Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Nanotechnology

Sodium Alginate Modified Hydroxyapatite Nanotubes as a Novel Ecofriendly Additive for Preparation of Polyethersulfone Hybrid Ultrafiltration Membranes

Author(s): Yongfeng Mu, Jun Liu, Han Feng and Guibin Wang*

Volume 1, Issue 2, 2021

Published on: 04 January, 2021

Page: [260 - 271] Pages: 12

DOI: 10.2174/2210298101999210104224159

Abstract

Background: Hydrophilic nanomaterials have been extensively exploited their applications in the field of hybrid water treatment membranes. However, some of the modification process to nanomaterials may be complicated, and the nonselective pores caused by the poor compatibility between nanoparticles and the polymer matrix impair the rejection efficiency for ultrafiltration application. Thus, it is highly desirable to develop a kind of effective nano dopant with favorable compatibility by a facile way for the preparation of ultrafiltration membranes.

Objective: The aim of this study was to fabricate a novel environmentally friendly and low-cost nano additive with good compatibility for the preparation of ultrafiltration membranes.

Methods: Hydroxyapatite nanotubes were prepared via a biomimetic process, and then SA was coated on the surface of hydroxyapatite nanotubes. Subsequently, a series of hybrid ultrafiltration membranes were fabricated with different amounts of modified HANTs and polyethersulfone (PES).

Results: Exhaustive characterizations were conducted for the membranes, including hydrophilicity, porosity, mean pore size, morphologies and UF performance test. The highest water flux of the hybrid membranes displayed 1.9 times that of the original PES membrane. Meanwhile, the hybrid membrane with 0.2% hydroxyapatite nanotubes obtained elevated antifouling ability, achieving a flux recovery ratio of 85.6%.

Conclusion: The facile coating of SA endowed the nanotubes improved hydrophilicity and meanwhile enhanced the compatibility between PES and HANTs. This work provides a facile way in the construction of green nanofillers and promising results in the preparation of hybrid UF membranes.

Keywords: Membrane, ultrafiltration, hydroxyapatite nanotubes, polyethersulfone, antifouling, water treatment.

Graphical Abstract

[1]
Eliasson, J. The rising pressure of global water shortages. Nature, 2015, 517(7532), 6-6.
[http://dx.doi.org/10.1038/517006a] [PMID: 25557695]
[2]
Manawi, Y.; Kochkodan, V.; Hussein, M.A.; Khaleel, M.A.; Khraisheh, M.; Hilal, N. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 2016, 391, 69-88.
[http://dx.doi.org/10.1016/j.desal.2016.02.015]
[3]
Han, S.J.; Mao, L.L.; Wu, T.; Wang, H.Z. Homogeneous polyethersulfone hybrid membranes prepared with in-suit synthesized magnesium hydroxide nanoparticles by phase inversion method. J. Membr. Sci., 2016, 516, 47-55.
[http://dx.doi.org/10.1016/j.memsci.2016.05.040]
[4]
Liu, Z.X.; Mi, Z.M.; Jin, S.Z.; Wang, C.B.; Wang, D.M.; Zhao, X.G.; Zhou, H.W.; Chen, C.H. The influence of sulfonated hyperbranched polyethersulfone-modified halloysite nanotubes on the compatibility and water separation performance of polyethersulfone hybrid ultrafiltration membranes. J. Membr. Sci., 2018, 557, 13-23.
[http://dx.doi.org/10.1016/j.memsci.2018.04.019]
[5]
Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci., 2014, 453, 292-301.
[http://dx.doi.org/10.1016/j.memsci.2013.10.070]
[6]
Li, X.; Fang, X.F.; Pang, R.Z.; Li, J.S.; Sun, X.Y.; Shen, J.Y.; Han, W.Q.; Wang, L.J. Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J. Membr. Sci., 2014, 467, 226-235.
[http://dx.doi.org/10.1016/j.memsci.2014.05.036]
[7]
Ma, J.; Guo, X.Y.; Ying, Y.P.; Liu, D.H.; Zhong, C.L. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J., 2017, 313, 890-898.
[http://dx.doi.org/10.1016/j.cej.2016.10.127]
[8]
Gohari, R.J.; Lau, W.J.; Matsuura, T.; Ismail, A.F. Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Separ. Purif. Tech., 2013, 118, 64-72.
[http://dx.doi.org/10.1016/j.seppur.2013.06.043]
[9]
Zhang, L.; Cui, Z.Y.; Hu, M.Y.; Mo, Y.H.; Li, S.W.; He, B.Q.; Li, J.X. Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation. J. Membr. Sci., 2017, 540, 136-145.
[http://dx.doi.org/10.1016/j.memsci.2017.06.044]
[10]
Lee, J.; Ye, Y.; Ward, A.J.; Zhou, C.F.; Chen, V.; Minett, A.I.; Lee, S.; Liu, Z.W.; Chae, S.R.; Shi, J. High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Separ. Purif. Tech., 2016, 163, 109-119.
[http://dx.doi.org/10.1016/j.seppur.2016.02.032]
[11]
Singh, R.; Yadav, V.S.K.; Purkait, M.K. Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal. Separ. Purif. Tech., 2019, 212, 191-204.
[http://dx.doi.org/10.1016/j.seppur.2018.11.029]
[12]
Wu, H.Q.; Liu, Y.J.; Mao, L.; Jiang, C.H.; Ang, J.M.; Lu, X.H. Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection. J. Membr. Sci., 2017, 532, 20-29.
[http://dx.doi.org/10.1016/j.memsci.2017.03.010]
[13]
Zhao, Y.; Lu, J.; Liu, X.; Wang, Y.; Lin, J.; Peng, N.; Li, J.; Zhao, F. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J. Colloid Interface Sci., 2016, 480, 1-8.
[http://dx.doi.org/10.1016/j.jcis.2016.06.075] [PMID: 27399613]
[14]
Yu, L.; Wang, H.X.; Zhang, Y.T.; Zhang, B.; Liu, J.D. Recent advances in halloysite nanotube derived composites for water treatment. Environ. Sci. Nano, 2016, 3(1), 28-44.
[http://dx.doi.org/10.1039/C5EN00149H]
[15]
Zeng, G.Y.; He, Y.; Yu, Z.X.; Zhan, Y.Q.; Ma, L.; Zhang, L. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites. Appl. Surf. Sci., 2016, 371, 624-632.
[http://dx.doi.org/10.1016/j.apsusc.2016.02.211]
[16]
Sun, H.; Tang, B.; Wu, P. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Appl. Mater. Interfaces, 2017, 9(25), 21473-21484.
[http://dx.doi.org/10.1021/acsami.7b05504] [PMID: 28594542]
[17]
Xu, L.; Xu, J.; Shan, B.T.; Wang, X.L.; Gao, C.J. TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci., 2017, 526, 355-366.
[http://dx.doi.org/10.1016/j.memsci.2016.12.039]
[18]
Li, Y.; Li, S.; Zhang, K.S. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci., 2017, 537, 42-53.
[http://dx.doi.org/10.1016/j.memsci.2017.05.026]
[19]
Niamsap, T.; Lam, N.T.; Sukyai, P. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym., 2019, 205, 159-166.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.034] [PMID: 30446091]
[20]
Choudhury, P.R.; Majumdar, S.; Sarkar, S.; Kundu, B.; Sahoo, G.C. Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: Bench scale study. Chem. Eng. J., 2019, 355, 510-519.
[http://dx.doi.org/10.1016/j.cej.2018.07.155]
[21]
Hokkanen, S.; Repo, E.; Westholm, L.J.; Lou, S.; Sainio, T.; Sillanpaa, M. Adsorption of Ni2+, Cd2+, PO43- and NO3- from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chem. Eng. J., 2014, 252, 64-74.
[http://dx.doi.org/10.1016/j.cej.2014.04.101]
[22]
Chen, F.F.; Zhu, Y.J.; Xiong, Z.C.; Sun, T.W.; Shen, Y.Q. Highly flexible superhydrophobic and fire-resistant layered inorganic paper. ACS Appl. Mater. Interfaces, 2016, 8(50), 34715-34724.
[http://dx.doi.org/10.1021/acsami.6b12838] [PMID: 27998140]
[23]
Li, H.; Wu, D.; Wu, J.; Dong, L.Y.; Zhu, Y.J.; Hu, X. Flexible, High-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater., 2017, 29(44)
[http://dx.doi.org/10.1002/adma.201703548] [PMID: 29044775]
[24]
Shi, C.; Lv, C.; Wu, L.; Hou, X. Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J. Hazard. Mater., 2017, 338, 241-249.
[http://dx.doi.org/10.1016/j.jhazmat.2017.05.022] [PMID: 28570878]
[25]
He, J.; Zhang, K.; Wu, S.; Cai, X.; Chen, K.; Li, Y.; Sun, B.; Jia, Y.; Meng, F.; Jin, Z.; Kong, L.; Liu, J. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J. Hazard. Mater., 2016, 303, 119-130.
[http://dx.doi.org/10.1016/j.jhazmat.2015.10.028] [PMID: 26530888]
[26]
Wang, W.Y.; Zhu, L.Y.; Shan, B.J.; Xie, C.C.; Liu, C.N.; Cui, F.Y.; Li, G.F. Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci., 2018, 548, 459-469.
[http://dx.doi.org/10.1016/j.memsci.2017.11.046]
[27]
Zhang, S.M.; Wang, R.S.; Zhang, S.F.; Li, G.L.; Zhang, Y.Q. Development of phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride (PVDF) composite membranes for wastewater treatment. Chem. Eng. J., 2013, 230, 260-271.
[http://dx.doi.org/10.1016/j.cej.2013.06.098]
[28]
Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Tan, Y.H.; Ng, B.C.; Ismail, A.F. Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent. Chem. Eng. J., 2017, 316, 101-110.
[http://dx.doi.org/10.1016/j.cej.2017.01.088]
[29]
Guo, X.; Yu, L.; Chen, L.; Zhang, H.; Peng, L.; Guo, X.; Ding, W. Organoamine-assisted biomimetic synthesis of faceted hexagonal hydroxyapatite nanotubes with prominent stimulation activity for osteoblast proliferation. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(13), 1760-1763.
[http://dx.doi.org/10.1039/C3TB21652G] [PMID: 32261512]
[30]
Zhu, K.; Mu, Y.F.; Zhang, M.H.; Liu, Y.; Na, R.Q.; Xu, W.H.; Wang, G.B. Mixed matrix membranes decorated with in situ self-assembled polymeric nanoparticles driven by electrostatic interaction. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(17), 7859-7870.
[http://dx.doi.org/10.1039/C8TA00317C]
[31]
Zhu, K.; Zhang, S.L.; Luan, J.S.; Mu, Y.F.; Du, Y.L.; Wang, G.B. Fabrication of ultrafiltration membranes with enhanced antifouling capability and stable mechanical properties via the strategies of blending and crosslinking. J. Membr. Sci., 2017, 539, 116-127.
[http://dx.doi.org/10.1016/j.memsci.2017.05.061]
[32]
Mu, Y.F.; Zhu, K.; Luan, J.S.; Zhang, S.L.; Zhang, C.Y.; Na, R.Q.; Yang, Y.C.; Zhang, X.; Wang, G.B. Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. J. Membr. Sci., 2019, 577, 274-284.
[http://dx.doi.org/10.1016/j.memsci.2019.01.043]
[33]
Zhu, J.; Zheng, J.; Liu, C.; Zhang, S. Ionic complexing induced fabrication of highly permeable and selective polyacrylic acid complexed poly (arylene ether sulfone) nanofiltration membranes for water purification. J. Membr. Sci., 2016, 520, 130-138.
[http://dx.doi.org/10.1016/j.memsci.2016.07.059]
[34]
Liu, C.; Mao, H.; Zheng, J.; Zhang, S. Tight ultrafiltration membrane: Preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone)s (PAEK-COOH) tight ultrafiltration membrane for dye removal. J. Membr. Sci., 2017, 530, 1-10.
[http://dx.doi.org/10.1016/j.memsci.2017.02.005]
[35]
Kawasaki, T.; Niikura, M.; Kobayashi, Y. Fundamental study of hydroxyapatite high-performance liquid chromatography: III. Direct experimental confirmation of the existence of two types of adsorbing surface on the hydroxyapatite crystal. J. Chromatogr. A, 1990, 515, 125-148.
[http://dx.doi.org/10.1016/S0021-9673(01)89307-9]
[36]
Pramanik, N.; Imae, T. Fabrication and characterization of dendrimer-functionalized mesoporous hydroxyapatite. Langmuir, 2012, 28(39), 14018-14027.
[http://dx.doi.org/10.1021/la302066e] [PMID: 22946771]
[37]
Zhao, K.; Zhang, X.; Wei, J.; Li, J.; Zhou, X.; Liu, D.; Liu, Z.; Li, J. Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance. J. Membr. Sci., 2015, 492, 536-546.
[http://dx.doi.org/10.1016/j.memsci.2015.05.075]
[38]
Jiang, Y.Y.; Zhu, Y.J.; Li, H.; Zhang, Y.G.; Shen, Y.Q.; Sun, T.W.; Chen, F. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J. Colloid Interface Sci., 2017, 497, 266-275.
[http://dx.doi.org/10.1016/j.jcis.2017.03.032] [PMID: 28288372]
[39]
Xin, Q.; Li, Z.; Li, C.; Wang, S.; Jiang, Z.; Wu, H.; Zhang, Y.; Yang, J.; Cao, X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(12), 6629-6641.
[http://dx.doi.org/10.1039/C5TA00506J]
[40]
Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separ. Purif. Tech., 2019, 209, 307-337.
[http://dx.doi.org/10.1016/j.seppur.2018.07.043]
[41]
Abdel-Karim, A.; Leaper, S.; Alberto, M.; Vijayaraghavan, A.; Fan, X.L.; Holmes, S.M.; Souaya, E.R.; Badawy, M.I.; Gorgojo, P. High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chem. Eng. J., 2018, 334, 789-799.
[http://dx.doi.org/10.1016/j.cej.2017.10.069]
[42]
Sotto, A.; Orcajo, G.; Arsuaga, J.M.; Calleja, G.; Landaburu-Aguirre, J. Preparation and characterization of MOF-PES ultrafiltration membranes. J. Appl. Polym. Sci., 2015, 132(21)
[http://dx.doi.org/10.1002/app.41633]
[43]
Zhao, J.J.; Yang, Y.; Li, C.; Hou, L.A. Fabrication of GO modified PVDF membrane for dissolved organic matter removal: Removal mechanism and antifouling property. Separ. Purif. Tech., 2019, 209, 482-490.
[http://dx.doi.org/10.1016/j.seppur.2018.07.050]
[44]
Lin, Z.; Hu, C.; Wu, X.D.; Zhong, W.Z.; Chen, M.M.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. J. Membr. Sci., 2018, 554, 125-133.
[http://dx.doi.org/10.1016/j.memsci.2018.02.065]
[45]
Mahlangu, O.T.; Nackaerts, R.; Thwala, J.M.; Mamba, B.B.; Verliefde, A.R.D. Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation. J. Membr. Sci., 2017, 524, 43-55.
[http://dx.doi.org/10.1016/j.memsci.2016.11.018]
[46]
Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 2016, 393, 65-78.
[http://dx.doi.org/10.1016/j.desal.2015.07.003]
[47]
Chang, X.J.; Wang, Z.X.; Quan, S.; Xu, Y.C.; Jiang, Z.X.; Shao, L. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl. Surf. Sci., 2014, 316, 537-548.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.202]
[48]
Yu, L.; Zhang, Y.T.; Zhang, B.; Liu, J.D.; Zhang, H.Q.; Song, C.H. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci., 2013, 447, 452-462.
[http://dx.doi.org/10.1016/j.memsci.2013.07.042]
[49]
Zhou, D.; Rong, G.L.; Huang, S.; Pang, J.H. Preparation of a novel sulfonated polyphenlene sulfone with flexible side chain for ultrafiltration membrane application. Separ. Purif. Tech., 2019, 210, 817-823.
[http://dx.doi.org/10.1016/j.seppur.2018.08.075]
[50]
Sianipar, M.; Kim, S.H.; Min, C.; Tijing, L.D.; Shon, H.K. Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J. Ind. Eng. Chem., 2016, 34, 364-373.
[http://dx.doi.org/10.1016/j.jiec.2015.11.025]
[51]
Wu, H.Q.; Tang, B.B.; Wu, P.Y. Development of novel SiO2-GO nanohybrid/polysulfone membrane with enhanced performance. J. Membr. Sci., 2014, 451, 94-102.
[http://dx.doi.org/10.1016/j.memsci.2013.09.018]
[52]
Zhang, J.G.; Xu, Z.W.; Mai, W.; Min, C.Y.; Zhou, B.M.; Shan, M.J.; Li, Y.L.; Yang, C.Y.; Wang, Z.; Qian, X.M. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(9), 3101-3111.
[http://dx.doi.org/10.1039/c2ta01415g]
[53]
Ayyaru, S.; Ahn, Y-H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J. Membr. Sci., 2017, 525, 210-219.
[http://dx.doi.org/10.1016/j.memsci.2016.10.048]

© 2025 Bentham Science Publishers | Privacy Policy