Abstract
Background: Cancer, along with cardiovascular diseases, is globally defined as the leading cause of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelet aggregation is observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs for these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized, and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials.
Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumor-associated angiogenesis.
Results: The results of the analysis of data based on drugs with nanoparticles confirm their improved pharmaceutical and biological properties, which give promising antiplatelet, anticoagulant, and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration.
Conclusion: By the optimization of nanoparticle size and surface properties, nanotechnology is able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body because this is a key factor in the success of potential nanotherapeutics.
Keywords: Nanodrugs, cardiovascular diseases, cancer, angiogenesis, nanomedicine, chemotherapeutics.
Current Medicinal Chemistry
Title:Nanodrugs as a New Approach in the Therapy of Cardiovascular Diseases and Cancer with Tumor-associated Angiogenesis
Volume: 28 Issue: 27
Author(s): Justyna Hajtuch, Karolina Niska and Iwona Inkielewicz-Stepniak*
Affiliation:
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Debinki 1, 80-211 Gdansk,Poland
Keywords: Nanodrugs, cardiovascular diseases, cancer, angiogenesis, nanomedicine, chemotherapeutics.
Abstract:
Background: Cancer, along with cardiovascular diseases, is globally defined as the leading cause of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelet aggregation is observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs for these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized, and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials.
Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumor-associated angiogenesis.
Results: The results of the analysis of data based on drugs with nanoparticles confirm their improved pharmaceutical and biological properties, which give promising antiplatelet, anticoagulant, and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration.
Conclusion: By the optimization of nanoparticle size and surface properties, nanotechnology is able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body because this is a key factor in the success of potential nanotherapeutics.
Export Options
About this article
Cite this article as:
Hajtuch Justyna , Niska Karolina and Inkielewicz-Stepniak Iwona *, Nanodrugs as a New Approach in the Therapy of Cardiovascular Diseases and Cancer with Tumor-associated Angiogenesis, Current Medicinal Chemistry 2021; 28 (27) . https://dx.doi.org/10.2174/0929867328666201231121704
DOI https://dx.doi.org/10.2174/0929867328666201231121704 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements