromatographic method for quantification of berberine in rhizomes of Coptis teeta Wall, an endangered species collected from Arunachal Pradesh, India. J. Chromatogr. Sci., 2019, 57(5), 411-417.
[http://dx.doi.org/10.1093/chromsci/bmz009] [PMID: 30753457]
[25]
Chen, J.; Wang, F.; Liu, J.; Lee, F.S.C.; Wang, X.; Yang, H. Analysis of alkaloids in Coptis chinensis Franch by accelerated solvent extraction combined with ultra performance liquid chromatographic analysis with photodiode array and tandem mass spectrometry detections. Anal. Chim. Acta, 2008, 613(2), 184-195.
[http://dx.doi.org/10.1016/j.aca.2008.02.060] [PMID: 18395058]
[26]
Syahida, A.; Israf, D.A.; Lajis, N.H.; Khozirah, S.; Habsah, M.; Permana, D.; Norhadiani, I. Effect of compounds isolated from natural products on IFN- γ/LPS–induced nitric oxide production in RAW 264.7 macrophages. Pharm. Biol., 2006, 44(1), 50-59.
[http://dx.doi.org/10.1080/13880200500530765]
[27]
Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature, 1998, 391(6662), 79-82.
[http://dx.doi.org/10.1038/34178] [PMID: 9422508]
[28]
Blum, J.J.; Ginsburg, H. Absence of α-ketoglutarate dehydrogenase activity and presence of CO2-fixing activity in Plasmodium falciparum grown in vitro in human erythrocytes. J. Protozool., 1984, 31(1), 167-169.
[http://dx.doi.org/10.1111/j.1550-7408.1984.tb04310.x] [PMID: 6145796]
[29]
Rieckmann, K.H.; Campbell, G.H.; Sax, L.J.; Mrema, J.E. Drug sensitivity of plasmodium falciparum. An in-vitro microtechnique. Lancet, 1978, 1(8054), 22-23.
[http://dx.doi.org/10.1016/S0140-6736(78)90365-3] [PMID: 74500]
[30]
Spratt, J.L. Computer program for probit analyses. Toxicol. Appl. Pharmacol., 1966, 8(1), 110-112.
[http://dx.doi.org/10.1016/0041-008X(66)90106-2] [PMID: 5921886]
[31]
Johari, S.; Sharma, A.; Sinha, S.; Das, A. Integrating pharmacophore mapping, virtual screening, density functional theory, molecular simulation towards the discovery of novel apolipoprotein (apoE ε4) inhibitors. Comput. Biol. Chem., 2019, 79, 83-90.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.013] [PMID: 30743160]
[32]
Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[33]
Lin, C.H.; Chang, T.T.; Sun, M.F.; Chen, H.Y.; Tsai, F.J.; Chang, K.L.; Fisher, M.; Chen, C.Y.C. Potent inhibitor design against H1N1 swine influenza: structure-based and molecular dynamics analysis for M2 inhibitors from traditional Chinese medicine database. J. Biomol. Struct. Dyn., 2011, 28(4), 471-482.
[http://dx.doi.org/10.1080/07391102.2011.10508589] [PMID: 21142218]
[34]
Kumar, S.; Saini, V.; Maurya, I.K.; Sindhu, J.; Kumari, M.; Kataria, R.; Kumar, V. Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. PLoS One, 2018, 13(4), e0196016.
[http://dx.doi.org/10.1371/journal.pone.0196016] [PMID: 29672633]
[35]
Maadwar, S.; Galla, R. Cytotoxic oxindole derivatives: in vitro EGFR inhibition, pharmacophore modeling, 3D-QSAR and molecular dynamics studies. J. Recept. Signal Transduct. Res., 2019, 39(5-6), 460-469.
[http://dx.doi.org/10.1080/10799893.2019.1683865] [PMID: 31814499]
[36]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[37]
Manhas, A.; Patel, A.; Lone, M.Y.; Jha, P.K.; Jha, P.C. Identification of PfENR inhibitors: A hybrid structure-based approach in conjunction with molecular dynamics simulations. J. Cell. Biochem., 2018, 119(10), 8490-8500.
[http://dx.doi.org/10.1002/jcb.27075] [PMID: 30105881]
[38]
Shandilya, A.; Chacko, S.; Jayaram, B.; Ghosh, I. A plausible mechanism for the antimalarial activity of artemisinin: A computational approach. Sci. Rep., 2013, 3, 2513.
[http://dx.doi.org/10.1038/srep02513] [PMID: 23985481]
[39]
Nunes, R.R.; Costa, M.D.S.; Santos, B.D.R.; Fonseca, A.L.; Ferreira, L.S.; Chagas, R.C.R.; Silva, A.M.; Varotti, F.P.; Taranto, A.G. Successful application of virtual screening and molecular dynamics simulations against antimalarial molecular targets. Mem. Inst. Oswaldo Cruz, 2016, 111(12), 721-730.
[http://dx.doi.org/10.1590/0074-02760160207] [PMID: 27982302]
[40]
Silikas, N.; McCall, D.L.C.; Sharples, D.; Watkins, W.M.; Waigh, R.D.; Barber, J. The antimalarial activity of berberine and some synthetic analogues. Pharmaceutical Sciences; John Wiley & Sons, Ltd., 1996, pp. 55-58.
[41]
Rathi, E.; Kumar, A.; Kini, S.G. Molecular dynamics guided insight, binding free energy calculations and pharmacophore-based virtual screening for the identification of potential VEGFR2 inhibitors. J. Recept. Signal Transduct. Res., 2019, 39(5-6), 415-433.
[http://dx.doi.org/10.1080/10799893.2019.1690509] [PMID: 31755336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy