Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis of Some New Heterocyclic Azo Dyes Derived from 2-amino-3-cyano-4.6- diarylpyridines and Investigation of its Absorption Spectra and Stability using the DFT

Author(s): El-Sayed M. Abdelrehim*

Volume 18, Issue 5, 2021

Published on: 18 December, 2020

Page: [506 - 516] Pages: 11

DOI: 10.2174/1570179417666201218164519

Price: $65

Abstract

Introduction: In continuation of our interest in 2-amino-3-cyano-4.6-diarylpyridines reactions in various fields of organic chemistry which were previously used for the synthesis of many heterocyclic compounds and where dyes generally have many applications especially when benzene or anthraquinone azo dyes are replaced with heterocyclic azo dyes so new derivatives of heterocyclic azo dyes derived from 2-amino-3-cyano- 4.6-diarylpyridines were prepared.

Materials and Methods: The IR spectra (KBr), NMR, elemental microanalyses and mass spectra, were performed at different faculties of science in Egypt. Absorption spectra were recorded on Unicam SP 750 in DMF and acetone using 1x 10-5 mol l-1 of dye concentration. Optimization was performed using density functional theory (DFT) and time dependent-DFT by applying Becke’s three-parameter hybrid exchange functional with Lee– Yang–Parr gradient-corrected correlation (B3LYP functional). The chemical reagents used in the synthesis were purchased from Fluka, Sigma and Aldrich.

Results and Discussion: The structure of the preparing Heterocyclic azo dyes is proven using spectroscopic tools and elemental analysis, and investigation of its absorption spectra indicate the effect of both solvent and substituent on absorption maximum. DFT calculations were performed on some of the selected dyes.

Conclusion: Structures of newly synthesized heterocyclic azo dyes were confirmed using elemental analysis, IR, 1H-NMR, 13C-NMR and mass spectral data. DFT theory was used in explaining the electronic properties of some selected dyes, where the energy gap can help in understanding the reactivity behaviour and stability of these compounds. Absorption spectra indicate the effect of both solvent and substituent on absorption maximum.

Keywords: 2-amino-3-cyano-4, 6-diaryl pyridines, azopyridine, carbonitriles, azo dyes, absorption spectra, solvent, substituent effect, DFT calculations.

« Previous
Graphical Abstract

[1]
Ming, S.Y.; Ing, J.W. Synthesis and absorption spectra of hetarylazo dyes derived from coupler 4-aryl-3-cyano-2-aminothiophenes. Dyes Pigments, 2003, 61, 243.
[2]
Yuh, W.H.; Wei, H.Y. Synthesis and properties of heterocyclic monoazodyes derived from 3-cyano-4-trifluoromethyl-6-substituted-2(1H)-pyridinethiones. Dyes Pigments, 2006, 70, 60.
[http://dx.doi.org/10.1016/j.dyepig.2005.04.009]
[3]
Tawfik, A.K.; Mohamed, R. A Review on Synthesis of Nitrogen-containing Heterocyclic Dyes for Textile Fibers - Part 1: Five and Six-membered Heterocycles. Egypt. J. Chem., 2018, 61, 897.
[4]
Towns, A. Developments in azo disperse dyes derived from heterocyclic diazo components. Dyes Pigments, 1999, 42(1), 3.
[http://dx.doi.org/10.1016/S0143-7208(99)00005-4]
[5]
Hunger, K. Industrial dyes: chemistry, properties, applications; John Wiley & Sons, 2007.
[6]
Abou-Yousef, H.; Khattab, T.A.; Youssef, Y.A.; Al-Balakocy, N.; Kamel, S. Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes. Talanta, 2017, 170, 137-145.
[http://dx.doi.org/10.1016/j.talanta.2017.04.002] [PMID: 28501149]
[7]
Rather, L.J.; Akhter, S.; Hassan, Q.P.; Mohammad, F. Chemistry of plant dyes: Applications and environmental implications of dyeing processes. Curr. Environ. Eng., 2017, 4(2), 103.
[http://dx.doi.org/10.2174/2212717804666161216114949]
[8]
Khattab, T.A.; Rehan, M.; Aly, S.A.; Hamouda, T.; Haggag, K.M.; Klapötke, T.M. Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: Naked-eye colorimetric sensor. J. Environ. Chem. Eng., 2017, 5(3), 2515.
[http://dx.doi.org/10.1016/j.jece.2017.05.001]
[9]
Murphree, S.S. Heterocyclic dyes: Preparation, properties, and applications. Progress.Heterocyclic Chemistry; Elsevier, 2011, p. 21.
[10]
Khattab, T.A.; Gaffer, H.E. Synthesis and application of novel tricyanofuran hydrazone dyes as sensors for detection of microbes. Color. Technol., 2016, 132(6), 460.
[http://dx.doi.org/10.1111/cote.12233]
[11]
Khattab, T.A.; Tiu, B.D.B.; Adas, S.; Bunge, S.D.; Advincula, R.C. pH triggered smart organogel from DCDHF-Hydrazone molecular switch. Dyes Pigments, 2016, 130, 327.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.044]
[12]
Centeno, S.A.; Buisan, V.L.; Ropret, P. Raman study of synthetic organic pigments and dyes in early lithographic inks (1890–1920). J. Raman Spectrosc., 2006, 37(10), 1111.
[http://dx.doi.org/10.1002/jrs.1594]
[13]
Khattab, T.A.; Rehan, M.; Hamouda, T. Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohydr. Polym., 2018, 195, 143-152.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.084] [PMID: 29804962]
[14]
Khattab, T.A.; Haggag, K.M.; Elnagdi, M.H.; Abdelrahman, A.A.; Abdelmoez Aly, S. Microwave‐ Assisted Synthesis of Arylazoaminopyrazoles as Disperse Dyes for Textile Printing. Z. Anorg. Allg. Chem., 2016, 642(13), 766.
[http://dx.doi.org/10.1002/zaac.201600148]
[15]
Fan, Z.; Song, S.; Li, W.; Geng, K.; Xu, Y.; Miao, Z-H.; Zhang, A. Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones: an economical approach for the synthesis of N-substituted indoles. Org. Lett., 2015, 17(2), 310-313.
[http://dx.doi.org/10.1021/ol503404p] [PMID: 25541643]
[16]
Hallas, G.; Choi, J-H. Synthesis and spectral properties of azo dyes derived from 2-aminothiophenes and 2-aminothiazoles. Dyes Pigments, 1999, 42(3), 249.
[http://dx.doi.org/10.1016/S0143-7208(99)00031-5]
[17]
Ewelina, W.T. Luk asz, G., Azo dyes–biological activity and synthetic Strategy. Chemik Science-Technique-Market, 2012, 66(12), 1298.
[18]
Elsaedany, S.K.; Zein, M.A.; Abdelrehim, E.M.; Keshk, R.M. Synthesis, Anti-Microbial, and Cytotoxic Activities Evaluation of Some New Pyrido. 2,3-d Pyrimidines. J. Heterocycl. Chem., 2016, 53, 1534.
[http://dx.doi.org/10.1002/jhet.2460]
[19]
Abdelrehim, E.M.; Zein, M.A. Synthesis of Some Novel Pyrido[2,3‐d]pyrimidine and Pyrido[3,2‐e][1,3,4]triazolo and Tetrazolo[1,5‐c]pyrimidine Derivatives as Potential Antimicrobial and Anticancer Agents. J. Heterocycl. Chem., 2018, 55, 419.
[http://dx.doi.org/10.1002/jhet.3058]
[20]
Abdelrehim, E.M.; El-Sayed, D.S. A new synthesis of poly heterocyclic compounds containing [1,2,4]triazolo and [1,2,3,4]tetrazolo moieties and their DFT study as expected anti-cancer reagents. Curr. Org. Synth., 2020, 17(3), 211-223.
[http://dx.doi.org/10.2174/1570179417666200226092516] [PMID: 32101129]
[21]
Abdelrehim, E.M.; El-Sayed, D.S. Geometric isomerism and DFT theoretical explanation of unexpected formation of N, N-disubstituted formamidines from 2-amino-3-cyano-4.6-diarylpyridines. Current Chinese chemistry. 2020.
[22]
Shi, F.; Tu, S.; Fang, F.; Li, T. One-pot synthesis of 2-amino-3-cyanopyridine derivatives under microwave irradiation without solvent. ARKIVOC, 2005, (i), 137.
[http://dx.doi.org/10.3998/ark.5550190.0006.114]
[23]
Gupta, R.; Jain, A.; Jain, M.; Joshi, R. 'One Pot’Synthesis of 2-Amino-3-cyano-4, 6-diarylpyridines under Ultrasonic Irradiation and Grindstone. Technology Bull Korean Chem Soc, 2010, 31, 3180.
[http://dx.doi.org/10.5012/bkcs.2010.31.11.3180]
[24]
Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric identification of compounds, 4th ed; , 1981, p. 309.
[25]
Becke, A.D. Density-functional thermochemistry – III: the role of exact exchange. J. Chem. Phys., 1993, (98), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[26]
Treutler, O.; Ahlrichs, R. Efficient molecular numerical integration schemes. J. Chem. Phys., 1995, (102), 346-354.
[http://dx.doi.org/10.1063/1.469408]
[27]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N., Jr; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. GAUSSIAN 09, RevisionB.04; Gaussian: Pittsburgh, PA, 2009.
[28]
Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys., 2006, 124(9), 94107.
[http://dx.doi.org/10.1063/1.2173258] [PMID: 16526845]
[29]
Furche, F.; Ahlrichs, R.J. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 2002, 117, 7433-7474.
[http://dx.doi.org/10.1063/1.1508368]
[30]
Mansour, M.; Issa, T.B.; Issaoui, N.; Harchani, A.; Puebla, E.G.; Ayed, B. Synthesis, crystal structure, vibrational spectroscopy, optical investigation and DFT study of a novel hybrid material: 4, 4′-diammoniumdiphenylsulfone iodobusmuthate. J. Mol. Struct., 2019, (1197), 478-486.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.043]
[31]
Li, Y.; Fenga, J-K.; Ren, A-M. Theoretical studies on the electronic and optical properties of two thiophene–fluorene based π-conjugated copolymers. Polymer (Guildf.), 2005, (46), 10970-10981..

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy