Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Polynomials of Degree-Based Indices of Metal-Organic Networks

Author(s): Ali Ahmad*, Muhammad Ahsan Asim and Muhammad Faisal Nadeem

Volume 25, Issue 3, 2022

Published on: 29 December, 2020

Page: [510 - 518] Pages: 9

DOI: 10.2174/1386207323666201229152828

Price: $65

Abstract

Aim and Objective: Metal-organic network (MON) is a special class of molecular compounds comprising groups of metal ions and carbon-based ligand. These chemical compounds are examined employing one, two- or three-dimensional formation of porous ore and subfamilies of polymers. Metal-organic networks are frequently utilized in catalysis for the parting & distilling of different gases and by means of conducting solid or super-capacitor. In various scenarios, the compounds are observed to maintain a balance in the procedure of deletion or diluter of the molecule and can be rebuilt with another molecular compound. The physical solidity and mechanical characteristics of the metal-organic network have attained great attention due to the above-mentioned properties. This study was undertaken to find the polynomials of MON.

Methods: Topological descriptor is a numerical number that is utilized to predict the natural correlation amongst the Physico-chemical properties of the molecular structures in their elementary networks

Results: After partitioning the vertices based on their degrees, we calculate different degree-based topological polynomials for two distinct metal-organic networks with an escalating number of layers containing both metals and carbon-based ligand vertices.

Conclusion: In the analysis of the metal-organic network, topological descriptors and their polynomials play an important part in modern chemistry. An analysis between the various calculated forms of the polynomials and topological descriptors through the numeric values and their graphs are also presented

Keywords: Topological polynomials, degree-based index, metal-organic networks, chemical compounds, quantitative structures activity relationship, quantitative structures property relationship.

Graphical Abstract

[1]
Seung, J.Y.; Jae, Y.C.; Hee, K.C.; Jung, H.C.; Kee, S.N.; Chong, R.P. Preparation and enhanced hydrostability and hydrogen storage capacity of cnt@mof - 5 hybrid composite. Chem. Mater., 2009, 21, 1893-1897.
[http://dx.doi.org/10.1021/cm803502y]
[2]
Petit, C.; Bandosz, T.J. MOF-Graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv. Mater., 2009, 21, 4753-4757.
[http://dx.doi.org/10.1002/adma.200901581]
[3]
Li, X.; Zheng, J. Extremal chemical trees with minimum or maximum general Randic index. MATCH Commun. Math. Comput. Chem., 2005, 54, 195-205.
[4]
Megan, C. W.; Jiafei, L.; Timur, I.; Omar, K. F. Linker competition within a metal-organic framework for topological insights. American Chemical Society, 2019, 58(2), 513-1517.
[5]
Naji, A.M.; Soner, N.D.; Gutman, I. On leap Zagreb indices of graphs. Communications in Combinatorics and Optimization, 2017, 2, 99-117.
[6]
Yanyan, F.; Xiuping, Y. Metal-organic framework composites. Prog. Chem. (Chin.), 2013, 25, 221-232.
[7]
Jang, J.S.; Qiao, S.; Choi, S.J.; Jha, G.; Ogata, A.F.; Koo, W.T.; Kim, D.H.; Kim, I.D.; Penner, R.M. Hollow Pd-Ag composite nanowires for fast responding and transparent hydrogen sensors. ACS Appl. Mater. Interfaces, 2017, 9(45), 39464-39474.
[http://dx.doi.org/10.1021/acsami.7b10908] [PMID: 28937737]
[8]
Hwang, Y.K.; Hong, D.Y.; Chang, J.S.; Jhung, S.H.; Seo, Y.K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. Engl., 2008, 47(22), 4144-4148.
[http://dx.doi.org/10.1002/anie.200705998] [PMID: 18435442]
[9]
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554), 469-472.
[http://dx.doi.org/10.1126/science.1067208] [PMID: 11799235]
[10]
Thornton, A.W.; Nairn, K.M.; Hill, J.M.; Hill, A.J.; Hill, M.R. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. J. Am. Chem. Soc., 2009, 131(30), 10662-10669.
[http://dx.doi.org/10.1021/ja9036302] [PMID: 19583258]
[11]
Azari, M.; Iranmanesh, A. Generalized Zagreb Index of Graphs. In: Studia Univ. Babes-Bolyai; , 2011; 56, pp. (3)59-70.
[12]
Alexander, V. Upper and lower bounds of symmetric division deg index. Iran J Math Chem., 2014, 52, 91-108.
[13]
Kim, M.; Cahill, J.F.; Fei, H.; Prather, K.A.; Cohen, S.M. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am. Chem. Soc., 2012, 134(43), 18082-18088.
[http://dx.doi.org/10.1021/ja3079219] [PMID: 23039827]
[14]
Juan-Alcaniz, J.; Gascon, J.; Kapteijn, F. Metal- organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J. Mater. Chem., 2012, 22, 10102-10118.
[http://dx.doi.org/10.1039/c2jm15563j]
[15]
Bradshaw, D.; Garai, A.; Huo, J. Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem. Soc. Rev., 2012, 41(6), 2344-2381.
[http://dx.doi.org/10.1039/C1CS15276A] [PMID: 22182916]
[16]
Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio andtemperature in tuning metal organic framework architecture. Arab. J. Chem., 2019, 12(3), 295-315.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.003]
[17]
Hao, L.; Kecheng, W.; Yujia, S.; Christina, T.; Jialuo, L.; Hong-Cai, Z. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today, 2018, 21, 221-235.
[18]
Biao, L.R.; Shengchang, X.; Huabin, X.; Wei, Z.; Banglin, C. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev., 2019, 378, 87-103.
[http://dx.doi.org/10.1016/j.ccr.2017.09.027]
[19]
Min, H.Y.; Kam, L.F.; George, Z.C. Study suggests choice between green energy or economic growth. Green Energy Environment., 2017, 2, 218-245.
[20]
Bruckler, F.M.; Doslic, T.; Graovac, A.; Gutman, I. On a class of distance-based molecular structure descriptors. Chem. Phys. Lett., 2011, 503, 336-338.
[http://dx.doi.org/10.1016/j.cplett.2011.01.033]
[21]
González-Díaz, H.; Vilar, S.; Santana, L.; Uriarte, E. Medicinal chemistry and bioinformatics--current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem., 2007, 7(10), 1015-1029.
[http://dx.doi.org/10.2174/156802607780906771] [PMID: 17508935]
[22]
Klavzar, S.; Gutman, I. Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci., 1996, 36, 1001-1003.
[23]
Matamala, A.R.; Estrada, E. Generalised topological indices, Optimisation methodology and physico-chemical interpretation. Chem. Phys. Lett., 2005, 410, 343-347.
[http://dx.doi.org/10.1016/j.cplett.2005.05.096]
[24]
Rucker, G.; Rucker, C. On Topological Indices, Boiling Points, and Cycloalkanes. J. Chem. Inf. Comput. Sci., 1999, 39, 788-802.
[http://dx.doi.org/10.1021/ci9900175]
[25]
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69(1), 17-20.
[http://dx.doi.org/10.1021/ja01193a005] [PMID: 20291038]
[26]
Gutman, I.; Trinajsti, N. Graph theory and molecular orbitals. Total pi-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, 17, 535-538.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[27]
Gutman, I.; Polansky, O. Mathematical Concepts in Organic Chemistry; Springer- Verlag: Berlin, 1986.
[http://dx.doi.org/10.1007/978-3-642-70982-1]
[28]
Devillers, J.; Domine, D.; Guillon, C.; Bintein, S.; Karcher, W. Prediction of partition coefficients using autocorrelation descriptors. SAR and QSAR in Environmental Research. Environ. Res., 1997, 7, 151-172.
[29]
Ahmad, A. On the degree based topological indices of benzene ring embedded in P-type-surface in 2D network. Hacet. J. Math. Stat., 2018, 47(1), 9-18.
[30]
Ahmad, A. Topological properties of Sodium chloride, U.P.B. Sci. Bull., Series B, 2020, 82(1), 35-46.
[31]
Rajan, B.; William, A.; Grigorious, C.; Stephen, S. On certain topological indices of silicate, honeycomb and hexagonal networks. J. Comp. Math. Sci., 2012, 3(5), 530-535.
[32]
Javaid, M.; Rehman, M.U.; Cao, J. Topological indices of rhombus type silicate and oxide networks. Can. J. Chem., 2017, 95(2), 134-143.
[http://dx.doi.org/10.1139/cjc-2016-0486]
[33]
Javaid, M.; Liu, J-B.; Rehman, M.A.; Wang, S. On the certain topological indices of titania nanotube tio2. [m,n] Z. Naturforsch. A, 2017, 72(7), 647-654.
[http://dx.doi.org/10.1515/zna-2017-0101]
[34]
Furtula, B.; Gutman, I. On structure-sensitivity of degree-based topological indices. J. Math. Chem., 2015, 53, 1184-1190.
[http://dx.doi.org/10.1007/s10910-015-0480-z]
[35]
Hailong, W.; Qi-Long, Z.; Ruqiang, Z.; Qiang, X. Metal-organic frameworks for energy applications. Chememistry, 2017, 2, 52-80.
[36]
Akhter, S.; Imran, M. On molecular topological properties of benzenoid structures. Can. J. Chem., 2016, 94(8), 687-698.
[http://dx.doi.org/10.1139/cjc-2016-0032]
[37]
Gutman, I. Some properties of the Wiener polynomials. Graph Theory Notes New York, 1993, 125, 13-18.
[38]
Deutsch, E.; Klavzar, S. M-Polynomial, and degree- based topological indices. Iran. J. Math. Chem., 2015, 6, 93-102.
[39]
Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M- polynomial and degree-based topological indices of polyhex nanotubes. Symmetry (Basel), 2016, 8(12), 149.
[http://dx.doi.org/10.3390/sym8120149]
[40]
Kwun, Y.C.; Munir, M.; Nazeer, W.; Rafique, S.; Min Kang, S. M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Sci. Rep., 2017, 7(1), 8756.
[http://dx.doi.org/10.1038/s41598-017-08309-y] [PMID: 28821827]
[41]
Ali, A.; Nazeer, W.; Munir, M.; Kang, S. M M- polynomials and topological indices of zigzag and rhombic benzenoid systems. Open Chem., 2017, 16(1), 73-78.
[42]
Kwun, Y. C.; Ali, A.; Nazeer, W.; Ahmad, C.M; Kang, S.M Mpolynomials and degree-based topological indices of triangular, hourglass, and jagged-rectangle benzenoid systems. J. Chem., 2018, 2018
[43]
Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M- polynomial and related topological indices of Nanostar dendrimers. Symmetry (Basel), 2016, 8(9), 97.
[http://dx.doi.org/10.3390/sym8090097]
[44]
Tabassum, A.; Umar, M.A.; Perveen, M.; Raheem, A. Antimagicness of subdivided fans. Open J. Mathematical Sci., 2020, 4(1), 18-22.
[45]
Asif, F.; Zahid, Z.; Zafar, S. Leap Zagreb and leap hyper-Zagreb indices of Jahangir and Jahangir derived graphs. Engineering and Applied Science Letter, 2020, 3(2), 1-8.
[46]
Salih, H.F.M.; Mershkhan, S.M.; Mershkhan, S.M. Generalized the Liouville’s and Mobius functions of graph. Open J. Mathematical Sci., 2020, 4(1), 186-194.
[http://dx.doi.org/10.30538/oms2020.0109]
[47]
Vetrik, T. Degree-based topological indices of hexagonal nanotubes. J. App. Math. Comput., 2018, 58(1), 111-124.
[48]
Vetrik, T. Polynomials of degree-based indices for hexagonal nanotubes. U.P.B. Sci. Bull., Series B, 2019, 81(1), 109-120.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy