Abstract
Backgroud: The major objective of resource management systems in the cloud environments is to assist providers in making consistent and cost-effective decisions related to dynamic resource allocation. However, because of the demand changes of the applications and the exponential evolution of the cloud, the resource management systems are constantly called into question with regard to their ability to guarantee effective resource provisioning.
Objective: To tackle these challenges, future demand prediction is a practical solution that has been adopted in the literature. The prediction has widely relied on CPU utilization since it is considered a leading cause of the Quality of Service dropping.
Methods: The successful application of artificial intelligence techniques in forecasting problems motivated us to use the Kohonen Self Organizing Maps that try to capture the gathered empirical CPU load time series in regular behaviors to perform an accurate forecast. The proposed solution is a two-step approach that first classifies the collected data and then predicts the future CPU load.
Results and Conclusion: The experimental results show that our proposed system outperforms other models reported in the literature. In addition, we proved that Self Organizing Maps known for their strength in classification are also effective for prediction.
Keywords: Cloud computing, resources management, load prediction, times series, clustering, self organizing map.
Graphical Abstract