[1]
M.T. Ghannam, N. Esmail. Flow enhancement of medium-viscosity crude oil. Pet Sci Technol 2006; 24(8): 985-99.
[2]
M. A. Saad, M. Kamil, N. Abdurahman, R. M. Yunus, O. I. Awad. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions Processes 2019; 7(7): 470, 2019.
[3]
H. Nour, M. Yunus, Z. Jemaat. Study on demulsification of water-in-oil emulsions via microwave heating technology. J App Sci 2006; 6: 2060-6.
[4]
M. Saad, N. Abdurahman, R.M. Yunus and, H. Ali. An overview of recent technique and the affecting parameters in the demulsification of crude oil emulsions. in IOP Conference Series Materials Science and Engineering 2020; vol. 991(no. 1)p 012105 [IOP Publishing.
[5]
A.M. Al-Sabagh, N.G. Kandile, R.A. El-Ghazawy, M.R.N. El-Din. Synthesis and evaluation of some new demulsifiers based on bisphenols for treating water-in-crude oil emulsions. Egypt J Pet 2011; 2(2): 67-77.
[6]
G. Cendejas, F. Arreguín, L.V. Castro, E.A. Flores, F. Vazquez. Demulsifying super-heavy crude oil with bifunctionalized block copolymers. Fuel 2013; 103: 356-63.
[7]
C. Wang, S. Fang, M. Duan, Y. Xiong, Y. Ma, W. Chen. Synthesis and evaluation of demulsifiers with polyethyleneimine as accepter for treating crude oil emulsions. Polym Adv Technol 2015; 26(5): 442-8.
[8]
S. Abed, N. Abdurahman, R. Yunus, H. Abdulbari, S. Akbari. Oil emulsions and the different recent demulsification techniques in the petroleum industry-A review in IOP Conf Ser. Mater Sci Eng 2019; 702(1)012060
[9]
M. Saad, N. Abdurahman, R.M. Yunus, M. Kamil and, O.I. Awad. An Overview of Reforming Technologies and the Effect of Parameters on the Catalytic Performance of Mesoporous Silica/Alumina Supported Nickel Catalysts for Syngas Production by Methane Dry Reforming. Recent Innovations in Chemical Engineering [Formerly Recent Patents on Chemical Engineering vol. 13(no. 4): pp 303-322.2020;
[10]
D. Langevin, S. Poteau, I. Hénaut, J. Argillier. Crude oil emulsion properties and their application to heavy oil transportation. Oil Gas Sci Technol 2004; 59(5): 511-21.2004;
[11]
S. Keera, S. El Sabagh, A. Taman. Castor oil biodiesel production and optimization. Egypt J Pet 2018; 27(4): 979-84.
[12]
M. Saad, N. Abdurahman, R.M. Yunus and, H. Ali. Surfactant for petroleum demulsification, structure, classification, and properties. A review. in IOP Conference Series Materials Science and Engineering 2020; vol. 991(no. 1 p)012115 [IOP Publishing.
[13]
D. Ghosal, S. Pal. Non-conventional desulfurization of fuels and biofuels: A review. Rec Innov Chem Eng 2020; 13(2): 123-37.
[14]
A.H. Nour, A.I. Anisa, A.H. Nour. Demulsification of water-in-oil (W/O) emulsion via microwave irradiation: An optimization. Sci Res Essays 2012; 7(2): 231-43.
[15]
S.B. Zhang, X.J. Liu, Q.Y. Lu, Z.W. Wang, X. Zhao. Enzymatic demulsification of the oil‐rich emulsion obtained by aqueous extraction of peanut seeds. J Am Oil Chemists’. Soc 2013; 90(8): 1261-70.
[16]
J. Liu, J. Xue, D. Yuan, X. Wei, H. Su. Surfactant washing to remove heavy metal pollution in soil: A review. Recent Innov Chem Eng 2020; 13(1): 3-16.
[17]
J. Liu, H. Wang, X. Li, W. Jia, Y. Zhao, S. Ren. Recyclable magnetic graphene oxide for rapid and efficient demulsification of crude oil-in-water emulsion. Fuel 2017; 189: 79-87.
[18]
N. Hazrati, A.A. Miran Beigi, M. Abdouss. Demulsification of water in crude oil emulsion using long chain imidazolium ionic liquids and optimization of parameters. Fuel 2018; 229: 126-34.
[19]
N. Ali, Zhang B, Zhang H, et al. Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; Synthesis and its applications for heavy crude oil/water separation. Colloids Surf A Physicochem Eng Asp 2015; 472: 38-49.
[20]
A.M. Al-Sabagh, N.M. Nasser, E.A. Khamis, M. Abd-El-Raouf. Resolution of water in crude oil emulsion by some novel aromatic amine polyesters. Egypt J Pet 2015; 24(3): 363-74.
[21]
A. Khajehesamedini, A. Sadatshojaie, P. Parvasi, M. Reza Rahimpour, M. Mehdi Naserimojarad. Experimental and theoretical study of crude oil pretreatment using low-frequency ultrasonic waves. Ultrason Sonochem 2018; 48: 383-95.
[22]
Y. Li, H. Gong, M. Dong, Y. Liu. Separation of water-in-heavy oil emulsions using porous particles in a coalescence column. Sep Purif Technol 2016; 166: 148-56.
[23]
Z. Wang, S. Gu, L. Zhou. Research on the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic wave and audible sound wave at high temperatures Ultrason Sonochem 2018; 40(Pt A): 1014-20.
[24]
L. Zhang, H. Ying, S. Yan, N. Zhan, Y. Guo, W. Fang. Hyperbranched poly(amido amine) as an effective demulsifier for oil-in-water emulsions of microdroplets. Fuel 2018; 211: 197-205.
[25]
J.O. Coutinho, M.P.S. Silva, P.M. Moares, et al. Demulsifying properties of extracellular products and cells of Pseudomonas aeruginosa MSJ isolated from petroleum-contaminated soil. Bioresour Technol 2013; 128: 646-54.
[26]
R. Martínez-Palou, J. Reyes, R. Ceron-Camacho, et al. Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions—A proposed strategy for transporting extra heavy crude oils. Chem Eng Process: Proc Intensificat 2015; 98: 112-22.
[27]
X. Long, N. He, Y. He, J. Jiang, T. Wu. Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresour Technol 2017; 241: 200-6.
[28]
Y.L. Chen, S. Chen, J.M. Tsai, et al. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method. J Env Sci Health Part A 2012; 47(1): 101-8.
[29]
M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008; 76(5): 965-77.
[30]
E. González-Menéndez, F.N. Arroyo-López, Martínez B, García P, Garrido-Fernández A, Rodríguez A. Optimizing propagation of Staphylococcus aureus infecting bacteriophage vB_sauM-phiIPLA-RODI on Staphylococcus xylosus using response surface methodology. Viruses 2018; 10(4): 153.
[31]
A. Hafizi, A. Ahmadpour, M. Heravi, F. Bamoharram and, M. Khosroshahi. Alkylation of benzene with 1-decene using silica supported preyssler heteropoly acid: Statistical design with response surface methodology. Chinese J Catal 2012; 33(2-3): 494-501.
[32]
A-A. Salarian, Hami Z, Mirzaei N, et al. N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. J Mol Liquids 2016; 220: 183-91.
[33]
N. Zaki, M. Abdel-Raouf, A-A. Abdel-Azim. Propylene oxide-ethylene oxide block copolymers as demulsifiers for water-in-oil emulsions, II. Effects of temperature, salinity, pH-value, and solvents on the demulsification efficiency. Monatsh Chem 1996; 127(12): 1239-45.
[34]
M. Fortuny, C.B. Oliveira, R.L. Melo, M. Nele, R.C. Coutinho, A.F. Santos. Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions. Energy Fuels 2007; 21(3): 1358-64.
[35]
R. Zolfaghari, A. Fakhru’l-Razi, L.C. Abdullah, S.S.E.H. Elnashaie, A. Pendashteh. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 2016; 170: 377-407.
[36]
S.L. Kokal. Crude oil emulsions: A state-of-the-art review. SPE Production & facilities 2005; 20(1): 5-13.
[37]
B. Xu, W. Kang, X. Wang, L. Meng. Influence of water content and temperature on stability of W/O crude oil emulsion. Pet Sci Technol 2019; 31(10): 1099-108.
[38]
Z Lu, J. Jiang, M. Ren, J. Xu J, Da F, Cao . The study on removing the salts in crude oil via ethylene glycol extraction. Energy Fuels 2014; 29(1): 355-60.