Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Experimental and Theoretical Approach to Novel Polyfunctionalized Isoxazole

Author(s): Amal Al-Azmi* and Mona A. Shalaby

Volume 25, Issue 7, 2021

Published on: 14 January, 2021

Page: [849 - 856] Pages: 8

DOI: 10.2174/1385272825666210114160506

Abstract

A novel, fast, and straightforward procedure for the synthesis of di- and trifunctionalized isoxazoles starting from 2-ethoxymethylenemalononitrile with different ratios of hydroxylamine in the presence of sodium acetate is described in this paper. The current method’s features include the availability of the starting materials, moderate reaction conditions, and the simplicity of the workup. The structures are characterized using different spectroscopic studies, such as infrared (IR), 1H/13C nuclear magnetic resonance (NMR), and elemental analysis, in addition to X-ray single-crystal determination. The gauge-invariant atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 5-aminoisoxazole-4-carbonitrile and 3,5-diaminoisoxazole-4-carboxamide are calculated in the ground state using the density functional theory (DFT) with the 6-311+G(d, p) basis set and are compared with the experimental data, in addition to the calculation of the molecular electrostatic potential (MEP) distribution, and the frontier molecular orbitals (FMOs) for the synthesized isoxazoles are illustrated theoretically.

Keywords: Polyfunctionalized isoxazole, X-ray structure, DFT, NMR, MEP, Mulliken charges.

« Previous
Graphical Abstract

[1]
Hamama, W.S.; Ibrahim, M.E.; Zoorob, H.H. Advances in the chemistry of aminoisoxazole. Synth. Commun., 2013, 43(18), 2393-2440.
[http://dx.doi.org/10.1080/00397911.2012.729281]
[2]
Trogu, E.; De Sarlo, T.P.F.; Cardini, C.P.G.; Machetti, C-T.D.F. Synthesis of isoxazole derivatives by catalytic condensation of primary nitro compounds with dipolarophiles., Ph. D. dissertation, University of Delhi Lodi Di Firenze, 2009.
[3]
Wang, L.; Yu, X.; Feng, X.; Bao, M. Synthesis of 3,5-disubstituted isoxazoles via Cope-type hydroamination of 1,3-dialkynes. Org. Lett., 2012, 14(9), 2418-2421.
[http://dx.doi.org/10.1021/ol300872e] [PMID: 22537143]
[4]
Lakhvich, F.A.; Koroleva, E.V.; Akhrem, A.A. Synthesis, chemical transformation, and application of isoxazole derivatives in the total chemical synthesis of natural compounds. Chem. Heterocycl. Compd., 1989, 25(4), 359-375.
[http://dx.doi.org/10.1007/BF00480746]
[5]
Hu, F.; Szostak, M. Recent developments in the synthesis and reactivity of isoxazoles: metal catalysis and beyond. Adv. Synth. Catal., 2015, 357(12), 2583-2614.
[http://dx.doi.org/10.1002/adsc.201500319]
[6]
Contreras, J.; Sippl, W. The Practice of Medicinal Chemistry; Wermuth, C.G., Ed.; Elsevier Academic Press: London, 2008, pp. 380-414.
[7]
Sperry, J.B.; Wright, D.L. Furans, thiophenes and related heterocycles in drug discovery. Curr. Opin. Drug Discov. Devel., 2005, 8(6), 723-740.
[PMID: 16312148]
[8]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084.
[http://dx.doi.org/10.1021/jm100112j] [PMID: 20345171]
[9]
Medeiros, M.; Souza, B.S.; Orth, E.S.; Brandão, T.A.; Rocha, W.; Kirby, A.J.; Nome, F. The reaction of hydroxylamine with aspirin. ARKIVOC, 2011, 7, 461-476.
[http://dx.doi.org/10.3998/ark.5550190.0012.738]
[10]
Al-Azmi, A.; Kumari, K.A. Reactions of 9-aryl-6-cyanopurines with primary amines. Heterocycles, 2009, 78(9), 2245-2262.
[http://dx.doi.org/10.3987/COM-09-11713]
[11]
Nigst, T.A.; Antipova, A.; Mayr, H. Nucleophilic reactivities of hydrazines and amines: the futile search for the α-effect in hydrazine reactivities. J. Org. Chem., 2012, 77(18), 8142-8155.
[http://dx.doi.org/10.1021/jo301497g] [PMID: 22950800]
[12]
Hoz, S.; Buncel, E. The α-effect: a critical examination of the phenomenon and its origin. Isr. J. Chem., 1985, 26(4), 313-319.
[http://dx.doi.org/10.1002/ijch.198500113]
[13]
Buncel, E.; Um, I-H. The α-effect and its modulation by solvent. Tetrahedron, 2004, 60(36), 7801.
[http://dx.doi.org/10.1016/j.tet.2004.05.006]
[14]
Grekov, A.P.; Veselov, V.Y. The α-effect in the chemistry of organic compounds. Russ. Chem. Rev., 1978, 47(7), 631.
[http://dx.doi.org/10.1070/RC1978v047n07ABEH002243]
[15]
Fina, N.J.; Edwards, J.O. The alpha effect. A review. Int. J. Chem. Kinet., 1973, 5(1), 1-26.
[http://dx.doi.org/10.1002/kin.550050102]
[16]
Jencks, W.P. Catalysis in Chemistry and Enzymology; Courier Corporation, 1987.
[17]
Taylor, E.C.; Garcia, E.E. The Synthesis of 4-Aminoisoxazolo[5,4-d]pyrimidines1. J. Org. Chem., 1964, 29(8), 2116-2120.
[http://dx.doi.org/10.1021/jo01031a002]
[18]
Al-Azmi, A.; Shalaby, M.A. Experimental and computational approaches to the analysis of the molecular structure of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile. J. Mol. Struct., 2018, 1155, 239-248.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.006]
[19]
Tanak, H.; Koysal, Y.; Isik, S.; Yaman, H.; Ahsen, V. Experimental and computational approaches to the molecular structure of 3-(2-Mercapto-pyridine) phthalonitrile. Bull. Korean Chem. Soc., 2011, 32(2), 673-680.
[http://dx.doi.org/10.5012/bkcs.2011.32.2.673]
[20]
Kirby, A.J.; Davies, J.E.; Brandão, T.A.S.; da Silva, P.F.; Rocha, W.R.; Nome, F. Hydroxylamine as an oxygen nucleophile. Structure and reactivity of ammonia oxide. J. Am. Chem. Soc., 2006, 128(38), 12374-12375.
[http://dx.doi.org/10.1021/ja065147q] [PMID: 16984161]
[21]
Vörös, A.; Mucsi, Z.; Baán, Z.; Timári, G.; Hermecz, I.; Mizsey, P.; Finta, Z. An experimental and theoretical study of reaction mechanisms between nitriles and hydroxylamine. Org. Biomol. Chem., 2014, 12(40), 8036-8047.
[http://dx.doi.org/10.1039/C4OB00854E] [PMID: 25185027]
[22]
Stephenson, L.; Warburton, W.K.; Wilson, M.J. Reaction of some aromatic nitriles with hydroxylamine to give amides, and an alternative preparation of amidoximes. J. Chem. Soc. C: Org., 1969, 6, 861-864.
[23]
Schlegel, H.B. Optimization of equilibrium geometries and transition structures. J. Comput. Chem., 1982, 3(2), 214-218.
[http://dx.doi.org/10.1002/jcc.540030212]
[24]
Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem., 1996, 17(1), 49-56.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49:AID-JCC5>3.0.CO;2-0]
[25]
Frisch, M.J.G.W.T.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.K.; Kudin, N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.E.R.; Stratmann, O.; Yazyev, A.; Austin, J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09. Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.
[26]
Dennington, R.; Keith, T.; Millam, J. GaussView, Version 4.1. 2; Semichem Inc.: Shawnee Mission, KS, 2007.
[27]
Ditchfield, R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J. Chem. Phys., 1972, 56(11), 5688-5691.
[http://dx.doi.org/10.1063/1.1677088]
[28]
Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc., 1990, 112(23), 8251-8260.
[http://dx.doi.org/10.1021/ja00179a005]
[29]
Griffith, J.S.; Orgel, L.E. Ligand-field theory. Q. Rev. Chem. Soc., 1957, 11(4), 381-393.
[http://dx.doi.org/10.1039/qr9571100381]
[30]
Mansour, A.M.; Abdel Ghani, N.T. Hydrogen-bond effect, spectroscopic and molecular structure investigation of sulfamethazine Schiff-base: experimental and quantum chemical calculations. J. Mol. Struct., 2013, 1040, 226-237.
[http://dx.doi.org/10.1016/j.molstruc.2013.02.028]
[31]
Teimouri, A.; Emami, M.; Chermahini, A.N.; Dabbagh, H.A. Spectroscopic, quantum chemical DFT/HF study and synthesis of [2.2.1] hept-2′-en-2′-amino-N-azatricyclo [3.2.1.0(2,4)] octane. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 71(5), 1749-1755.
[http://dx.doi.org/10.1016/j.saa.2008.06.043] [PMID: 18715821]
[32]
Tanak, H.; Toy, M. Molecular structure, vibrational spectra, NLO and MEP analysis of bis[2-hydroxy-кO-N-(2-pyridyl)-1-naphthaldiminato-кN]zinc(II). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 145-153.
[http://dx.doi.org/10.1016/j.saa.2013.06.010] [PMID: 23832222]
[33]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[34]
Xiao, H.; Tahir-Kheli, J.; Goddard, W.A. Accurate band gaps for semiconductors from density functional theory. J. Phys. Chem. Lett., 2011, 2(3), 212-217.
[http://dx.doi.org/10.1021/jz101565j]
[35]
Muscat, J.; Wander, A.; Harrison, N.M. On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett., 2001, 342(3), 397-401.
[http://dx.doi.org/10.1016/S0009-2614(01)00616-9]
[36]
Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett., 1984, 52(12), 997-1000.
[http://dx.doi.org/10.1103/PhysRevLett.52.997]
[37]
Fukui, K. Role of frontier orbitals in chemical reactions. Science, 1982, 218(4574), 747-754.
[http://dx.doi.org/10.1126/science.218.4574.747] [PMID: 17771019]
[38]
Mahmood, A.; Akram, T.; de Lima, E.B. Syntheses, spectroscopic investigation and electronic properties of two sulfonamide derivatives: a combined experimental and quantum chemical approach. J. Mol. Struct., 2016, 1108, 496-507.
[http://dx.doi.org/10.1016/j.molstruc.2015.12.039]
[39]
Ibrahim, M.; Mahmoud, A.A. Computational notes on the reactivity of some functional groups. J. Comput. Theor. Nanosci., 2009, 6(7), 1523-1526.
[http://dx.doi.org/10.1166/jctn.2009.1205]
[40]
Bulat, F.A.; Chamorro, E.; Fuentealba, P.; Toro-Labbé, A. Condensation of frontier molecular orbital Fukui functions. J. Phys. Chem. A, 2004, 108(2), 342-349.
[http://dx.doi.org/10.1021/jp036416r]
[41]
Al-Azmi, A. DFT Study on two plausible mechanistic routes to pyrazolo [3, 4-d] pyrimidine-4-Amines from pyrazoloformimidate. Curr. Org. Chem., 2020, 24(2), 216-229.
[http://dx.doi.org/10.2174/1385272824666200203122450]
[42]
Scrocco, E.; Tomasi, J. Interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem., 1979, 11, 115.
[http://dx.doi.org/10.1016/S0065-3276(08)60236-1]
[43]
Luque, F.J.; López, J.M.; Orozco, M. Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theor. Chem. Acc., 2000, 103(3), 343-345.
[http://dx.doi.org/10.1007/s002149900013]
[44]
Politzer, P.; Truhlar, D.G. Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems; Springer Science & Business Media, 2013.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy