Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

A Study on Ecotoxicological Effects of Nano-copper Oxide Particles to Portunus trituberculatus

Author(s): Tiejun Li, Hongmei Hu, Chenghu Yang, Bo Zhang and Limin Ma*

Volume 22, Issue 4, 2021

Published on: 29 December, 2020

Page: [534 - 540] Pages: 7

DOI: 10.2174/1389201021666201229111251

Price: $65

Abstract

Background: As an important nano-material, nano-copper oxide particles (CuO-ENPs) harbor a vast range of characteristics, including an electronic correlation effect, thermal stability, catalytic activity, sterilization, and other properties. At present, the mechanism of ecotoxicological effects of CuO-ENPs is unclear and has been inconclusive. Therefore, we aimed to explore the ecotoxicological effects of nano-copper oxide particles (CuO-ENPs) on Portunus trituberculatus.

Objective: The crabs were exposed to seawater containing different concentrations of CuO-ENPs to conduct the acute toxicity test and chronic accumulation test.

Methods: Acute toxicity, metal accumulation, and SOD activity in different tissues were determined.

Results: We found that the lethal concentration of 50% 96 h LC50 of CuO-ENPs to Portunus trituberculatus belonged to low toxicity. The accumulation of CuO-ENPs in different tissues from high to low was: gill > haemolymph > muscle > hepatopancreas > heart and stomach, and decreased gradually with time after reaching the maximum.

Discussion: Subsequently, it was in a relatively steady state after a certain period and showed an obvious concentration effect. With the increment of exposure time and concentration of CuO-ENPs, the SOD activities in different tissues were quite different. In conclusion, the 96 h LC50 of CuOENPs to Portunus trituberculatus was 49 mg/L, and its toxicity belonged to low toxicity.

Conclusion: With the increment of exposure time and concentration of CuO-ENPs, the SOD activities in different tissues were quite different, which were increased remarkably in gill and hepatopancreas, but were suppressed at an early stage of exposure in muscle and haemolymph.

Keywords: Ecotoxicological effects, nano-copper oxide particles, Portunus trituberculatus, semi-lethal concentration, organ, tissue, superoxide dismutase.

Graphical Abstract

[1]
Gomes, T.; Pereira, C.G.; Cardoso, C.; Pinheiro, J.P.; Cancio, I.; Bebianno, M.J. Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat. Toxicol., 2012, 118-119, 72-79.
[http://dx.doi.org/10.1016/j.aquatox.2012.03.017] [PMID: 22522170]
[2]
Landa, P.; Dytrych, P.; Prerostova, S.; Petrova, S.; Vankova, R.; Vanek, T. Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper. Environ. Sci. Technol., 2017, 51(18), 10814-10824.
[http://dx.doi.org/10.1021/acs.est.7b02265] [PMID: 28832134]
[3]
Scown, T.M.; van Aerle, R.; Tyler, C.R. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit. Rev. Toxicol., 2010, 40(7), 653-670.
[http://dx.doi.org/10.3109/10408444.2010.494174] [PMID: 20662713]
[4]
Giannousi, K.; Sarafidis, G.; Mourdikoudis, S.; Pantazaki, A.; Dendrinou-Samara, C. Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction. Inorg. Chem., 2014, 53(18), 9657-9666.
[http://dx.doi.org/10.1021/ic501143z] [PMID: 25187996]
[5]
Xiang, L.; Mo, C.H.; Lu, X.H. Toxicity of Copper Oxide Nanoparticles to the Seed Germination of Chinese Cabbage. Nongye Huanjing Kexue Xuebao, 2011, 30(9), 1830-1835.
[6]
Cui, J.; Yuan, X.Y.; Liu, Q. Study on toxic effects on ceratophyllumdemersum copper oxide nanoparticles in the aquatic environment. Nongye Huanjing Kexue Xuebao, 2013, 32(5), 910-915.
[7]
Jin, SY; Wang, Y.J J.; Wang, P. Influence of culture media on the phytotoxicity of CuO nanoparticles to wheat (Triticum aestivum L.). Asian J. Ecotoxicol., 2010, 5(6), 842-848..
[8]
Al-Bairuty, G.A.; Boyle, D.; Henry, T.B.; Handy, R.D. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: Physiology and metal accumulation. Aquat. Toxicol., 2016, 174, 188-198.
[http://dx.doi.org/10.1016/j.aquatox.2016.02.006] [PMID: 26966873]
[9]
Tiede, K.; Boxall, A.B.; Tear, S.P.; Lewis, J.; David, H.; Hassellov, M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(7), 795-821.
[http://dx.doi.org/10.1080/02652030802007553] [PMID: 18569000]
[10]
Mortimer, M.; Kasemets, K.; Kahru, A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269(2-3), 182-189.
[http://dx.doi.org/10.1016/j.tox.2009.07.007] [PMID: 19622384]
[11]
Thit, A.; Dybowska, A.; Købler, C.; Kennaway, G.; Selck, H. Influence of copper oxide nanoparticle shape on bioaccumulation, cellular internalization and effects in the estuarine sediment-dwelling polychaete, Nereis diversicolor. Mar. Environ. Res., 2015, 111, 89-98.
[http://dx.doi.org/10.1016/j.marenvres.2015.06.009] [PMID: 26149327]
[12]
Hamasaki, K.; Fukunaga, K.; Kitada, S. Batch fecundity of the swimming crab Portunus trituberculatus (Brachyura: Portunidae). Aquaculture, 2006, 253(1-4), 359-365.
[http://dx.doi.org/10.1016/j.aquaculture.2005.08.002]
[13]
Liu, M.; Feng, Q.; Francis, D.S.; Turchini, G.M.; Zeng, C.; Wu, X. Tamoxifen affects the histology and hepatopancreatic lipid metabolism of swimming crab Portunus trituberculatus. Aquat. Toxicol., 2019., 213105220.
[http://dx.doi.org/10.1016/j.aquatox.2019.06.003] [PMID: 31202166]
[14]
Eugene, K. Harris. Confidence Limits for the LD50 using the moving average-angle method. Biometrics, 1959, 15(3), 424-432.
[http://dx.doi.org/10.2307/2527747]
[15]
Shaw, B.J.; Al-Bairuty, G.; Handy, R.D. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): Physiology and accumulation. Aquat. Toxicol., 2012, 116-117, 90-101.
[http://dx.doi.org/10.1016/j.aquatox.2012.02.032] [PMID: 22480992]
[16]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[17]
Magwere, T.; Naik, Y.S.; Hasler, J.A. Effects of chloroquine treatment on antioxidant enzymes in rat liver and kidney. Free Radic. Biol. Med., 1997, 22(1-2), 321-327.
[http://dx.doi.org/10.1016/S0891-5849(96)00285-7] [PMID: 8958157]
[18]
Patil, S.A.; Ryu, C.H.; Kim, H.S. Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. Int. J. Precis. Eng. Manuf. Technol., 2018, 5(2), 239-245.
[http://dx.doi.org/10.1007/s40684-018-0024-7]
[19]
Fu, X.; Ge, T. Environmental impact of copper oxide nanoparticles and their ecotoxicological effects. Jiangsu Agric Sciences, 2015, 43(8), 340-344.
[20]
Ministry of Environmental Protection of the People’s Republic of China. Test guidelines for environmental safety assessment for chemical pesticides, 1989.
[21]
Senze, M.; Kowalska-Góralska, M.; Pokorny, P. Bioaccumulation of heavy metals in hydromacrophytes from five coastal lakes (North-Western Poland, Baltic Sea). Acta Univ. Agric. Silvic. Mendel. Brun., 2017, 65(4), 1265-1277.
[http://dx.doi.org/10.11118/actaun201765041265]
[22]
Pokorny, P.; Pokorny, J.; Dobicki, W. Bioaccumulations of heavy metals in submerged macrophytes in the mountain river Biała Ladecka (Poland, Sudety Mts.). Arch. Environ. Prot., 2015, 41(4), 81-90.
[http://dx.doi.org/10.1515/aep-2015-0042]
[23]
Kowalska-Góralska, M.; Dziewulska, K.; Kulasza, M. Effect of copper nanoparticles and ions on spermatozoa motility of sea trout (Salmo trutta M. trutta L.). Aquat. Toxicol., 2019, 211, 11-17.
[http://dx.doi.org/10.1016/j.aquatox.2019.03.013] [PMID: 30908993]
[24]
Rossbach, L.M.; Shaw, B.J.; Piegza, D.; Vevers, W.F.; Atfield, A.J.; Handy, R.D. Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas). Aquat. Toxicol., 2017, 191, 245-255.
[http://dx.doi.org/10.1016/j.aquatox.2017.08.006] [PMID: 28888166]
[25]
Canesi, L.; Fabbri, R.; Gallo, G.; Vallotto, D.; Marcomini, A.; Pojana, G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat. Toxicol., 2010, 100(2), 168-177.
[http://dx.doi.org/10.1016/j.aquatox.2010.04.009] [PMID: 20444507]
[26]
Ringwood, A.H.; McCarthy, M.; Bates, T.C.; Carroll, D.L. The effects of silver nanoparticles on oyster embryos. Mar. Environ. Res., 2010, 69(Suppl.), S49-S51.
[http://dx.doi.org/10.1016/j.marenvres.2009.10.011] [PMID: 19913905]
[27]
Moore, M.N.; Readman, J.A.J.; Readman, J.W. Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vitro study. Nanotoxicology, 2009, 3(1), 40-45.
[http://dx.doi.org/10.1080/17435390802593057]
[28]
Peyrot, C.; Gagnon, C.; Gagné, F.; Willkinson, K.J.; Turcotte, P.; Sauvé, S. Effects of cadmium telluride quantum dots on cadmium bioaccumulation and metallothionein production to the freshwater mussel, Elliptio complanata. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2009, 150(2), 246-251.
[http://dx.doi.org/10.1016/j.cbpc.2009.05.002] [PMID: 19427919]
[29]
Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 2010, 48(12), 909-930.
[http://dx.doi.org/10.1016/j.plaphy.2010.08.016] [PMID: 20870416]
[30]
Decou, R.; Delmail, D.; Labrousse, P. Myriophyllum alterniflorum biochemical changes during in vitro Cu/Cd metal stress: Focusing on cell detoxifying enzymes. Aquat. Toxicol., 2020., 219105361.
[http://dx.doi.org/10.1016/j.aquatox.2019.105361] [PMID: 31862548]
[31]
Mohamed, A.A.; El-Houseiny, W.; El-Murr, A.E.; Ebraheim, L.L.M.; Ahmed, A.I.; El-Hakim, Y.M.A. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicol. Environ. Saf., 2020, 188, 109890.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109890] [PMID: 31704321]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy