Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

miRNA 作为前列腺癌发生和内分泌和化学抗性的调节剂

卷 21, 期 4, 2021

发表于: 07 January, 2021

页: [283 - 288] 页: 6

弟呕挨: 10.2174/1568009620666210108103134

价格: $65

摘要

晚期前列腺癌有更多治疗选择,包括新型雄激素合成抑制剂、抗雄激素、化疗和靶向治疗。尽管患者的生存率有所提高,但对去势疗法抵抗的前列腺癌的管理仍然是一个挑战。因此,通过小的非编码 miRNA 调节癌症中的细胞事件是一个特别感兴趣的领域。选定的 miRNA 的过度表达可能导致雄激素独立和前列腺癌进展。 miRNA 也可能被认为是前列腺癌患者的生物标志物。相比之下,前列腺癌中肿瘤抑制性 miRNA 的表达减少会导致增殖增强、细胞凋亡减少、迁移、侵袭和上皮间质转化增加。 miRNA 可能直接参与调节前列腺癌的化学敏感性。选定 miRNA 在化学抗性前列腺癌中的实验性过度表达导致细胞干性和上皮间质转化的抑制。抑制肿瘤的 miRNA 的减少也可能导致信号通路的过度活跃,例如表皮生长因子受体和丝裂原活化蛋白激酶的通路。尽管在前列腺癌中 miRNA 的研究取得了相当大的进展,但可以在开发新的递送方法的基础上提高治疗效果。

关键词: 前列腺癌、miRNA、癌基因、抑癌基因、雄激素调节、化疗。

图形摘要

[1]
Remmers, S.; Roobol, M.J. Personalized strategies in population screening for prostate cancer. Int. J. Cancer, 2020, 147(11), 2977-2987.
[http://dx.doi.org/10.1002/ijc.33045] [PMID: 32394421]
[2]
Uo, T.; Sprenger, C.C.; Plymate, S.R. Androgen receptor signaling and metabolic and cellular plasticity during progression to castration resistant prostate cancer. Front. Oncol., 2020, 10, 580617.
[http://dx.doi.org/10.3389/fonc.2020.580617] [PMID: 33163409]
[3]
Manceau, C.; Mourey, L.; Pouessel, D.; Ploussard, G. Abiraterone acetate in combination with prednisone in the treatment of prostate cancer: safety and efficacy. Expert Rev. Anticancer Ther., 2020, 20(8), 629-638.
[http://dx.doi.org/10.1080/14737140.2020.1785289] [PMID: 32552120]
[4]
Li, T.; Li, D.; Sha, J.; Sun, P.; Huang, Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun., 2009, 383(3), 280-285.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.077] [PMID: 19302977]
[5]
Zhang, H.L.; Yang, L.F.; Zhu, Y.; Yao, X.D.; Zhang, S.L.; Dai, B.; Zhu, Y.P.; Shen, Y.J.; Shi, G.H.; Ye, D.W. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate, 2011, 71(3), 326-331.
[http://dx.doi.org/10.1002/pros.21246] [PMID: 20842666]
[6]
Sun, T.; Wang, Q.; Balk, S.; Brown, M.; Lee, G.S.; Kantoff, P. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res., 2009, 69(8), 3356-3363.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4112] [PMID: 19351832]
[7]
Sun, T.; Wang, X.; He, H.H.; Sweeney, C.J.; Liu, S.X.; Brown, M.; Balk, S.; Lee, G.S.; Kantoff, P.W. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene, 2014, 33(21), 2790-2800.
[http://dx.doi.org/10.1038/onc.2013.230] [PMID: 23770851]
[8]
Rane, J.K.; Scaravilli, M.; Ylipää, A.; Pellacani, D.; Mann, V.M.; Simms, M.S.; Nykter, M.; Collins, A.T.; Visakorpi, T.; Maitland, N.J. MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets. Eur. Urol., 2015, 67(1), 7-10.
[http://dx.doi.org/10.1016/j.eururo.2014.09.005] [PMID: 25234358]
[9]
Cannistraci, A.; Federici, G.; Addario, A.; Di Pace, A.L.; Grassi, L.; Muto, G.; Collura, D.; Signore, M.; De Salvo, L.; Sentinelli, S.; Simone, G.; Costantini, M.; Nanni, S.; Farsetti, A.; Coppola, V.; De Maria, R.; Bonci, D. C-Met/miR-130b axis as novel mechanism and biomarker for castration resistance state acquisition. Oncogene, 2017, 36(26), 3718-3728.
[http://dx.doi.org/10.1038/onc.2016.505] [PMID: 28192399]
[10]
Wang, Y.; Lieberman, R.; Pan, J.; Zhang, Q.; Du, M.; Zhang, P.; Nevalainen, M.; Kohli, M.; Shenoy, N.K.; Meng, H.; You, M.; Wang, L. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol. Cancer, 2016, 15(1), 70.
[http://dx.doi.org/10.1186/s12943-016-0556-9] [PMID: 27832783]
[11]
Armstrong, C.M.; Liu, C.; Lou, W.; Lombard, A.P.; Evans, C.P.; Gao, A.C. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate, 2017, 77(9), 1020-1028.
[http://dx.doi.org/10.1002/pros.23358] [PMID: 28485104]
[12]
Guo, Y.; Cui, J.; Ji, Z.; Cheng, C.; Zhang, K.; Zhang, C.; Chu, M.; Zhao, Q.; Yu, Z.; Zhang, Y.; Fang, Y.X.; Gao, W.Q.; Zhu, H.H. miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene, 2017, 36(45), 6336-6347.
[http://dx.doi.org/10.1038/onc.2017.240] [PMID: 28745315]
[13]
Hoey, C.; Ray, J.; Jeon, J.; Huang, X.; Taeb, S.; Ylanko, J.; Andrews, D.W.; Boutros, P.C.; Liu, S.K. miRNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation. Mol. Oncol., 2018, 12(8), 1324-1341.
[http://dx.doi.org/10.1002/1878-0261.12328] [PMID: 29845714]
[14]
Fujita, Y.; Kojima, K.; Ohhashi, R.; Hamada, N.; Nozawa, Y.; Kitamoto, A.; Sato, A.; Kondo, S.; Kojima, T.; Deguchi, T.; Ito, M. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem., 2010, 285(25), 19076-19084.
[http://dx.doi.org/10.1074/jbc.M109.079525] [PMID: 20406806]
[15]
Kojima, K.; Fujita, Y.; Nozawa, Y.; Deguchi, T.; Ito, M. MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate, 2010, 70(14), 1501-1512.
[http://dx.doi.org/10.1002/pros.21185] [PMID: 20687223]
[16]
Sikand, K.; Slaibi, J.E.; Singh, R.; Slane, S.D.; Shukla, G.C. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int. J. Cancer, 2011, 129(4), 810-819.
[http://dx.doi.org/10.1002/ijc.25753] [PMID: 21710544]
[17]
Nadiminty, N.; Tummala, R.; Lou, W.; Zhu, Y.; Zhang, J.; Chen, X.; eVere White, R.W.; Kung, H.J.; Evans, C.P.; Gao, A.C. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J. Biol. Chem., 2012, 287(2), 1527-1537.
[http://dx.doi.org/10.1074/jbc.M111.278705] [PMID: 22128178]
[18]
Albino, D.; Civenni, G.; Dallavalle, C.; Roos, M.; Jahns, H.; Curti, L.; Rossi, S.; Pinton, S.; D’Ambrosio, G.; Sessa, F.; Hall, J.; Catapano, C.V.; Carbone, G.M. Activation of the Lin28/let-7 axis by loss of ESE3/EHF promotes a tumorigenic and stem-like phenotype in prostate cancer. Cancer Res., 2016, 76(12), 3629-3643.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2665] [PMID: 27197175]
[19]
Fletcher, C.E.; Sulpice, E.; Combe, S.; Shibakawa, A.; Leach, D.A.; Hamilton, M.P.; Chrysostomou, S.L.; Sharp, A.; Welti, J.; Yuan, W.; Dart, D.A.; Knight, E.; Ning, J.; Francis, J.C.; Kounatidou, E.E.; Gaughan, L.; Swain, A.; Lupold, S.E.; de Bono, J.S.; McGuire, S.E.; Gidrol, X.; Bevan, C.L. Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene, 2019, 38(28), 5700-5724.
[http://dx.doi.org/10.1038/s41388-019-0823-5] [PMID: 31043708]
[20]
Eedunuri, V.K.; Rajapakshe, K.; Fiskus, W.; Geng, C.; Chew, S.A.; Foley, C.; Shah, S.S.; Shou, J.; Mohamed, J.S.; Coarfa, C.; O’Malley, B.W.; Mitsiades, N. miR-137 targets p160 steroid receptor coctivators SRC1, SRC2, and SRC3 and inhibits cell proliferation. Mol. Endocrinol., 2015, 29(8), 1170-1183.
[http://dx.doi.org/10.1210/me.2015-1080] [PMID: 26066330]
[21]
Arora, V.K.; Schenkein, E.; Murali, R.; Subudhi, S.K.; Wongvipat, J.; Balbas, M.D.; Shah, N.; Cai, L.; Efstathiou, E.; Logothetis, C.; Zheng, D.; Sawyers, C.L. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell, 2013, 155(6), 1309-1322.
[http://dx.doi.org/10.1016/j.cell.2013.11.012] [PMID: 24315100]
[22]
Puhr, M.; Hoefer, J.; Eigentler, A.; Ploner, C.; Handle, F.; Schaefer, G.; Kroon, J.; Leo, A.; Heidegger, I.; Eder, I.; Culig, Z.; Van der Pluijm, G.; Klocker, H. Glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin. Cancer Res., 2018, 24(4), 927-938.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0989] [PMID: 29158269]
[23]
Rane, J.K.; Erb, H.H.; Nappo, G.; Mann, V.M.; Simms, M.S.; Collins, A.T.; Visakorpi, T.; Maitland, N.J. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget, 2016, 7(32), 51965-51980.
[http://dx.doi.org/10.18632/oncotarget.10207] [PMID: 27340920]
[24]
Xu, B.; Wang, N.; Wang, X.; Tong, N.; Shao, N.; Tao, J.; Li, P.; Niu, X.; Feng, N.; Zhang, L.; Hua, L.; Wang, Z.; Chen, M. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate, 2012, 72(11), 1171-1178.
[http://dx.doi.org/10.1002/pros.22466] [PMID: 22161865]
[25]
Su, S.F.; Chang, Y.W.; Andreu-Vieyra, C.; Fang, J.Y.; Yang, Z.; Han, B.; Lee, A.S.; Liang, G. miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene, 2013, 32(39), 4694-4701.
[http://dx.doi.org/10.1038/onc.2012.483] [PMID: 23085757]
[26]
Kao, C-J.; Martiniez, A.; Shi, X-B.; Yang, J.; Evans, C.P.; Dobi, A.; deVere White, R.W.; Kung, H.J. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene, 2014, 33(19), 2495-2503.
[http://dx.doi.org/10.1038/onc.2013.200] [PMID: 23728339]
[27]
Boll, K.; Reiche, K.; Kasack, K.; Mörbt, N.; Kretzschmar, A.K.; Tomm, J.M.; Verhaegh, G.; Schalken, J.; von Bergen, M.; Horn, F.; Hackermüller, J. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene, 2013, 32(3), 277-285.
[http://dx.doi.org/10.1038/onc.2012.55] [PMID: 22391564]
[28]
Puhr, M.; Hoefer, J.; Schäfer, G.; Erb, H.H.; Oh, S.J.; Klocker, H.; Heidegger, I.; Neuwirt, H.; Culig, Z. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol., 2012, 181(6), 2188-2201.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.011] [PMID: 23041061]
[29]
Fujita, Y.; Kojima, T.; Kawakami, K.; Mizutani, K.; Kato, T.; Deguchi, T.; Ito, M. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate, 2015, 75(14), 1568-1578.
[http://dx.doi.org/10.1002/pros.23031] [PMID: 26074357]
[30]
Sossey-Alaoui, K.; Plow, E.F. miR-138-mediated regulation of KINDLIN-2 expression modulates sensitivity to chemotherapeutics. Mol. Cancer Res., 2016, 14(2), 228-238.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0299] [PMID: 26474967]
[31]
Wen, D.; Peng, Y.; Lin, F.; Singh, R.K.; Mahato, R.I. Micellar delivery of miR-34a modulator rubone and paclitaxel in resistant prostate cancer. Cancer Res., 2017, 77(12), 3244-3254.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2355] [PMID: 28428276]
[32]
Du, H.; Wang, X.; Dong, R.; Hu, D.; Xiong, Y. miR-601 inhibits proliferation, migration and invasion of prostate cancer stem cells by targeting KRT5 to inactivate the Wnt signaling pathway. Int. J. Clin. Exp. Pathol., 2019, 12(12), 4361-4379.
[PMID: 31933840]
[33]
Che, Y.; Shi, X.; Shi, Y.; Jiang, X.; Ai, Q.; Shi, Y.; Gong, F.; Jiang, W. Exosomes derived from miR-143-overexpressing MSCs inhibit cell migration and invasion in human prostate cancer by downregulating TFF3. Mol. Ther. Nucleic Acids, 2019, 18, 232-244.
[http://dx.doi.org/10.1016/j.omtn.2019.08.010] [PMID: 31563120]
[34]
Guan, B.; Mu, L.; Zhang, L.; Wang, K.; Tian, J.; Xu, S.; Wang, X.; He, D.; Du, Y. MicroRNA-218 inhibits the migration, epithelial-mesenchymal transition and cancer stem cell properties of prostate cancer cells. Oncol. Lett., 2018, 16(2), 1821-1826.
[http://dx.doi.org/10.3892/ol.2018.8877] [PMID: 30008871]
[35]
Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene, 2017, 631, 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy