Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Ester Synthesis by Multi-Component Reactions (MCRs): A Review

Author(s): Dhaval B. Patel, Jagruti A. Parmar, Siddharth S. Patel, Unnati J. Naik and Hitesh D. Patel*

Volume 25, Issue 5, 2021

Published on: 10 January, 2021

Page: [539 - 553] Pages: 15

DOI: 10.2174/1385272825666210111111805

Price: $65

Abstract

The synthesis of ester-containing heterocyclic compounds via multicomponent reaction is one of the preferable processes in synthetic organic chemistry and medicinal chemistry. Compounds containing ester linkage have a wide range of biological applications in the pharmaceutical field. Therefore, many methods have been developed for the synthesis of these types of derivatives. However, some of them are carried out in the presence of toxic solvents and catalysts, with lower yields, longer reaction times, low selectivities, and byproducts. Thus, the development of new synthetic methods for ester synthesis is required in medicinal chemistry. As we know, multicomponent reactions (MCRs) are a powerful tool for the one-pot ester synthesis, so in this article, we have reviewed the recent developments in ester synthesis. This work covers a selected explanation of methods via multicomponent reactions to explore the methodological development in ester synthesis.

Keywords: Multicomponent, ester, yield, reaction, strategy, biological applications.

Next »
Graphical Abstract

[1]
Murray, R.D. Coumarins. Nat. Prod. Rep., 1989, 6(6), 591-624.
[http://dx.doi.org/10.1039/np9890600591] [PMID: 2699016]
[2]
Hoult, J.R.; Payá, M. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen. Pharmacol., 1996, 27(4), 713-722.
[http://dx.doi.org/10.1016/0306-3623(95)02112-4] [PMID: 8853310]
[3]
Ugi, I.; Dömling, A.; Hörl, W. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[4]
Hobbs, H.R.; Thomas, N.R. Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem. Rev., 2007, 107(6), 2786-2820.
[http://dx.doi.org/10.1021/cr0683820] [PMID: 17564485]
[5]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[6]
Tejedor, D.; García-Tellado, F. Chemo-differentiating ABB’ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev., 2007, 36(3), 484-491.
[http://dx.doi.org/10.1039/B608164A] [PMID: 17325787]
[7]
Shanthi, G.; Perumal, P. InCl3-Catalyzed efficient one-pot synthesis of 2-pyrrolo-3′-yloxindoles. Tetrahedron Lett., 2009, 50, 3959-3962.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.089]
[8]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
[9]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[10]
Cioc, R.; Ruijter, E.; Orru, R. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[11]
Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Annalen der Chemie und Pharmacie., 1850, 75, 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[12]
Li, X.T.; Zou, J.; Wang, T.H.; Ma, H.C.; Chen, G.J.; Dong, Y.B. Construction of covalent organic frameworks via three-component one-pot Strecker and Povarov reactions. J. Am. Chem. Soc., 2020, 142(14), 6521-6526.
[http://dx.doi.org/10.1021/jacs.0c00969] [PMID: 32163281]
[13]
Biginelli, P. Ueber aldehyduramide des acetessigäthers. Ber. Dtsch. Chem. Ges., 1891, 24, 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
[14]
Esen, E.; Meier, M.A.R. Modification of starch via the Biginelli multicomponent reaction. Macromol. Rapid Commun., 2020, 41(1), e1900375.
[http://dx.doi.org/10.1002/marc.201900375] [PMID: 31517416]
[15]
Mannich, C.; Krösche, W. Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin. Arch. Pharm. (Berl.), 1912, 250, 647-667.
[http://dx.doi.org/10.1002/ardp.19122500151]
[16]
Meyer, C.C.; Ortiz, E.; Krische, M.J. Catalytic reductive Aldol and Mannich reactions of enone, acrylate, and vinyl heteroaromatic pronucleophiles. Chem. Rev., 2020, 120(8), 3721-3748.
[http://dx.doi.org/10.1021/acs.chemrev.0c00053] [PMID: 32191438]
[17]
Passerini, M.; Simone, L. Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital., 1921, 51, 126-129.
[18]
Sornay, C.; Hessmann, S.; Erb, S.; Dovgan, I.; Ehkirch, A.; Botzanowski, T.; Cianférani, S.; Wagner, A.; Chaubet, G. Investigating Ugi/Passerini multicomponent reactions for the site-selective conjugation of native trastuzumab. Chemistry, 2020, 26(61), 13797-13805.
[http://dx.doi.org/10.1002/chem.202002432] [PMID: 32588934]
[19]
Ugi, I.; Meyr, R.; Fetzer, U.; Steinbruckner, C. Studies on isonitriles. Angew. Chem., 1959, 71, 373-386.
[20]
Rocha, R.O.; Rodrigues, M.O.; Neto, B.A.D. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega, 2020, 5(2), 972-979.
[http://dx.doi.org/10.1021/acsomega.9b03684] [PMID: 31984252]
[21]
Petasis, N.; Akritopoulou, I. The boronic acid Mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett., 1993, 34, 583-586.
[http://dx.doi.org/10.1016/S0040-4039(00)61625-8]
[22]
Potowski, M.; Esken, R.; Brunschweiger, A. Translation of the copper/bipyridine-promoted Petasis reaction to solid phase-coupled DNA for encoded library synthesis. Bioorg. Med. Chem., 2020, 28(9), 115441.
[http://dx.doi.org/10.1016/j.bmc.2020.115441] [PMID: 32222338]
[23]
Groebke, K.; Weber, L.; Mehlin, F. Synthesis of imidazo[1,2-A] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 6, 661-663.
[http://dx.doi.org/10.1055/s-1998-1721]
[24]
Hussain, M.; Liu, J.; Fu, L.; Hasan, M. Synthesis of imidazo [1, 2-a] pyridines via the silver acetate-catalyzed Groebke-Blackburn-Bienayme reaction with ethylene glycol as a biodegradable and sustainable solvent. J. Heterocycl. Chem., 2020, 57(3), 955-964.
[http://dx.doi.org/10.1002/jhet.3746]
[25]
Heck, S.; Domling, A. A versatile multi-component one-pot thiazole synthesis. Synlett, 2000, 2000(3), 424-426.
[http://dx.doi.org/10.1055/s-2000-6517]]
[26]
Moni, L.; Banfi, L.; Cartagenova, D.; Cavalli, A.; Lambruschini, C.; Martino, E.; Orru, R.V.; Ruijter, E.; Saya, J.M.; Sgrignani, J.; Riva, R. Zinc (II)-mediated diastereoselective Passerini reactions of biocatalytically desymmetrised renewable inputs. Org. Chem. Front., 2020, 7(2), 380-398.
[http://dx.doi.org/10.1039/C9QO00773C]
[27]
Bon, R.S.; Hong, C.; Bouma, M.J.; Schmitz, R.F.; de Kanter, F.J.; Lutz, M.; Spek, A.L.; Orru, R.V. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines. Org. Lett., 2003, 5(20), 3759-3762.
[http://dx.doi.org/10.1021/ol035521g] [PMID: 14507224]
[28]
Kammer, L.M.; Krumb, M.; Spitzbarth, B.; Lipp, B.; Kühlborn, J.; Busold, J.; Mulina, O.M.; Terentev, A.O.; Opatz, T. Photoredox-catalyzed four-component reaction for the synthesis of complex secondary amines. Org. Lett., 2020, 22(9), 3318-3322.
[http://dx.doi.org/10.1021/acs.orglett.0c00614] [PMID: 32157890]
[29]
Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer, 2010, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[30]
Zhao, Y.L.; Chen, Y.L.; Tzeng, C.C.; Chen, I.L.; Wang, T.C.; Han, C.H. Synthesis and cytotoxic evaluation of certain 4-(phenylamino)furo[2,3-b]quinoline and 2-(furan-2-yl)-4-(phenylamino)quinoline derivatives. Chem. Biodivers., 2005, 2(2), 205-214.
[http://dx.doi.org/10.1002/cbdv.200590003] [PMID: 17191973]
[31]
Martinez-Amezaga, M.; Giordano, R.A.; Prada Gori, D.N.; Permingeat Squizatto, C.; Giolito, M.V.; Scharovsky, O.G.; Rozados, V.R.; Rico, M.J.; Mata, E.G.; Delpiccolo, C.M.L. Synthesis of propargylamines via the A3 multicomponent reaction and their biological evaluation as potential anticancer agents. Org. Biomol. Chem., 2020, 18(13), 2475-2486.
[http://dx.doi.org/10.1039/D0OB00280A] [PMID: 32182329]
[32]
Wise, R.; Andrews, J.M.; Edwards, L.J. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob. Agents Chemother., 1983, 23(4), 559-564.
[http://dx.doi.org/10.1128/AAC.23.4.559] [PMID: 6222695]
[33]
Kaur, N.; Singh, P.; Kaur, P.; Yadav, A.N.; Singh, K. One-pot multicomponent synthesis and antimicrobial evaluation of novel tricyclic indenopyrimidine-2-amines. J. Heterocycl. Chem., 2020, 57(10), 3622-3631.
[http://dx.doi.org/10.1002/jhet.4081]
[34]
Kayirere, M.; Mahamoud, A.; Chevalier, J.; Soyfer, J.; Crémieux, A.; Barbe, J. Synthesis and antibacterial activity of new 4-alkoxy, 4-aminoalkyl and 4-alkylthioquinoline derivatives. Eur. J. Med. Chem., 1998, 33, 55-63.
[http://dx.doi.org/10.1016/S0223-5234(99)80076-2]
[35]
Baral, N.; Mishra, D.R.; Mishra, N.P.; Mohapatra, S.; Raiguru, B.P.; Panda, P.; Nayak, S.; Nayak, M.; Kumar, P.S. Microwave-assisted rapid and efficient synthesis of chromene-fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem., 2020, 57(2), 575-589.
[http://dx.doi.org/10.1002/jhet.3773]
[36]
Kidwai, M.; Bhushan, K.R.; Sapra, P.; Saxena, R.K.; Gupta, R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg. Med. Chem., 2000, 8(1), 69-72.
[http://dx.doi.org/10.1016/S0968-0896(99)00256-4] [PMID: 10968266]
[37]
Ryu, C.K.; Choi, J.A.; Kim, S.H. Synthesis and antifungal evaluation of 6-(N-arylamino)-7-methylthio-5,8-quinolinediones. Arch. Pharm. Res., 1998, 21(4), 440-444.
[http://dx.doi.org/10.1007/BF02974640] [PMID: 9875473]
[38]
Desai, N.C.; Joshi, S.B.; Jadeja, K.A. A one-pot multicomponent Biginelli reaction for the preparation of novel pyrimidinthione derivatives as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(2), 791-795.
[http://dx.doi.org/10.1002/jhet.3821]
[39]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[http://dx.doi.org/10.1016/j.bmc.2006.01.016] [PMID: 16458522]
[40]
Burckhalter, J.; Edgerton, W. A new type of 8-quinolinol amebacidal agent. J. Am. Chem. Soc., 1951, 73, 4837-4839.
[http://dx.doi.org/10.1021/ja01154a108]
[41]
Raut, D.G.; Lawand, A.S.; Kadu, V.D.; Hublikar, M.G.; Patil, S.B.; Bhosale, D.G.; Bhosale, R.B. Synthesis of asymmetric thiazolyl pyrazolines as a potential antioxidant and anti-inflammatory agents. Polycycl. Aromat. Comp.,, 2020, 1-10.
[42]
Bailey, D.M.; Mount, E.M.; Siggins, J.; Carlson, J.A.; Yarinsky, A.; Slighter, R.G. 1-(Dichloroacetyl)-1,2,3,4-tetrahydro-6-quinolinol esters. New potent antiamebic agents. J. Med. Chem., 1979, 22(5), 599-601.
[http://dx.doi.org/10.1021/jm00191a031] [PMID: 458814]
[43]
Dade, J.; Provot, O.; Moskowitz, H.; Mayrargue, J.; Prina, E. Synthesis of 2-substituted trifluoromethylquinolines for the evaluation of leishmanicidal activity. Chem. Pharm. Bull. (Tokyo), 2001, 49(4), 480-483.
[http://dx.doi.org/10.1248/cpb.49.480] [PMID: 11310679]
[44]
Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; de Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; Rodrigues, T. Cytotoxicity of 4-substituted quinoline derivatives: anticancer and antileishmanial potential. Bioorg. Med. Chem., 2020, 28(11), 115511.
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[45]
Jain, M.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Singh, S.; Singh, P.P.; Jain, R. Synthesis, antimalarial, antileishmanial, and antimicrobial activities of some 8-quinolinamine analogues. Bioorg. Med. Chem., 2005, 13(14), 4458-4466.
[http://dx.doi.org/10.1016/j.bmc.2005.04.034] [PMID: 15878667]
[46]
Desrivot, J.; Herrenknecht, C.; Ponchel, G.; Garbi, N.; Prina, E.; Fournet, A.; Bories, C.; Figadère, B.; Hocquemiller, R.; Loiseau, P.M. Antileishmanial 2-substituted quinolines: in vitro behaviour towards biological components. Biomed. Pharmacother., 2007, 61(7), 441-450.
[http://dx.doi.org/10.1016/j.biopha.2007.03.004] [PMID: 17459651]
[47]
Charris, J.E.; Domínguez, J.N.; Gamboa, N.; Rodrigues, J.R.; Angel, J.E. Synthesis and antimalarial activity of E-2-quinolinylbenzocycloalcanones. Eur. J. Med. Chem., 2005, 40(9), 875-881.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.013] [PMID: 15878218]
[48]
Elshemy, H.A.H.; Zaki, M.A.; Mohamed, E.I.; Khan, S.I.; Lamie, P.F. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: synthesis, biological activities and molecular docking. Bioorg. Chem., 2020, 97, 103673.
[http://dx.doi.org/10.1016/j.bioorg.2020.103673] [PMID: 32106041]
[49]
Cunico, W.; Cechinel, C.A.; Bonacorso, H.G.; Martins, M.A.; Zanatta, N.; de Souza, M.V.; Freitas, I.O.; Soares, R.P.; Krettli, A.U. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues. Bioorg. Med. Chem. Lett., 2006, 16(3), 649-653.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.033] [PMID: 16257205]
[50]
Divo, A.A.; Sartorelli, A.C.; Patton, C.L.; Bia, F.J. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother., 1988, 32(8), 1182-1186.
[http://dx.doi.org/10.1128/AAC.32.8.1182] [PMID: 2847647]
[51]
Goerlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno[3,2-C]quinoline-4-yl-amines-synthesis and investigation of activity against malaria. ChemInform, 2006, 61, 901-907.
[http://dx.doi.org/10.1002/chin.200629140]
[52]
Khan, M.O.; Levi, M.S.; Tekwani, B.L.; Wilson, N.H.; Borne, R.F. Synthesis of isoquinuclidine analogs of chloroquine: antimalarial and antileishmanial activity. Bioorg. Med. Chem., 2007, 15(11), 3919-3925.
[http://dx.doi.org/10.1016/j.bmc.2006.11.024] [PMID: 17400457]
[53]
Zhao, Y.L.; Chen, Y.L.; Chang, F.S.; Tzeng, C.C. Synthesis and cytotoxic evaluation of certain 4-anilino-2-phenylquinoline derivatives. Eur. J. Med. Chem., 2005, 40(8), 792-797.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.008] [PMID: 16122581]
[54]
Nan, X.; Li, H.J.; Fang, S.B.; Li, Q.Y.; Wu, Y.C. Structure-based discovery of novel 4-(2-fluorophenoxy)quinoline derivatives as c-Met inhibitors using isocyanide-involved multicomponent reactions. Eur. J. Med. Chem., 2020, 193, 112241.
[http://dx.doi.org/10.1016/j.ejmech.2020.112241] [PMID: 32200199]
[55]
Chen, Y.L.; Huang, C.J.; Huang, Z.Y.; Tseng, C.H.; Chang, F.S.; Yang, S.H.; Lin, S.R.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain 4-anilino-8-methoxy-2-phenylquinoline and 4-anilino-8-hydroxy-2-phenylqui-noline derivatives. Bioorg. Med. Chem., 2006, 14(9), 3098-3105.
[http://dx.doi.org/10.1016/j.bmc.2005.12.017] [PMID: 16412647]
[56]
Vittorio, C.C.; Muglia, J.J. Anticonvulsant hypersensitivity syndrome. Arch. Intern. Med., 1995, 155(21), 2285-2290.
[http://dx.doi.org/10.1001/archinte.1995.00430210033005] [PMID: 7487252]
[57]
Yankin, A.N.; Dmitriev, M.V. Nickel complexes as efficient catalysts in multicomponent synthesis of tetrahydropyridine derivatives. Synth. Commun., 2020, 50(22), 1-9.
[http://dx.doi.org/10.1080/00397911.2020.1803357]
[58]
Xie, Z.F.; Chai, K.Y.; Piao, H.R.; Kwak, K.C.; Quan, Z.S. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quino-lines. Bioorg. Med. Chem. Lett., 2005, 15(21), 4803-4805.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.051] [PMID: 16139502]
[59]
Aubry, A.; Pan, X.S.; Fisher, L.M.; Jarlier, V.; Cambau, E. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother., 2004, 48(4), 1281-1288.
[http://dx.doi.org/10.1128/AAC.48.4.1281-1288.2004] [PMID: 15047530]
[60]
Kerru, N.; Gummidi, L.; Maddila, S.N.; Bhaskaruni, S.V.; Maddila, S.; Jonnalagadda, S.B. Green synthesis and characterisation of novel [1, 3, 4] thiadiazolo/benzo [4, 5] thiazolo [3, 2-a] pyrimidines via multicomponent reaction using vanadium oxide loaded on fluorapatite as a robust and sustainable catalyst. RSC Adv., 2020, 10, 19803-19810.
[http://dx.doi.org/10.1039/D0RA02298E]
[61]
Nayyar, A.; Monga, V.; Malde, A.; Coutinho, E.; Jain, R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg. Med. Chem., 2007, 15(2), 626-640.
[http://dx.doi.org/10.1016/j.bmc.2006.10.064] [PMID: 17107805]
[62]
Zhu, X.Y.; Mardenborough, L.G.; Li, S.; Khan, A.; Zhang, W.; Fan, P.; Jacob, M.; Khan, S.; Walker, L.; Ablordeppey, S.Y. Synthesis and evaluation of isosteres of N-methyl indolo[3,2-b]-quinoline (cryptolepine) as new antiinfective agents. Bioorg. Med. Chem., 2007, 15(2), 686-695.
[http://dx.doi.org/10.1016/j.bmc.2006.10.062] [PMID: 17134906]
[63]
Akpotu, S.O.; Moodley, B.; Vamsi, B.; Ofomaja, A.; Maddila, S.; Jonnalagadda, S.B. Citric acid/MCM-48 catalyzed multicomponent reaction: an efficient method for the novel synthesis of quinoline derivatives. ChemistrySelect, 2019, 4, 7003-7009.
[http://dx.doi.org/10.1002/slct.201900907]
[64]
Bénard, C.; Zouhiri, F.; Normand-Bayle, M.; Danet, M.; Desmaële, D.; Leh, H.; Mouscadet, J.F.; Mbemba, G.; Thomas, C.M.; Bonnenfant, S.; Le Bret, M.; d’Angelo, J. Linker-modified quinoline derivatives targeting HIV-1 integrase: synthesis and biological activity. Bioorg. Med. Chem. Lett., 2004, 14(10), 2473-2476.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.005] [PMID: 15109635]
[65]
Daraie, M.; Heravi, M.M.; Mirzaei, M.; Lotfian, N. Synthesis of Pyrazolo-[4́, 3́: 5, 6] pyrido [2, 3-d] pyrimidine-diones catalyzed by a nano-sized surface-grafted neodymium complex of the tungstosilicate via multicomponent reaction. Appl. Organomet. Chem., 2019, 33, 1-9.
[http://dx.doi.org/10.1002/aoc.5058]
[66]
Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods, 1988, 20(4), 309-321.
[http://dx.doi.org/10.1016/0166-0934(88)90134-6] [PMID: 2460479]
[67]
Mekouar, K.; Mouscadet, J.F.; Desmaële, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d’Angelo, J. Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J. Med. Chem., 1998, 41(15), 2846-2857.
[http://dx.doi.org/10.1021/jm980043e] [PMID: 9667973]
[68]
Garrouste, P.; Pawlowski, M.; Tonnaire, T.; Sicsic, S.; Dumy, P.; de Rosny, E.; Reboud-Ravaux, M.; Fulcrand, P.; Martinez, J. Synthesis and activity of HIV protease inhibitors. Eur. J. Med. Chem., 1998, 33, 423-436.
[http://dx.doi.org/10.1016/S0223-5234(98)80043-3]
[69]
Langley, M.S.; Sorkin, E.M. Nimodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs, 1989, 37(5), 669-699.
[http://dx.doi.org/10.2165/00003495-198937050-00004] [PMID: 2663415]
[70]
Scriabine, A.; van den Kerckhoff, W. Pharmacology of nimodipine. A review. Ann. N. Y. Acad. Sci., 1988, 522(1), 698-706.
[http://dx.doi.org/10.1111/j.1749-6632.1988.tb33415.x] [PMID: 3288065]
[71]
Sun, C.; Wang, J.; Liu, J.; Qiu, L.; Zhang, W.; Zhang, L. Liquid proliposomes of nimodipine drug delivery system: preparation, characterization, and pharmacokinetics. AAPS PharmSciTech, 2013, 14(1), 332-338.
[http://dx.doi.org/10.1208/s12249-013-9924-6] [PMID: 23319300]
[72]
Forman, S.A. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707.
[http://dx.doi.org/10.1097/ALN.0b013e3181ff72b5] [PMID: 21263301]
[73]
den Brinker, M.; Joosten, K.F.; Liem, O.; de Jong, F.H.; Hop, W.C.; Hazelzet, J.A.; van Dijk, M.; Hokken-Koelega, A.C. Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. J. Clin. Endocrinol. Metab., 2005, 90(9), 5110-5117.
[http://dx.doi.org/10.1210/jc.2005-1107] [PMID: 15985474]
[74]
Campagna-Slater, V.; Weaver, D.F. Anaesthetic binding sites for etomidate and propofol on a GABAA receptor model. Neurosci. Lett., 2007, 418(1), 28-33.
[http://dx.doi.org/10.1016/j.neulet.2007.02.091] [PMID: 17412502]
[75]
McGregor, A.M.; Petersen, M.M.; McLachlan, S.M.; Rooke, P.; Smith, B.R.; Hall, R. Carbimazole and the autoimmune response in Graves’ disease. N. Engl. J. Med., 1980, 303(6), 302-307.
[http://dx.doi.org/10.1056/NEJM198008073030603] [PMID: 6247656]
[76]
Van Dijke, C.P.; Heydendael, R.J.; De Kleine, M.J. Methimazole, carbimazole, and congenital skin defects. Ann. Intern. Med., 1987, 106(1), 60-61.
[http://dx.doi.org/10.7326/0003-4819-106-1-60] [PMID: 3789581]
[77]
Hossain, A.O. Carbimazole and its effects on thyroid gland of female rabbits. Indian J. Med. Forensic Med. Toxicol, 2019, 13(3), 305-311.
[http://dx.doi.org/10.5958/0973-9130.2019.00214.7]
[78]
Nicolle, L.E. Pivmecillinam in the treatment of urinary tract infections. J. Antimicrob. Chemother., 2000, 46, 35-39.
[http://dx.doi.org/10.1093/jac/46.suppl_1.35]
[79]
Graninger, W. Pivmecillinam--therapy of choice for lower urinary tract infection. Int. J. Antimicrob. Agents, 2003, 22(Suppl. 2), 73-78.
[http://dx.doi.org/10.1016/S0924-8579(03)00235-8] [PMID: 14527775]
[80]
Roholt, K. Pharmacokinetic studies with mecillinam and pivmecillinam. J. Antimicrob. Chemother., 1977, 3(Suppl. B), 71-81.
[http://dx.doi.org/10.1093/jac/3.suppl_B.71] [PMID: 197054]
[81]
Tahmassebi, D.; Bryson, J.; Binz, S. 1,4-Diazabicyclo[2.2.2]octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo[b]pyran derivatives via Multicomponent reaction in aqueous media. Synth. Commun., 2011, 41, 2701-2711.
[http://dx.doi.org/10.1080/00397911.2010.515345]
[82]
Fotouhi, L.; Heravi, M.; Fatehi, A.; Bakhtiari, K. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives. Tetrahedron Lett., 2007, 48, 5379-5381.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.035]
[83]
Kumar, A.; Maurya, R. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron, 2007, 63, 1946-1952.
[http://dx.doi.org/10.1016/j.tet.2006.12.074]
[84]
Wang, L.; Sheng, J.; Zhang, L.; Han, J.; Fan, Z.; Tian, H.; Qian, C. Facile Yb(Otf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 2005, 61, 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
[85]
Ko, S.; Yao, C. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62, 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[86]
Shaabani, A.; Sarvary, A.; Rezayan, A.; Keshipour, S. Synthesis Of fully substituted pyrano[2,3-c]pyrazole derivatives via a multicomponent reaction of isocyanides. Tetrahedron, 2009, 65, 3492-3495.
[http://dx.doi.org/10.1016/j.tet.2009.02.035]
[87]
Nair, V.; Beneesh, P.; Sreekumar, V.; Bindu, S.; Menon, R.; Deepthi, A. The multicomponent reaction of dimethoxycarbene, dimethyl butynedioate and electrophilic styrenes: an unprecedented synthesis of highly substituted cyclopentenone acetals. Tetrahedron Lett., 2005, 46, 201-203.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.081]
[88]
Yu, L.; Chen, B.; Huang, X. Multicomponent reactions of allenes, diaryl diselenides, and nucleophiles in the presence of iodosobenzene diacetate: direct synthesis of 3-functionalized-2-arylselenyl substituted allyl derivatives. Tetrahedron Lett., 2007, 48, 925-927.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.026]
[89]
Khan, A.; Lal, M.; Khan, M. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2010, 51, 4419-4424.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.069]
[90]
Brahmachari, G.; Das, S. Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Lett., 2012, 53, 1479-1484.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.042]
[91]
Safari, J.; Banitaba, S.; Khalili, S. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J. Mol. Catal. Chem., 2011, 335, 46-50.
[http://dx.doi.org/10.1016/j.molcata.2010.11.012]
[92]
Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett., 2009, 50, 5248-5250.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.018]
[93]
Kazemizadeh, A.; Ramazani, A. Passerini multicomponent reaction of indane-1,2,3-trione: an efficient route for the one-pot synthesis of sterically congested 2,2-disubstituted indane-1,3-dione derivatives. J. Braz. Chem. Soc., 2009, 20, 309-312.
[http://dx.doi.org/10.1590/S0103-50532009000200016]
[94]
Yan, C.G.; Song, X.K.; Wang, Q.F.; Sun, J.; Siemeling, U.; Bruhn, C. One-step synthesis of polysubstituted benzene derivatives by multi-component cyclization of alpha-bromoacetate, malononitrile and aromatic aldehydes. Chem. Commun. (Camb.), 2008, 12(12), 1440-1442.
[http://dx.doi.org/10.1039/b718171j] [PMID: 18338049]
[95]
Gu, Y.; De Sousa, R.; Frapper, G.; Bachmann, C.; Barrault, J.; Jérôme, F. Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives. Green Chem., 2009, 11, 1968-1972.
[http://dx.doi.org/10.1039/b913846c]
[96]
Bremner, W.S.; Organ, M.G. Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J. Comb. Chem., 2007, 9(1), 14-16.
[http://dx.doi.org/10.1021/cc060130p] [PMID: 17206827]
[97]
Shang, Y.; Ju, K.; He, X.; Hu, J.; Yu, S.; Zhang, M.; Liao, K.; Wang, L.; Zhang, P. Copper-catalyzed multicomponent reaction: synthesis of 4-arylsulfonylimino-4,5-dihydrofuran derivatives. J. Org. Chem., 2010, 75(16), 5743-5745.
[http://dx.doi.org/10.1021/jo1010075] [PMID: 20704448]
[98]
Sehlinger, A.; Kreye, O.; Meier, M. Tunable polymers obtained from Passerini multicomponent reaction derived acrylate monomers. Macromol., 2013, 46, 6031-6037.
[http://dx.doi.org/10.1021/ma401125j]
[99]
Nair, V.; Menon, R.S.; Beneesh, P.B.; Sreekumar, V.; Bindu, S. A novel multicomponent reaction involving isocyanide, dimethyl acetylenedicarboxylate (DMAD), and electrophilic styrenes: facile synthesis of highly substituted cyclopentadienes. Org. Lett., 2004, 6(5), 767-769.
[http://dx.doi.org/10.1021/ol036491k] [PMID: 14986970]
[100]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2013, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[101]
Banfi, L.; Basso, A.; Guanti, G.; Riva, R. Application of tandem Ugi reaction/ring-closing metathesis in multicomponent synthesis of unsaturated nine-membered lactams. Tetrahedron Lett., 2003, 44, 7655-7658.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.027]
[102]
Prajapati, D.; Gohain, M.; Thakur, A.J. Regiospecific one-pot synthesis of pyrimido[4,5-d]pyrimidine derivatives in the solid state under microwave irradiations. Bioorg. Med. Chem. Lett., 2006, 16(13), 3537-3540.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.088] [PMID: 16650990]
[103]
Rad-Moghadam, K.; Youseftabar-Miri, L. Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [Bmim]BF4 catalysis. Tetrahedron, 2011, 67, 5693-5699.
[http://dx.doi.org/10.1016/j.tet.2011.05.077]
[104]
Russowsky, D.; Lopes, F.; Silva, V.; Canto, K.; D’Oca, M.; Godoi, M. Multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones promoted by SnCl2.2H2O. J. Braz. Chem. Soc., 2004, 15, 165-169.
[http://dx.doi.org/10.1590/S0103-50532004000200002]
[105]
Xiong, Q.; Dong, S.; Chen, Y.; Liu, X.; Feng, X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat. Commun., 2019, 10(1), 2116.
[http://dx.doi.org/10.1038/s41467-019-09904-5] [PMID: 31073191]
[106]
Alvim, H.G.O.; Pinheiro, D.L.J.; Carvalho-Silva, V.H.; Fioramonte, M.; Gozzo, F.C.; da Silva, W.A.; Amarante, G.W.; Neto, B.A.D. Combined role of the Asymmetric Counteranion-Directed Catalysis (ACDC) and ionic liquid effect for the enantioselective Biginelli multicomponent reaction. J. Org. Chem., 2018, 83(19), 12143-12153.
[http://dx.doi.org/10.1021/acs.joc.8b02101] [PMID: 30160956]
[107]
Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli synthesis of 2-aminodihydropyrimidines under microwave irradiation. Synlett, 2018, 29, 1047-1054.
[http://dx.doi.org/10.1055/s-0036-1591900]
[108]
Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids:[bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and-thiones. Synth., 2011, 2011(14), 2261-2267.
[http://dx.doi.org/10.1055/s-0030-1260067]
[109]
Cepanec, I.; Litvić, M.; Bartolinčić, A.; Lovrić, M. Ferric chloride/tetraethyl orthosilicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction. Tetrahedron, 2005, 61(17), 4275-4280.
[http://dx.doi.org/10.1016/j.tet.2005.02.059]
[110]
Revelant, G.; Dunand, S.; Hesse, S.; Kirsch, G. Microwave-assisted synthesis of 5-substituted 2-aminothiophenes starting from arylacetaldehydes. Synth., 2011, 2011(18), 2935-2940.
[http://dx.doi.org/10.1055/s-0030-1261032]
[111]
Andreana, P.R.; Liu, C.C.; Schreiber, S.L. Stereochemical control of the Passerini reaction. Org. Lett., 2004, 6(23), 4231-4233.
[http://dx.doi.org/10.1021/ol0482893] [PMID: 15524450]
[112]
Andrade, C.K.Z.; Takada, S.C.S.; Suarez, P.A.Z.; Alves, M.B. Revisiting the Passerini reaction under eco-friendly reaction conditions. Synlett, 2006, 2006(10), 1539-1542.
[http://dx.doi.org/10.1055/s-2006-941606]
[113]
Brioche, J.; Masson, G.; Zhu, J. Passerini three-component reaction of alcohols under catalytic aerobic oxidative conditions. Org. Lett., 2010, 12(7), 1432-1435.
[http://dx.doi.org/10.1021/ol100012y] [PMID: 20218637]
[114]
Yu, Y.Q.; Xu, D.Z. A simple and green procedure for the one-pot synthesis of α-aminophosphonates with quaternary ammonium salts as efficient and recyclable reaction media. Synth, 2015, 47(13), 1869-1876.
[http://dx.doi.org/10.1055/s-0034-1380523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy