Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

An Insight into Synthesis and Anticancer Potential of Thiazole and 4-thiazolidinone Containing Motifs

Author(s): Devidas S. Bhagat*, Pooja A. Chawla, Wasudeo B. Gurnule, Sampada K. Shejul and Gurvinder S. Bumbrah

Volume 25, Issue 7, 2021

Published on: 01 January, 2021

Page: [819 - 841] Pages: 23

DOI: 10.2174/1385272825999210101234704

Price: $65

Abstract

Over the years, the branch of oncology has reached a mature stage, and substantial development and advancement have been achieved in this dimension of medical science. The synthesis and isolation of numerous novel anticancer agents of natural and synthetic origins have been reported. Thiazole and 4-thiazolidinone containing heterocyclic compounds, having a broad spectrum of pharmaceutical activities, represent a significant class of medicinal chemistry. Thiazole and 4-thiazolidinone are five-membered unique heterocyclic motifs containing S and N atoms as an essential core scaffold and have commendable medicinal significance. Thiazoles and 4-thiazolidinones containing heterocyclic compounds are used as building blocks for the next generation of pharmaceuticals. Thiazole precursors have been frequently used due to their capabilities to bind to numerous cancer-specific protein targets. Suitably, thiazole motifs have a biological suit via inhibition of different signaling pathways involved in cancer causes. The scientific community has always tried to synthesize novel thiazole-based heterocycles by carrying out different replacements of functional groups or skeleton around thiazole moiety. Herein, we report the current trend of research and development in anticancer activities of thiazoles and 4-thiazolidinones containing scaffolds. In the current study, we have also highlighted some other significant biological properties of thiazole, novel protocols of synthesis for the synthesis of the new candidates, along with a significant broad spectrum of the anticancer activities of thiazole containing scaffolds. This study facilitates the development of novel thiazole and 4-thiazolidinone containing candidates with potent, efficient anticancer activity and less cytotoxic property.

Keywords: Heterocycle, thiazole, 4-thiazolidinone, synthesis, isolation, anti-cancer activity, oncology.

Graphical Abstract

[1]
Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol., 2002, 3(5), 349-363.
[http://dx.doi.org/10.1038/nrm809] [PMID: 11988769]
[2]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[3]
Willems, L.; van der Geest, R.; de Beule, K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J. Clin. Pharm. Ther., 2001, 26(3), 159-169.
[http://dx.doi.org/10.1046/j.1365-2710.2001.00338.x] [PMID: 11422598]
[4]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[5]
El-Garawani, I.M.; El-Sabbagh, S.M.; Abbas, N.H.; Ahmed, H.S.; Eissa, O.A.; Abo-Atya, D.M.; Khalifa, S.A.M.; El-Seedi, H.R. A newly isolated strain of Halomonas sp. (HA1) exerts anticancer potential via induction of apoptosis and G2/M arrest in hepatocellular carcinoma (HepG2) cell line. Sci. Rep., 2020, 10(1), 1-15.
[http://dx.doi.org/10.1038/s41598-020-70945-8] [PMID: 32826930]
[6]
Halawa, A.H.; Elgammal, W.E.; Hassan, S.M.; Hassan, A.H.; Nassar, H.S.; Ebrahim, H.Y.; Mehany, A.B.M.; El-Agrody, A.M. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg. Chem., 2020, 98, 103725.
[http://dx.doi.org/10.1016/j.bioorg.2020.103725] [PMID: 32199303]
[7]
Farmer, P.; Frenk, J.; Knaul, F.M.; Shulman, L.N.; Alleyne, G.; Armstrong, L.; Atun, R.; Blayney, D.; Chen, L.; Feachem, R.; Gospodarowicz, M.; Gralow, J.; Gupta, S.; Langer, A.; Lob-Levyt, J.; Neal, C.; Mbewu, A.; Mired, D.; Piot, P.; Reddy, K.S.; Sachs, J.D.; Sarhan, M.; Seffrin, J.R. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet, 2010, 376(9747), 1186-1193.
[http://dx.doi.org/10.1016/S0140-6736(10)61152-X] [PMID: 20709386]
[8]
Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: a global health crisis. Cancer, 2017, 123(13), 2404-2412.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[9]
Singh, I.; Luxami, V.; Paul, K. Synthesis, cytotoxicity, pharmacokinetic profile, binding with DNA and BSA of new imidazo[1,2-a]pyrazine-benzo[d]imidazol-5-yl hybrids. Sci. Rep., 2020, 10(1), 6534.
[http://dx.doi.org/10.1038/s41598-020-63605-4] [PMID: 32300169]
[10]
Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B, 2015, 5(4), 310-315.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[11]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[12]
Prabhakar, Y.S.; Raja Solomon, V.; Gupta, M.K.; Katti, S.B. QSAR studies on thiazolidines: a biologically privileged scaffold. In: QSAR and Molecular Modeling Studies in Heterocyclic Drugs II; Gupta, S.P., Ed.; Springer: Berlin, 2006; pp. 161-249.
[http://dx.doi.org/10.1007/7081_021]
[13]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: potential anticancer agents. Eur. J. Med. Chem., 2014, 87, 814-833.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.025] [PMID: 25440883]
[14]
Jung, K-Y.; Samadani, R.; Chauhan, J.; Nevels, K.; Yap, J.L.; Zhang, J.; Worlikar, S.; Lanning, M.E.; Chen, L.; Ensey, M.; Shukla, S.; Salmo, R.; Heinzl, G.; Gordon, C.; Dukes, T.; MacKerell, A.D., Jr; Shapiro, P.; Fletcher, S. Structural modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)-thiazolidine-2,4-dione that improve selectivity for inhibiting the proliferation of melanoma cells containing active ERK signaling. Org. Biomol. Chem., 2013, 11(22), 3706-3732.
[http://dx.doi.org/10.1039/c3ob40199e] [PMID: 23624850]
[15]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonar, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: the advances continue…. Eur. J. Med. Chem., 2014, 72, 52-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.017] [PMID: 24355348]
[16]
Liu, H-L.; Lieberzeit, Z.; Anthonsen, T. Synthesis and fungicidal activity of 2-imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones and their 5-arylidene derivatives. Molecules, 2000, 5(9), 1055-1061.
[http://dx.doi.org/10.3390/50901055]
[17]
Trewyn, B.G.; Giri, S.; Slowing, I.I.; Lin, V.S.Y. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem. Commun. (Camb.), 2007, 2007(31), 3236-3245.
[http://dx.doi.org/10.1039/b701744h] [PMID: 17668088]
[18]
Campos Júnior, J.C.; Gouvêa, D.P. Ribeiro, Cda.S.; Dutra, F.S.; Stefanello, F.M.; Pereira, C.M.; Cunico, W.; Siqueira, G.M. Efficient synthesis and antioxidant evaluation of 2-aryl-3-(pyrimidin-2-yl)-thiazolidinones. J. Biochem. Mol. Toxicol., 2013, 27(9), 445-450.
[http://dx.doi.org/10.1002/jbt.21506] [PMID: 23798366]
[19]
Lozynski, M. Patupilone and ixabepilone: the effect of a point structural change on the exo-endo conformational profile. J. Phys. Chem. B, 2012, 116(26), 7605-7617.
[http://dx.doi.org/10.1021/jp212628v] [PMID: 22668078]
[20]
Ascierto, P.A.; Ferrucci, P.F.; Fisher, R.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Di Giacomo, A.M.; Svane, I.M.; Lotem, M.; Bar-Sela, G.; Couture, F.; Mookerjee, B.; Ghori, R.; Ibrahim, N.; Moreno, B.H.; Ribas, A. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med., 2019, 25(6), 941-946.
[http://dx.doi.org/10.1038/s41591-019-0448-9] [PMID: 31171878]
[21]
Tricot, G.; Jayaram, H.N.; Weber, G.; Hoffman, R. Tiazofurin: biological effects and clinical uses. Int. J. Cell Cloning, 1990, 8(3), 161-170.
[http://dx.doi.org/10.1002/stem.5530080303] [PMID: 2189014]
[22]
Kantarjian, H.; Jabbour, E.; Grimley, J.; Kirkpatrick, P. Dasatinib. Nat. Rev. Drug Discov., 2006, 5(9), 717-718.
[http://dx.doi.org/10.1038/nrd2135] [PMID: 17001803]
[23]
Kumawat, M.K. Thiazole containing heterocycles with antimalarial activity. Curr. Drug Discov. Technol., 2018, 15(3), 196-200.
[http://dx.doi.org/10.2174/1570163814666170725114159]
[24]
Jain, S.; Pattnaik, S.; Pathak, K.; Kumar, S.; Pathak, D.; Jain, S.; Vaidya, A. anticancer potential of thiazole derivatives: a retrospective review. Mini Rev. Med. Chem., 2018, 18(8), 640-655.
[http://dx.doi.org/10.2174/1389557517666171123211321] [PMID: 29173166]
[25]
Geronikaki, A.A.; Pitta, E.P.; Liaras, K.S. Thiazoles and thiazolidinones as antioxidants. Curr. Med. Chem., 2013, 20(36), 4460-4480.
[http://dx.doi.org/10.2174/09298673113209990143] [PMID: 23834182]
[26]
Ansari, A.; Ali, A.; Asif, M.; Rauf, M.A.; Owais, M. Shamsuzzaman, Facile one-pot multicomponent synthesis and molecular docking studies of steroidal oxazole/thiazole derivatives with effective antimicrobial, antibiofilm and hemolytic properties. Steroids, 2018, 134, 22-36.
[http://dx.doi.org/10.1016/j.steroids.2018.04.003] [PMID: 29653115]
[27]
Muhammad, Z.A.; Masaret, G.S.; Amin, M.M.; Abdallah, M.A.; Farghaly, T.A. Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes. Med. Chem., 2017, 13(3), 226-238.
[http://dx.doi.org/10.2174/1573406412666160920091146] [PMID: 27659119]
[28]
Sharath Kumar, K.S.; Hanumappa, A.; Vetrivel, M.; Hegde, M.; Girish, Y.R.; Byregowda, T.R.; Rao, S.; Raghavan, S.C.; Rangappa, K.S. Antiproliferative and tumor inhibitory studies of 2,3 disubstituted 4-thiazolidinone derivatives. Bioorg. Med. Chem. Lett., 2015, 25(17), 3616-3620.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.069] [PMID: 26152430]
[29]
Kavitha, C.V. Basappa; Swamy, S.N.; Mantelingu, K.; Doreswamy, S.; Sridhar, M.A.; Shashidhara Prasad, J.; Rangappa, K.S. Synthesis of new bioactive venlafaxine analogs: novel thiazolidin-4-ones as antimicrobials. Bioorg. Med. Chem., 2006, 14(7), 2290-2299.
[http://dx.doi.org/10.1016/j.bmc.2005.11.017] [PMID: 16338140]
[30]
Murugesan, V.; Makwana, N.; Suryawanshi, R.; Saxena, R.; Tripathi, R.; Paranjape, R.; Kulkarni, S.; Katti, S.B. Rational design and synthesis of novel thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2014, 22(12), 3159-3170.
[http://dx.doi.org/10.1016/j.bmc.2014.04.018] [PMID: 24794742]
[31]
Raza, S.; Srivastava, S.P.; Srivastava, D.S.; Srivastava, A.K.; Haq, W.; Katti, S.B. Thiazolidin-4-one and thiazinan-4-one derivatives analogous to rosiglitazone as potential antihyperglycemic and antidyslipidemic agents. Eur. J. Med. Chem., 2013, 63, 611-620.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.054] [PMID: 23567949]
[32]
Subhedar, D.D.; Shaikh, M.H.; Arkile, M.A.; Yeware, A.; Sarkar, D.; Shingate, B.B. Facile synthesis of 1,3-thiazolidin-4-ones as antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1704-1708.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.056] [PMID: 26927426]
[33]
Secci, D.; Carradori, S.; Bizzarri, B.; Chimenti, P.; De Monte, C.; Mollica, A.; Rivanera, D.; Zicari, A.; Mari, E.; Zengin, G.; Aktumsek, A. Novel 1,3-thiazolidin-4-one derivatives as promising anti-Candida agents endowed with anti-oxidant and chelating properties. Eur. J. Med. Chem., 2016, 117, 144-156.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.012] [PMID: 27100030]
[34]
De Monte, C.; Carradori, S.; Bizzarri, B.; Bolasco, A.; Caprara, F.; Mollica, A.; Rivanera, D.; Mari, E.; Zicari, A.; Akdemir, A.; Secci, D. Anti-Candida activity and cytotoxicity of a large library of new N-substituted-1,3-thiazolidin-4-one derivatives. Eur. J. Med. Chem., 2016, 107, 82-96.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.048] [PMID: 26562544]
[35]
Chandrasekhar, B. α/β-Mercaptoalkanoic acids: versatile synthons in the syntheses of fused ring 4-thiazolidinones/thiazolinones/thiazinanones ring system (S). J. Sulfur Chem., 2012, 33(4), 439-503.
[http://dx.doi.org/10.1080/17415993.2012.693490]
[36]
Lachance, H.; Wetzel, S.; Kumar, K.; Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem., 2012, 55(13), 5989-6001.
[http://dx.doi.org/10.1021/jm300288g] [PMID: 22537178]
[37]
Dyshlovoy, S.A.; Kudryashova, E.K.; Kaune, M.; Makarieva, T.N.; Shubina, L.K.; Busenbender, T.; Denisenko, V.A.; Popov, R.S.; Hauschild, J.; Fedorov, S.N.; Bokemeyer, C.; Graefen, M.; Stonik, V.A.; von Amsberg, G.; Urupocidin, C. Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Sci. Rep., 2020, 10(1), 9764.
[http://dx.doi.org/10.1038/s41598-020-66428-5] [PMID: 32555282]
[38]
Nguyen, H.T.; Pokhrel, A.R.; Nguyen, C.T.; Pham, V.T.T.; Dhakal, D.; Lim, H.N.; Jung, H.J.; Kim, T-S.; Yamaguchi, T.; Sohng, J.K. Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci. Rep., 2020, 10(1), 1756.
[http://dx.doi.org/10.1038/s41598-020-58623-1] [PMID: 32019976]
[39]
Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Discovery of 2-arylthiazolidine-4-carboxylic acid amides as a new class of cytotoxic agents for prostate cancer. J. Med. Chem., 2005, 48(7), 2584-2588.
[http://dx.doi.org/10.1021/jm049208b] [PMID: 15801848]
[40]
Ding, C.; Zhang, Y.; Chen, H.; Yang, Z.; Wild, C.; Chu, L.; Liu, H.; Shen, Q.; Zhou, J. Novel nitrogen-enriched oridonin analogues with thiazole-fused A-ring: protecting group-free synthesis, enhanced anticancer profile, and improved aqueous solubility. J. Med. Chem., 2013, 56(12), 5048-5058.
[http://dx.doi.org/10.1021/jm400367n] [PMID: 23746196]
[41]
Nagireddy, P.K.R.; Kommalapati, V.K.; Siva Krishna, V.; Sriram, D.; Tangutur, A.D.; Kantevari, S. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega, 2019, 4(21), 19382-19398.
[http://dx.doi.org/10.1021/acsomega.9b02789] [PMID: 31763563]
[42]
Zhou, M.; Ma, H-Y.; Liu, Z-H.; Yang, G-Y.; Du, G.; Ye, Y-Q.; Li, G-P.; Hu, Q-F. (+)-Meyeniins A-C, Novel hexahydroimidazo[1,5-c]thiazole derivatives from the tubers of Lepidium meyenii: complete structural elucidation by biomimetic synthesis and racemic crystallization. J. Agric. Food Chem., 2017, 65(9), 1887-1892.
[http://dx.doi.org/10.1021/acs.jafc.6b05805] [PMID: 28212012]
[43]
Fu, P.; MacMillan, J.B. Thiasporines A-C, thiazine and thiazole derivatives from a marine-derived Actinomycetospora chlora. J. Nat. Prod., 2015, 78(3), 548-551.
[http://dx.doi.org/10.1021/np500929z] [PMID: 25584783]
[44]
Romo, D.; Choi, N.S.; Li, S.; Buchler, I.; Shi, Z.; Liu, J.O. Evidence for separate binding and scaffolding domains in the immunosuppressive and antitumor marine natural product, pateamine a: design, synthesis, and activity studies leading to a potent simplified derivative. J. Am. Chem. Soc., 2004, 126(34), 10582-10588.
[http://dx.doi.org/10.1021/ja040065s] [PMID: 15327314]
[45]
Abonia, R.; Castillo, J.; Insuasty, B.; Quiroga, J.; Sortino, M.; Nogueras, M.; Cobo, J. Catalyst-, solvent- and desiccant-free three-component synthesis of novel C-2,N-3 disubstituted thiazolidin-4-ones. Arab. J. Chem., 2019, 12(1), 122-133.
[http://dx.doi.org/10.1016/j.arabjc.2016.11.016]
[46]
Gilani, S.J.; Nagarajan, K.; Dixit, S.P.; Taleuzzaman, M.; Khan, S.A. Benzothiazole incorporated thiazolidin-4-ones and azetidin-2-ones derivatives: synthesis and in vitro antimicrobial evaluation. Arab. J. Chem., 2016, 9, S1523-S1531.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.004]
[47]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. One-pot sonochemical synthesis of 1,3-thiazolidin-4-ones using nano-CdZr4(PO4)6 as a robust heterogeneous catalyst. Ultrason. Sonochem., 2016, 31, 102-106.
[http://dx.doi.org/10.1016/j.ultsonch.2015.12.008] [PMID: 26964928]
[48]
Sadeghzadeh, S.M.; Malekzadeh, M. Synthesis of 1,3-thiazolidin-4-one using ionic liquid immobilized onto Fe3O4/SiO2/Salen/Mn. J. Mol. Liq., 2015, 202, 46-51.
[http://dx.doi.org/10.1016/j.molliq.2014.12.011]
[49]
Sadeghzadeh, S.M.; Daneshfar, F. Ionic liquid immobilized on FeNi3 as catalysts for efficient, green, and one-pot synthesis of 1,3-thiazolidin-4-one. J. Mol. Liq., 2014, 199, 440-444.
[http://dx.doi.org/10.1016/j.molliq.2014.07.039]
[50]
Cunico, W.; Gomes, C.R.B.; de Lourdes, G. Ferreira, M.; Capri, L. R.; Soares, M.; Wardell, S.M.S.V. One-pot synthesis of 2-isopropyl-3-benzyl-1,3-thiazolidin-4-ones and 2-phenyl-3-isobutyl-1,3-thiazolidin-4-ones from valine, arenealdehydes and mercaptoacetic acid. Tetrahedron Lett., 2007, 48(35), 6217-6220.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.101]
[51]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur. J. Med. Chem., 2008, 43(12), 2800-2806.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.015] [PMID: 18242784]
[52]
Ebrahimi, S. One-pot synthesis of 1,3-thiazolidin-4-one using ammonium persulfate as catalyst. J. Sulfur Chem., 2016, 37(6), 587-592.
[http://dx.doi.org/10.1080/17415993.2016.1223298]
[53]
Sayyed, M.; Nanded, Y.M.; Mokle, S.; Nanded, Y.M.; Bhusare, S.R. Synthesis of some new 2, 3-diaryl-1 , 3-thiazolidin-4-ones as antibacterial agents. 2006, 2, 3-9.
[54]
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. Chem., 2015, 398, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[55]
Cacić, M.; Molnar, M.; Šarkanj, B.; Has-Schön, E.; Rajković, V. Synthesis and antioxidant activity of some new coumarinyl-1,3-thiazolidine-4-ones. Molecules, 2010, 15(10), 6795-6809.
[http://dx.doi.org/10.3390/molecules15106795] [PMID: 20881932]
[56]
Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.; Novellino, E.; Barone, V. Thiazolidin-4-one formation. Mechanistic and synthetic aspects of the reaction of imines and mercaptoacetic acid under microwave and conventional heating. Org. Biomol. Chem., 2004, 2(19), 2809-2813.
[http://dx.doi.org/10.1039/b405400h] [PMID: 15455154]
[57]
Visagaperumal, D.; Kumar, R.J.; Vijayaraj, R.; Anbalagan, N. Microwave induced synthesis of some new 3- substituted-1, 3-thiazolidin-4-ones for their potent anti microbial and antitubercular activities. Int. J. Chemtech Res., 2009, 1(4), 1048-1051.
[58]
Revelant, G.; Huber-Villaume, S.; Dunand, S.; Kirsch, G.; Schohn, H.; Hesse, S. Synthesis and biological evaluation of novel 2-heteroarylimino-1,3-thiazolidin-4-ones as potential anti-tumor agents. Eur. J. Med. Chem., 2015, 94, 102-112.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.053] [PMID: 25757093]
[59]
Ostapiuk, Y.V.; Obushak, M.D.; Matiychuk, V.S.; Naskrent, M.; Gzella, A.K. A convenient method for the synthesis of 2-[(5-benzyl-1,3-thiazol-2-yl)imino]-1,3-thiazolidin-4-one derivatives. Tetrahedron Lett., 2012, 53(5), 543-545.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.093]
[60]
Hafez, H.N.; El-Gazzar, A-R.B.A. Synthesis and antitumor activity of substituted triazolo[4,3-a]pyrimidin-6-sulfonamide with an incorporated thiazolidinone moiety. Bioorg. Med. Chem. Lett., 2009, 19(15), 4143-4147.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.126] [PMID: 19540114]
[61]
Cunico, W.; Gomes, C.R.B.; Jr, V.W.T. Chemistry and biological activities of 1,3-thiazolidin-4-Ones. Mini Rev. Org. Chem., 2008, 5(4), 336-344.
[http://dx.doi.org/10.2174/157019308786242232]
[62]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. CoFe2O4@SiO2/PrNH2 Nanoparticles as highly efficient and magnetically recoverable catalyst for the synthesis of 1,3-thiazolidin-4-ones. J. Sulfur Chem., 2016, 37(6), 601-612.
[http://dx.doi.org/10.1080/17415993.2016.1169533]
[63]
Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep., 2016, 6(1), 23401.
[http://dx.doi.org/10.1038/srep23401] [PMID: 27021742]
[64]
Pando, O.; Stark, S.; Denkert, A.; Porzel, A.; Preusentanz, R.; Wessjohann, L.A. The multiple multicomponent approach to natural product mimics: tubugis, N-substituted anticancer peptides with picomolar activity. J. Am. Chem. Soc., 2011, 133(20), 7692-7695.
[http://dx.doi.org/10.1021/ja2022027] [PMID: 21528905]
[65]
Durcik, M.; Toplak, Ž.; Zidar, N.; Ilaš, J.; Zega, A.; Kikelj, D.; Mašič, L.P.; Tomašič, T. Efficient synthesis of hydroxy-substituted 2-aminobenzo[d]thiazole-6-carboxylic acid derivatives as new building blocks in drug discovery. ACS Omega, 2020, 5(14), 8305-8311.
[http://dx.doi.org/10.1021/acsomega.0c00768] [PMID: 32309742]
[66]
García-Reynaga, P.; VanNieuwenhze, M.S. A new total synthesis of patellamide A. Org. Lett., 2008, 10(20), 4621-4623.
[http://dx.doi.org/10.1021/ol801895y] [PMID: 18808124]
[67]
Degnan, B.M.; Hawkins, C.J.; Lavin, M.F.; McCaffrey, E.J.; Parry, D.L.; van den Brenk, A.L.; Watters, D.J. New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella. J. Med. Chem., 1989, 32(6), 1349-1354.
[http://dx.doi.org/10.1021/jm00126a034] [PMID: 2724305]
[68]
Mirza, S.; Asma Naqvi, S.; Mohammed Khan, K.; Salar, U.; Choudhary, M.I. Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorg. Chem., 2017, 70, 133-143.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.003] [PMID: 28038777]
[69]
Shareef, M.A.; Devi, G.P.; Rani Routhu, S.; Kumar, C.G.; Kamal, A.; Babu, B.N. New Imidazo[2,1- b ]thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med. Chem., 2020, 11(10), 1178-1184.
[http://dx.doi.org/10.1039/D0MD00188K ]
[70]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[71]
Aly, A.A.; Mohamed, A.H.; Ramadan, M. Synthesis and colon anticancer activity of some novel thiazole/-2-quinolone derivatives. J. Mol. Struct., 2020, 1207, 127798.
[http://dx.doi.org/10.1016/j.molstruc.2020.127798]
[72]
Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg. Chem., 2020, 98, 103761.
[http://dx.doi.org/10.1016/j.bioorg.2020.103761] [PMID: 32200332]
[73]
Ansari, M.; Shokrzadeh, M.; Karima, S.; Rajaei, S.; Fallah, M.; Ghassemi-Barghi, N.; Ghasemian, M.; Emami, S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur. J. Med. Chem., 2020, 185, 111784.
[http://dx.doi.org/10.1016/j.ejmech.2019.111784] [PMID: 31669850]
[74]
Mahmoud, H.K.; Farghaly, T.A.; Abdulwahab, H.G.; Al-Qurashi, N.T.; Shaaban, M.R. Novel 2-indolinone thiazole hybrids as sunitinib analogues: design, synthesis, and potent VEGFR-2 inhibition with potential anti-renal cancer activity. Eur. J. Med. Chem., 2020, 208, 112752.
[http://dx.doi.org/10.1016/j.ejmech.2020.112752] [PMID: 32947227]
[75]
Farghaly, T.A.; Abo Alnaja, A.M.; El-Ghamry, H.A.; Shaaban, M.R. Synthesis and DNA binding of novel bioactive thiazole derivatives pendent to N-phenylmorpholine moiety. Bioorg. Chem., 2020, 102, 104103.
[http://dx.doi.org/10.1016/j.bioorg.2020.104103] [PMID: 32717695]
[76]
Abdel-Maksoud, M.S.; Ammar, U.M.; Oh, C-H. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole scaffold. Bioorg. Med. Chem., 2019, 27(10), 2041-2051.
[http://dx.doi.org/10.1016/j.bmc.2019.03.062] [PMID: 30955995]
[77]
Herrera-España, A.D.; Us-Martín, J.; Hernández-Ortega, S.; Mirón-López, G.; Quijano, L.; Villanueva-Toledo, J.R.; Mena-Rejón, G.J. Synthesis, structure analysis and activity against breast and cervix cancer cells of a triterpenoid thiazole derived from Ochraceolide A. J. Mol. Struct., 2020, 1204, 127555.
[http://dx.doi.org/10.1016/j.molstruc.2019.127555]
[78]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem., 2013, 70, 740-749.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.042] [PMID: 24231309]
[79]
Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2018, 145, 35-40.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.038] [PMID: 29316536]
[80]
Szychowski, K.A.; Kaminskyy, D.V.; Leja, M.L.; Kryshchyshyn, A.P.; Lesyk, R.B.; Tobiasz, J.; Wnuk, M.; Pomianek, T.; Gmiński, J. Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one. Sci. Rep., 2019, 9(1), 10609.
[http://dx.doi.org/10.1038/s41598-019-47177-6] [PMID: 31337851]
[81]
Wu, J.; Yu, L.; Yang, F.; Li, J.; Wang, P.; Zhou, W.; Qin, L.; Li, Y.; Luo, J.; Yi, Z.; Liu, M.; Chen, Y. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2-methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur. J. Med. Chem., 2014, 80, 340-351.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.068] [PMID: 24794770]
[82]
Yang, F.; Peng, S.; Li, Y.; Su, L.; Peng, Y.; Wu, J.; Chen, H.; Liu, M.; Yi, Z.; Chen, Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org. Biomol. Chem., 2016, 14(5), 1727-1735.
[http://dx.doi.org/10.1039/C5OB02250A] [PMID: 26732459]
[83]
Popsavin, M.; Spaić, S.; Svirčev, M.; Kojić, V.; Bogdanović, G.; Popsavin, V. Synthesis and in vitro antitumour screening of 2-(β-D-xylofuranosyl)thiazole-4-carboxamide and two novel tiazofurin analogues with substituted tetrahydrofurodioxol moiety as a sugar mimic. Bioorg. Med. Chem. Lett., 2012, 22(21), 6700-6704.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.093] [PMID: 23010263]
[84]
Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics-anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer, 2017, 3(6), 391-406.
[http://dx.doi.org/10.1016/j.trecan.2017.04.008] [PMID: 28670628]
[85]
Kale, V.P.; Hengst, J.A.; Desai, D.H.; Dick, T.E.; Choe, K.N.; Colledge, A.L.; Takahashi, Y.; Sung, S-S.; Amin, S.G.; Yun, J.K. A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer Lett., 2014, 354(2), 299-310.
[http://dx.doi.org/10.1016/j.canlet.2014.08.032] [PMID: 25172415]
[86]
Cai, J.; Sun, M.; Wu, X.; Chen, J.; Wang, P.; Zong, X.; Ji, M. Design and synthesis of novel 4-benzothiazole amino quinazolines Dasatinib derivatives as potential anti-tumor agents. Eur. J. Med. Chem., 2013, 63, 702-712.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.013] [PMID: 23567960]
[87]
Kern, F.; Dier, T.K.F.; Khatri, Y.; Ewen, K.M.; Jacquot, J-P.; Volmer, D.A.; Bernhardt, R. Highly efficient CYP167A1 (EpoK) dependent Epothilone B formation and production of 7-ketone epothilone D as a new epothilone derivative. Sci. Rep., 2015, 5(1), 14881.
[http://dx.doi.org/10.1038/srep14881] [PMID: 26445909]
[88]
Shao, H.; Shi, S.; Huang, S.; Hole, A.J.; Abbas, A.Y.; Baumli, S.; Liu, X.; Lam, F.; Foley, D.W.; Fischer, P.M.; Noble, M.; Endicott, J.A.; Pepper, C.; Wang, S. Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities. J. Med. Chem., 2013, 56(3), 640-659.
[http://dx.doi.org/10.1021/jm301475f] [PMID: 23301767]
[89]
Carbone, A.; Pennati, M.; Parrino, B.; Lopergolo, A.; Barraja, P.; Montalbano, A.; Spanò, V.; Sbarra, S.; Doldi, V.; De Cesare, M.; Cirrincione, G.; Diana, P.; Zaffaroni, N. Novel 1H-pyrrolo[2,3-b]pyridine derivative nortopsentin analogues: synthesis and antitumor activity in peritoneal mesothelioma experimental models. J. Med. Chem., 2013, 56(17), 7060-7072.
[http://dx.doi.org/10.1021/jm400842x] [PMID: 23919303]
[90]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Aghazadeh Tabrizi, M.; Brancale, A.; Fu, X-H.; Li, J.; Zhang, S-Z.; Hamel, E.; Bortolozzi, R.; Porcù, E.; Basso, G.; Viola, G. Discovery and optimization of a series of 2-aryl-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)thiazoles as novel anticancer agents. J. Med. Chem., 2012, 55(11), 5433-5445.
[http://dx.doi.org/10.1021/jm300388h] [PMID: 22578111]
[91]
Gaspari, P.; Banerjee, T.; Malachowski, W.P.; Muller, A.J.; Prendergast, G.C.; DuHadaway, J.; Bennett, S.; Donovan, A.M. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem., 2006, 49(2), 684-692.
[http://dx.doi.org/10.1021/jm0508888] [PMID: 16420054]
[92]
Rai, G.; Vyjayanti, V.N.; Dorjsuren, D.; Simeonov, A.; Jadhav, A.; Wilson, D.M., III; Maloney, D.J. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J. Med. Chem., 2012, 55(7), 3101-3112.
[http://dx.doi.org/10.1021/jm201537d] [PMID: 22455312]
[93]
Scheeff, S.; Rivière, S.; Ruiz, J.; Abdelrahman, A.; Schulz-Fincke, A-C.; Köse, M.; Tiburcy, F.; Wieczorek, H.; Gütschow, M.; Müller, C.E.; Menche, D. Synthesis of novel potent archazolids: pharmacology of an emerging class of anticancer drugs. J. Med. Chem., 2020, 63(4), 1684-1698.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01887] [PMID: 31990540]
[94]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[95]
Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; Łączkowski, K.Z. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem., 2019, 175, 162-171.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.006] [PMID: 31082763]
[96]
Omar, A.M.; Bajorath, J.; Ihmaid, S.; Mohamed, H.M.; El-Agrody, A.M.; Mora, A.; El-Araby, M.E.; Ahmed, H.E.A. Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: Anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg. Chem., 2020, 101, 103992.
[http://dx.doi.org/10.1016/j.bioorg.2020.103992] [PMID: 32554279]
[97]
Afifi, O.S.; Shaaban, O.G.; Abd El Razik, H.A.; Shams El-Dine, S.E.A.; Ashour, F.A.; El-Tombary, A.A.; Abu-Serie, M.M. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem., 2019, 87, 821-837.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.076] [PMID: 30999135]
[98]
Pyrih, A.; Jaskolski, M.; Gzella, A.K.; Lesyk, R. Synthesis, structure and evaluation of anticancer activity of 4-amino-1,3-thiazolinone/pyrazoline hybrids. J. Mol. Struct., 2021, 1224, 129059.
[http://dx.doi.org/10.1016/j.molstruc.2020.129059]
[99]
Fayed, E.A.; Ammar, Y.A.; Ragab, A.; Gohar, N.A.; Mehany, A.B.M.; Farrag, A.M. In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorg. Chem., 2020, 100, 103951.
[http://dx.doi.org/10.1016/j.bioorg.2020.103951] [PMID: 32450392]
[100]
Anh, D.T.; Hai, P-T.; Huong, L-T-T.; Park, E.J.; Jun, H.W.; Kang, J.S.; Kwon, J-H.; Dung, D.T.M.; Anh, V.T.; Hue, V.T.M.; Han, S-B.; Nam, N-H. Exploration of certain 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2020, 101, 103988.
[http://dx.doi.org/10.1016/j.bioorg.2020.103988] [PMID: 32534346]
[101]
Shokrollahi, S.; Amiri, A.; Fadaei-Tirani, F.; Schenk-Joß, K. Promising anti-cancer potency of 4,5,6,7-tetrahydrobenzo[d]thiazole-based Schiff-bases. J. Mol. Liq., 2020, 300, 112262.
[http://dx.doi.org/10.1016/j.molliq.2019.112262]
[102]
Turan-Zitouni, G.; Altıntop, M.D.; Özdemir, A.; Kaplancıklı, Z.A.; Çiftçi, G.A.; Temel, H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem., 2016, 107, 288-294.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.002] [PMID: 26599534]
[103]
Bansal, K.K.; Bhardwaj, J.K.; Saraf, P.; Thakur, V.K.; Sharma, P.C. Synthesis of thiazole clubbed pyrazole derivatives as apoptosis inducers and anti-infective agents. Mater. Today Chem., 2020, 17, 100335.
[http://dx.doi.org/10.1016/j.mtchem.2020.100335]
[104]
Park, J-H.; El-Gamal, M.I.; Lee, Y.S.; Oh, C-H. New imidazo[2,1-b]thiazole derivatives: synthesis, in vitro anticancer evaluation, and in silico studies. Eur. J. Med. Chem., 2011, 46(12), 5769-5777.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.024] [PMID: 22033063]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy