Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Facile Synthesis of Boc-Protected Selenocystine and its Compatibility with Late-Stage Farnesylation at Cysteine Site

Author(s): Peng-Cheng Zhu and Yong-Xiang Chen*

Volume 28, Issue 6, 2021

Published on: 23 December, 2020

Page: [603 - 611] Pages: 9

DOI: 10.2174/0929866527666201223094249

Price: $65

Abstract

Background: The unique hypervariable C-terminal region (HVR) of K-Ras4B, one of the most frequently mutated proteins in many powerful cancers, contains a C-terminal farnesylated and methylated Cys and a poly-lysine motif, which decides the association of K-Ras4B to the inner leaflet of plasma membrane for activating the downstream signaling activity. In our previous work, we inserted an additional Cys in K-Ras4B HVR peptide synthesis for NCL in the semi-synthesis of K-Ras4b protein, but it is not suitable for application in protein dimerization research. The recently developed selenocysteine (Sec, U) mediated native chemical ligation reaction followed by selective deselenization, which can help to broaden the scope of protein synthesis, requires the generation of the peptide fragment with an N-terminal Sec.

Objective: To synthesize K-Ras4B HVR peptide containing both N-terminal Sec and C-terminal farnesylated and methylated Cys to achieve traceless protein semi-synthesis.

Methods and Results: We have developed a facile synthesis approach for producing Boc-Sec)2-OH using economic Se powder, which can facilitate scaling up preparation of peptides containing Sec at the N-terminus. Furthermore, we synthesized K-Ras4B HVR peptide containing selenocystine by utilization of Boc-Sec)2-OH. Finally, we took K-Ras4B HVR peptide as an example to test the compatibility of farnesylation reaction at Cys with the N-terminal Sec)2, and the farnesyl group was successfully added to the thiol group of Cys.

Keywords: Selenocysteine, selenocystine, peptide synthesis, post-translational modification, farnesylation, K-Ras4B.

Next »
Graphical Abstract

[1]
Stadtman, T.C. Selenocysteine. Annu. Rev. Biochem., 1996, 65(1), 83-100.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.000503] [PMID: 8811175]
[2]
Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev., 2013, 42(23), 8870-8894.
[http://dx.doi.org/10.1039/c3cs60272a] [PMID: 24030774]
[3]
Zhu, Y.; van der Donk, W.A. Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations. Org. Lett., 2001, 3(8), 1189-1192.
[http://dx.doi.org/10.1021/ol015648a] [PMID: 11348191]
[4]
Whedon, S.D.; Markandeya, N.; Rana, A.S.J.B.; Senger, N.A.; Weller, C.E.; Tureček, F.; Strieter, E.R.; Chatterjee, C. Selenocysteine as a latent bioorthogonal electrophilic probe for deubiquitylating enzymes. J. Am. Chem. Soc., 2016, 138(42), 13774-13777.
[http://dx.doi.org/10.1021/jacs.6b05688] [PMID: 27723317]
[5]
Liu, J.; Chen, Q.; Rozovsky, S. Utilizing selenocysteine for expressed protein ligation and bioconjugations. J. Am. Chem. Soc., 2017, 139(9), 3430-3437.
[http://dx.doi.org/10.1021/jacs.6b10991] [PMID: 28186733]
[6]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186), 776-779.
[http://dx.doi.org/10.1126/science.7973629] [PMID: 7973629]
[7]
Muir, T.W.; Sondhi, D.; Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 6705-6710.
[http://dx.doi.org/10.1073/pnas.95.12.6705] [PMID: 9618476]
[8]
Hondal, R.J.; Nilsson, B.L.; Raines, R.T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc., 2001, 123(21), 5140-5141.
[http://dx.doi.org/10.1021/ja005885t] [PMID: 11457362]
[9]
Roelfes, G.; Hilvert, D. Incorporation of selenomethionine into proteins through selenohomocysteine-mediated ligation. Angew. Chem. Int. Ed. Engl., 2003, 42(20), 2275-2277.
[http://dx.doi.org/10.1002/anie.200250830] [PMID: 12772161]
[10]
Metanis, N.; Keinan, E.; Dawson, P.E. Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. Engl., 2010, 49(39), 7049-7053.
[http://dx.doi.org/10.1002/anie.201001900] [PMID: 20715234]
[11]
Reddy, P.S.; Dery, S.; Metanis, N. Chemical synthesis of proteins with non-strategically placed cysteines using selenazolidine and selective deselenization. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 992-995.
[http://dx.doi.org/10.1002/anie.201509378] [PMID: 26636774]
[12]
Mousa, R.; Notis Dardashti, R.; Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 15818-15827.
[http://dx.doi.org/10.1002/anie.201706876] [PMID: 28857389]
[13]
Shimodaira, S.; Takei, T.; Hojo, H.; Iwaoka, M. Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem. Commun. (Camb.), 2018, 54(83), 11737-11740.
[http://dx.doi.org/10.1039/C8CC06805D] [PMID: 30276373]
[14]
Dery, S.; Reddy, P.S.; Dery, L.; Mousa, R.; Dardashti, R.N.; Metanis, N. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci. (Camb.), 2015, 6(11), 6207-6212.
[http://dx.doi.org/10.1039/C5SC02528A] [PMID: 30090236]
[15]
Malins, L.R.; Mitchell, N.J.; McGowan, S.; Payne, R.J. Oxidative deselenization of selenocysteine: applications for programmed ligation at serine. Angew. Chem. Int. Ed. Engl., 2015, 54(43), 12716-12721.
[http://dx.doi.org/10.1002/anie.201504639] [PMID: 26384718]
[16]
Gunnoo, S.B.; Madder, A. Chemical protein modification through cysteine. ChemBioChem, 2016, 17(7), 529-553.
[http://dx.doi.org/10.1002/cbic.201500667] [PMID: 26789551]
[17]
Johansson, L.; Gafvelin, G.; Arnér, E.S. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta, 2005, 1726(1), 1-13.
[http://dx.doi.org/10.1016/j.bbagen.2005.05.010] [PMID: 15967579]
[18]
Malins, L.R.; Mitchell, N.J.; Payne, R.J. Peptide ligation chemistry at selenol amino acids. J. Pept. Sci., 2014, 20(2), 64-77.
[http://dx.doi.org/10.1002/psc.2581] [PMID: 24285588]
[19]
Gieselman, M.D.; Xie, L.; van Der Donk, W.A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett., 2001, 3(9), 1331-1334.
[http://dx.doi.org/10.1021/ol015712o] [PMID: 11348227]
[20]
Gieselman, M.D.; Zhu, Y.; Zhou, H.; Galonic, D.; van der Donk, W.A. Selenocysteine derivatives for chemoselective ligations. ChemBioChem, 2002, 3(8), 709-716.
[http://dx.doi.org/10.1002/1439-7633(20020802)3:8<709::AID-CBIC709>3.0.CO;2-8] [PMID: 12203969]
[21]
Mitchell, N.J.; Malins, L.R.; Liu, X.; Thompson, R.E.; Chan, B.; Radom, L.; Payne, R.J. Rapid additive-free selenocystine-selenoester peptide ligation. J. Am. Chem. Soc., 2015, 137(44), 14011-14014.
[http://dx.doi.org/10.1021/jacs.5b07237] [PMID: 26487084]
[22]
Mitchell, N.J.; Kulkarni, S.S.; Malins, L.R.; Wang, S.; Payne, R.J. One-pot ligation-oxidative deselenization at selenocysteine and selenocystine. Chemistry, 2017, 23(4), 946-952.
[http://dx.doi.org/10.1002/chem.201604709] [PMID: 27859731]
[23]
Lu, D.; Yin, H.; Wang, S.; Tang, F.; Huang, W.; Wang, P. Chemical synthesis of the homogeneous granulocyte-macrophage colony-stimulating factor through se-auxiliary-mediated ligation. J. Org. Chem., 2020, 85(3), 1652-1660.
[http://dx.doi.org/10.1021/acs.joc.9b02232] [PMID: 31793779]
[24]
Wittinghofer, A.; Waldmann, H. Ras-A molecular switch involved in tumor formation. Angew. Chem. Int. Ed. Engl., 2000, 39(23), 4192-4214.
[http://dx.doi.org/10.1002/1521-3773(20001201)39:23<4192::AID-ANIE4192>3.0.CO;2-Y] [PMID: 29711921]
[25]
Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer, 2011, 11(11), 761-774.
[http://dx.doi.org/10.1038/nrc3106] [PMID: 21993244]
[26]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[27]
Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1), 17-33.
[http://dx.doi.org/10.1016/j.cell.2017.06.009] [PMID: 28666118]
[28]
Hancock, J.F. Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol., 2003, 4(5), 373-384.
[http://dx.doi.org/10.1038/nrm1105] [PMID: 12728271]
[29]
Mor, A.; Philips, M.R. Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol., 2006, 24, 771-800.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090723] [PMID: 16551266]
[30]
Ahearn, I.M.; Haigis, K.; Bar-Sagi, D.; Philips, M.R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol., 2011, 13(1), 39-51.
[http://dx.doi.org/10.1038/nrm3255] [PMID: 22189424]
[31]
Triola, G.; Waldmann, H.; Hedberg, C. Chemical biology of lipidated proteins. ACS Chem. Biol., 2012, 7(1), 87-99.
[http://dx.doi.org/10.1021/cb200460u] [PMID: 22148864]
[32]
Zhang, S.Y.; Sperlich, B.; Li, F.Y.; Al-Ayoubi, S.; Chen, H.X.; Zhao, Y.F.; Li, Y.M.; Weise, K.; Winter, R.; Chen, Y.X. Phosphorylation weakens but does not inhibit membrane binding and clustering of K-Ras4B. ACS Chem. Biol., 2017, 12(6), 1703-1710.
[http://dx.doi.org/10.1021/acschembio.7b00165] [PMID: 28448716]
[33]
Hu, J.; Zhu, P.; Li, Y.; Chen, Y. Synthesis of Ras proteins and their application in biofunctional studies. Chin. Chem. Lett., 2018, 29(7), 1043-1050.
[http://dx.doi.org/10.1016/j.cclet.2018.05.035]
[34]
Liu, J.; Zheng, F.; Cheng, R.; Li, S.; Rozovsky, S.; Wang, Q.; Wang, L. Site-specific incorporation of selenocysteine using an expanded genetic code and palladium-Mediated chemical deprotection. J. Am. Chem. Soc., 2018, 140(28), 8807-8816.
[http://dx.doi.org/10.1021/jacs.8b04603] [PMID: 29984990]
[35]
Satheeshkumar, K.; Raju, S.; Singh, H.B.; Butcher, R.J. Reactivity of selenocystine and tellurocystine: structure and antioxidant activity of the derivatives. Chemistry, 2018, 24(66), 17513-17522.
[http://dx.doi.org/10.1002/chem.201803776] [PMID: 30225936]
[36]
Diaz-Rodriguez, V.; Mullen, D.G.; Ganusova, E.; Becker, J.M.; Distefano, M.D. Synthesis of peptides containing C-terminal methyl esters using trityl side-chain anchoring: application to the synthesis of a-factor and a-factor analogs. Org. Lett., 2012, 14(22), 5648-5651.
[http://dx.doi.org/10.1021/ol302592v] [PMID: 23121562]
[37]
Yang, Y. Side Reactions in Peptide Synthesis, 1st ed; Elsevier Inc: Copenhagen, 2016.
[http://dx.doi.org/10.1016/B978-0-12-801009-9.00007-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy