Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Research Article

Secondary Metabolites of Endophytic Fungi from Newbouldia laevis and Cassia tora Leaves: Prospecting for New Antimicrobial Agents

Author(s): Anthonia A. Amaechi, Angus N. Oli*, Ugochukwu M. Okezie, Samson A. Adejumo, Chika C. Abba, Ifeanyi J. Okeke and Festus B.C. Okoye

Volume 16, Issue 1, 2021

Published on: 22 December, 2020

Page: [50 - 62] Pages: 13

DOI: 10.2174/1574891X15999201222152646

Price: $65

conference banner
Abstract

Aim: This study tries to find new antimicrobial agents using some Nigerian plants.

Background: Antimicrobial compounds from fungi endophytes have shown great promise in mitigating the threats of resistant pathogens.

Objective: The study evaluated the in vitro antimicrobial property of secondary metabolites of endophytic fungi isolated from Newbouldia laevis and Cassia tora leaves.

Methods: Ten endophytic fungi were isolated from the two plants’ leaves and later fermented on local rice for 21 days. Thereafter, their secondary metabolites were extracted using ethyl acetate. The antibacterial activity of the extracts on the test organisms were determined using agar diffusion and agar dilution methods, while the bioactive constituents were identified using high performance liquid chromatography coupled to diode array detector.

Results: Nine of the crude extracts (NL1, NL3, NL6, NL10, NL12, CT2, CT7, CT9 and CT10) of the fungi isolates inhibited at least one of the microorganisms studied with maximum and minimum inhibition-zone-diameter of 14 mm and 2 mm, respectively while CT1 did not inhibit any of the tested microorganisms at tested concentrations. The extracts exhibited good antifungal activity, inhibiting the growth of both C. albicans and Trichophyton tested with an inhibition-zone-diameter ranging between 4-8 mm and 7-14 mm, respectively. The endophytic fungi extracts-CT2 and NL1-exhibited the best antimicrobial activity, inhibiting most of the tested microorganisms. HPLC-DAD analysis of the endophytic fungal extracts identified some classes of compounds such as catechin derivatives, benzoic acid derivatives and apigenin, which were previously reported to have antimicrobial potentials.

Conclusion: Newbouldia laevis and Cassia tora leaves house endophytic fungi capable of yielding secondary metabolites with potential as anti-infective agents.

Keywords: Fungal secondary metabolites, fungal endophytes, Newbouldia laevis, Cassia tora, antimicrobial properties, Nigerian plants.

Graphical Abstract

[1]
Ejiofor SO, Edeh AD, Ezeudu CE, Gugu TH, Oli AN. Multi-Drug Resistant Acute Otitis Media amongst Children Attending Out-Patient Clinic in Chukwuemeka Odumegwu Ojukwu University Teaching Hospital, Awka, South-East Nigeria. Adv Microbiol 2016; 6: 495-501.
[http://dx.doi.org/10.4236/aim.2016.67049]
[2]
Oli AN, Okoli KC, Ujam NT, Adje DU, Ezeobi I. Health professionals’ knowledge about relative prevalence of hospital-acquired infections in Delta State of Nigeria. Pan Afr Med J 2016; 24: 148.
[http://dx.doi.org/10.11604/pamj.2016.24.148.9270] [PMID: 27642486]
[3]
Allen J, Jeffrey P, Williams R, Ratcliffe AJ. Approaches to assessing drug safety in the discovery phase. Drugs Future 2010; 35(1): 67-75.
[http://dx.doi.org/10.1358/dof.2010.035.01.1452391]
[4]
Oli AN, Obialor WO, Ifeanyichukwu MO, et al. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9: 13-30.
[5]
Mathur S, Hoskins C. Drug development: Lessons from nature. Biomed Rep 2017; 6(6): 612-4.
[http://dx.doi.org/10.3892/br.2017.909] [PMID: 28584631]
[6]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[7]
Strobel G, Daisy B, Castillo U. The biological promise of microbial endophytes and their natural products. Plant Pathol J 2005; 4(2): 161-76.
[8]
Hardoim PR, van Overbeek LS, Berg G, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79(3): 293-320.
[http://dx.doi.org/10.1128/MMBR.00050-14] [PMID: 26136581]
[9]
Miliute I, Buzaite O, Baniulis D, Stanys V. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 2015; 102(4): 465-78.
[http://dx.doi.org/10.13080/z-a.2015.102.060]
[10]
Rajamanikyam M, Vadlapudi V, Upadhyayula SM. Endophytic Fungi as Novel Resources of natural Therapeutics. Braz Arch Biol Technol 2017; 60: e17160542.
[http://dx.doi.org/10.1590/1678-4324-2017160542]
[11]
Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front Microbiol 2016; 7: 1538.
[http://dx.doi.org/10.3389/fmicb.2016.01538] [PMID: 27746767]
[12]
Okoye FBC. Nworu. C.S.; Debbab, A.; Esimone, C.O.; Proksch, P. Two new Cytochalasins from an endophytic fungus, KL-1.1 isolated from Psidium guajava leaves. Phytochem Lett 2015; 14: 51-5.
[http://dx.doi.org/10.1016/j.phytol.2015.09.004]
[13]
Okoye FB, Lu S, Nworu CS, et al. Depsidone and diaryl ether derivatives from the fungus Corynespora cassiicola, an endophyte of Gongronema latifolium. Tetrahedron Lett 2013; 54(32): 4210-4.
[14]
Okoye FBC, Nworu CS, Akah PA, Esimone CO, Debbab A, Proksch P. Inhibition of inflammatory mediators and reactive oxygen and nitrogen species by some depsidones and diaryl ether derivatives isolated from Corynespora cassiicola, an endophytic fungus of Gongronema latifolium leaves. Immunopharmacol Immunotoxicol 2013; 35(6): 662-8.
[http://dx.doi.org/10.3109/08923973.2013.834930] [PMID: 24041314]
[15]
Oli AN, Itumo CJ, Okam PC, et al. Carbapenem-Resistant Enterobacteriaceae Posing a Dilemma in Effective Healthcare Delivery. Antibiotics 2019; 8(4): E156.
[http://dx.doi.org/10.3390/antibiotics8040156] [PMID: 31547023]
[16]
Abba CC, Eze PM, Abonyi DO, et al. Phenolic Compounds from Endophytic Pseudofusicoccum sp. Isolated from Annona muricate. Trop J Natural Product Res 2018; 2(7): 332-7.
[http://dx.doi.org/10.26538/tjnpr/v2i7.6]
[17]
Kharwar RN, Verma VC, Strobel GA, Ezra D. The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 2008; 95: 228-32.
[18]
Enemchukwu CM, Oli AN, Okoye EI, et al. Winning the War against Multi-Drug Resistant Diarrhoeagenic Bacteria. Microorganisms 2019; 7(7): 197.
[http://dx.doi.org/10.3390/microorganisms7070197] [PMID: 31295889]
[19]
Sadeghi-Nejad B, Sadhu Deokule S. Antidermatophytic Activity of Pogostemon parviflorus Benth. Iran J Pharm Res 2010; 9(3): 279-85.
[PMID: 24363738]
[20]
Reygaert WC. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BioMed Res Int 2018; 2018: 9105261.
[http://dx.doi.org/10.1155/2018/9105261] [PMID: 30105263]
[21]
Heleno SA, Ferreira IC, Esteves AP, et al. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem Toxicol 2013; 58: 95-100.
[http://dx.doi.org/10.1016/j.fct.2013.04.025] [PMID: 23607932]
[22]
Abonyi DO, Eze PM, Abba CC, et al. Metabolites of endophytic Colletotrichum gloeosporioides isolated from leaves of Carica papaya. American J Essential Oils and Natural Products 2019; 7: 39-46.
[23]
Mai W, Chen D, Li X. Antioxidant Activity of Rhizoma Cibotii in vitro. Adv Pharm Bull 2012; 2(1): 107-14.
[http://dx.doi.org/10.5681/apb.2012.015] [PMID: 24312778]
[24]
Firáková S, Šturdíková M, Múčková M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 2007; 62(3): 251-7.
[http://dx.doi.org/10.2478/s11756-007-0044-1]
[25]
Wätjen W, Debbab A, Hohlfeld A, et al. Enniatins A1, B and B1 from an endophytic strain of Fusarium tricinctum induce apoptotic cell death in H4IIE hepatoma cells accompanied by inhibition of ERK phosphorylation. Mol Nutr Food Res 2009; 53(4): 431-40.
[http://dx.doi.org/10.1002/mnfr.200700428] [PMID: 19065580]
[26]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[27]
Wardecki T, Brötz E, De Ford C, et al. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity. Antonie van Leeuwenhoek 2015; 108(2): 391-402.
[http://dx.doi.org/10.1007/s10482-015-0492-5] [PMID: 26036671]
[28]
Mo EJ, Ahn JH, Jo YH, Kim SB, Hwang BY, Lee MK. Inositol Derivatives and Phenolic Compounds from the Roots of Taraxacum coreanum. Molecules 2017; 22(8): 1349.
[http://dx.doi.org/10.3390/molecules22081349] [PMID: 28805750]
[29]
Abonyi DO, Eze PM, Abba CC, et al. Biologically active phenolic acids produced by Aspergillus sp., an endophyte of Moringa oleifera. Eur J Biol Res 2018; 8(3): 158-68.
[30]
Arakawa H, Maeda M, Okubo S, Shimamura T. Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 2004; 27(3): 277-81.
[http://dx.doi.org/10.1248/bpb.27.277] [PMID: 14993788]
[31]
Jeon J, Kim JH, Lee CK, Oh CH, Song HJ. The Antimicrobial Activity of (-)-Epigallocatehin-3-Gallate and Green Tea Extracts against Pseudomonas aeruginosa and Escherichia coli Isolated from Skin Wounds. Ann Dermatol 2014; 26(5): 564-9.
[http://dx.doi.org/10.5021/ad.2014.26.5.564] [PMID: 25324647]
[32]
Yoda Y, Hu ZQ, Zhao WH, Shimamura T. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J Infect Chemother 2004; 10(1): 55-8.
[http://dx.doi.org/10.1007/s10156-003-0284-0] [PMID: 14991521]
[33]
Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 2013; 168(5): 1059-73.
[http://dx.doi.org/10.1111/bph.12009] [PMID: 23072320]
[34]
Matsumoto Y, Kaihatsu K, Nishino K, Ogawa M, Kato N, Yamaguchi A. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Front Microbiol 2012; 3: 53.
[http://dx.doi.org/10.3389/fmicb.2012.00053] [PMID: 22355295]
[35]
Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol 2019; 10: 911.
[http://dx.doi.org/10.3389/fmicb.2019.00911] [PMID: 31156565]
[36]
Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014; 19(10): 16240-65.
[http://dx.doi.org/10.3390/molecules191016240] [PMID: 25310150]
[37]
Silva AC, Santana EF, Saraiva AM, et al. Which approach is more effective in the selection of plants with antimicrobial activity? Evid Based Complement Alternat Med 2013; 2013: 308980.
[http://dx.doi.org/10.1155/2013/308980] [PMID: 23878595]
[38]
Fabry W, Okemo PO, Ansorg R. Antibacterial activity of East African medicinal plants. J Ethnopharmacol 1998; 60(1): 79-84.
[http://dx.doi.org/10.1016/S0378-8741(97)00128-1] [PMID: 9533435]
[39]
Uzor PF, Ebrahim W, Osadebe PO, et al. Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae-Evidence for a metabolic partnership. Fitoterapia 2015; 105: 147-50.
[http://dx.doi.org/10.1016/j.fitote.2015.06.018] [PMID: 26136060]
[40]
Ebada SS, Eze P, Okoye FBC, Esimone CO, Proksch P. The Fungal Endophyte Nigrospora oryzae Produces Quercetin Monoglycosides Previously Known Only from Plants. ChemistrySelect 2016; 1(11): 2767-71.
[http://dx.doi.org/10.1002/slct.201600478]
[41]
Nurkenov OA, Satpaeva ZB, Kulakov IV, Akhmetova SB, Zhaugasheva SK. Synthesis and antimicrobial activity of o-and p-hydroxybenzoic acid thiosemicarbazides. Russ J Gen Chem 2012; 82(4): 668-71.
[http://dx.doi.org/10.1134/S107036321204010X]
[42]
Chao CY, Yin MC. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog Dis 2009; 6(2): 201-6.
[http://dx.doi.org/10.1089/fpd.2008.0187] [PMID: 19099360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy