Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Recent Progress in 5-Hydroxymethylfurfural Catalytic Oxidation to 2,5-Furandicarboxylic Acid

Author(s): Chiliu Cai, Haiyong Wang, Haosheng Xin, Changhui Zhu, Chenguang Wang, Qi Zhang, Qiying Liu* and Longlong Ma

Volume 25, Issue 3, 2021

Published on: 10 December, 2020

Page: [404 - 416] Pages: 13

DOI: 10.2174/1385272824999201210192104

Price: $65

Abstract

Biomass has attracted much attention because of its clean and renewable characteristics. The conversion of biomass into various fine chemicals and high value-added fuels is one of the important ways to solve the energy shortage and environmental pollution. 2,5-furan dicarboxylic acid (FDCA), a kind of important and promising new bio-based monomer, has attracted the attention of many researchers due to its wide applications in different industries. Therefore, many efforts have been made over various metal catalysts for FDCA production from this biomass-derived platform chemical, 5hydroxymethylfurfural (HMF). In this review, we introduced the reaction pathways of the aerobic oxidation of HMF to FDCA and summarized the recent progress of different catalysts and catalysis for HMF aerobic oxidation. Catalytic performance and reaction pathways are discussed in detail. Finally, conclusions and the remaining challenges are proposed and further prospects are presented in view of the technical aspects.

Keywords: Biomass, 5-hydroxymethylfurfural, 2, 5-furandicarboxylic acid, catalytic oxidation, pathway, catalysts.

Graphical Abstract

[1]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. Engl., 2007, 46(38), 7164-7183.
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[2]
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
[3]
Clark, J.H.; Deswarte, F.E.I.; Farmer, T.J. The integration of green chemistry into future biorefineries. Biofuels Bioprod. Biorefin., 2009, 3(1), 72-90.
[http://dx.doi.org/10.1002/bbb.119]
[4]
Zhou, Z.; Zhang, J.; Qin, J.; Li, D.; Wu, W. Ordered mesoporous NiCeAl containing catalysts for hydrogenolysis of sorbitol to glycols. Russ. J. Phys. Chem. A, 2018, 92(3), 456-465.
[http://dx.doi.org/10.1134/S0036024418030378]
[5]
Liu, C.; Zhang, Z.; Zhai, X.; Wang, X.; Gui, J.; Zhang, C.; Zhu, Y.; Li, Y. Synergistic effect between copper and different metal oxides in the selective hydrogenolysis of glucose. New J. Chem., 2019, 43(9), 3733-3742.
[http://dx.doi.org/10.1039/C8NJ05815F]
[6]
Vijaya Shanthi, R.; Mahalakshmy, R.; Thirunavukkarasu, K.; Sivasanker, S. Hydrogenolysis of sorbitol over Ni supported on Ca- and Ca(Sr)-hydroxyapatites. Mol. Catal., 2018, 451, 170-177.
[http://dx.doi.org/10.1016/j.mcat.2017.12.031]
[7]
Huber, G.W.; Dumesic, J.A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal. Today, 2006, 111(1), 119-132.
[http://dx.doi.org/10.1016/j.cattod.2005.10.010]
[8]
Gilkey, M.J.; Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal., 2016, 6(3), 1420-1436.
[http://dx.doi.org/10.1021/acscatal.5b02171]
[9]
De Clercq, R.; Dusselier, M.; Sels, B.F. Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chem., 2017, 19(21)50125040
[http://dx.doi.org/10.1039/C7GC02040F]
[10]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev., 2012, 41(24), 8075-8098.
[http://dx.doi.org/10.1039/c2cs35188a] [PMID: 22872312]
[11]
Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem., 2014, 16(2), 516-547.
[http://dx.doi.org/10.1039/c3gc41492b]
[12]
Roy Goswami, S.; Dumont, M.J.; Raghavan, V. Starch to value added biochemicals. Starke, 2016, 68(3-4), 274-286.
[http://dx.doi.org/10.1002/star.201500058]
[13]
van Putten, R.J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113(3), 1499-1597.
[http://dx.doi.org/10.1021/cr300182k] [PMID: 23394139]
[14]
Ventura, M.; Dibenedetto, A.; Aresta, M. Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water. Inorg. Chim. Acta, 2017, 470, 11-21.
[http://dx.doi.org/10.1016/j.ica.2017.06.074]
[15]
Rivero-Mendoza, D.E.; Stanley, J.N.G.; Scott, J.; Aguey-Zinsou, K.F. An alumina-supported Ni-labased catalyst for producing synthetic natural gas. Catalysts, 2016, 6(11), 170.
[http://dx.doi.org/10.3390/catal6110170]
[16]
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[http://dx.doi.org/10.1021/cr068360d] [PMID: 16967928]
[17]
Kunkes, E.L.; Simonetti, D.A.; West, R.M.; Serrano-Ruiz, J.C.; Gärtner, C.A.; Dumesic, J.A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900), 417-421.
[http://dx.doi.org/10.1126/science.1159210] [PMID: 18801970]
[18]
Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev., 2015, 115(21), 11559-11624.
[http://dx.doi.org/10.1021/acs.chemrev.5b00155] [PMID: 26479313]
[19]
Van Gorsel, H.; Li, C.; Kerbel, E.L.; Smits, M.; Kader, A.A. Compositional characterization of prune juice. J. Agric. Food Chem., 1992, 40(5), 784-789.
[http://dx.doi.org/10.1021/jf00017a016]
[20]
Liu, C.; Zhang, C.; Liu, K.; Wang, Y.; Fan, G.; Sun, S.; Xu, J.; Zhu, Y.; Li, Y. Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: a comparative study of active metals. Biomass Bioenergy, 2015, 72, 189-199.
[http://dx.doi.org/10.1016/j.biombioe.2014.11.005]
[21]
Carlini, C.; Patrono, P.; Galletti, A.M.R.; Sbrana, G.; Zima, V. Selective oxidation of 5hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Appl. Catal. A Gen., 2005, 289(2), 197-204.
[http://dx.doi.org/10.1016/j.apcata.2005.05.006]
[22]
Geilen, F.M.A.; vom Stein, T.; Engendahl, B.; Winterle, S.; Liauw, M.A.; Klankermayer, J.; Leitner, W. Highly selective decarbonylation of 5-(hydroxymethyl)furfural in the presence of compressed carbon dioxide. Angew. Chem. Int. Ed. Engl., 2011, 50(30), 6831-6834.
[http://dx.doi.org/10.1002/anie.201007582] [PMID: 21661080]
[23]
Mascal, M.; Nikitin, E.B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. Engl., 2008, 47(41), 7924-7926.
[http://dx.doi.org/10.1002/anie.200801594] [PMID: 18671312]
[24]
Luterbacher, J.S.; Alonso, D.M.; Dumesic, J.A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem., 2014, 16(12), 4816-4838.
[http://dx.doi.org/10.1039/C4GC01160K]
[25]
Pal, P.; Saravanamurugan, S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts. ChemSusChem, 2019, 12(1), 145-163.
[http://dx.doi.org/10.1002/cssc.201801744] [PMID: 30362263]
[26]
Gupta, N.K.; Nishimura, S.; Takagaki, A.; Ebitani, K. Hydrotalcite-supported gold-nanoparticlecatalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5furandicarboxylic acid under atmospheric oxygen pressure. Green Chem., 2011, 13(4), 824-827.
[http://dx.doi.org/10.1039/c0gc00911c]
[27]
Mizugaki, T.; Arundhathi, R.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Highly efficient and selective transformations of glycerol using reusable heterogeneous catalysts. ACS Sustain. Chem.& Eng., 2014, 2(4), 574-578.
[http://dx.doi.org/10.1021/sc500006b]
[28]
Deng, J.; Liu, X.; Li, C.; Jiang, Y.; Zhu, J. Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSCAdv, 2015, 5(21), 15930-15939.
[http://dx.doi.org/10.1039/C5RA00242G]
[29]
Hameed, S.; Lin, L.; Wang, A.Q.; Luo, W.H. Recent developments in metal-based catalysts for the catalytic aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid. Catalysts, 2020, 10(1), 26.
[http://dx.doi.org/10.3390/catal10010120]
[30]
Siyo, B.; Schneider, M. Radnik, Jr.; Pohl, M.M.; Langer, P.; Steinfeldt, N. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Appl. Catal. A Gen., 2014, 478, 107-116.
[http://dx.doi.org/10.1016/j.apcata.2014.03.020]
[31]
Sousa, A.F.; Matos, M.; Freire, C.S.R.; Silvestre, A.J.D.; Coelho, J.F.J. New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: a step forward in the development of biobased polyesters. Polymer (Guildf.), 2013, 54(2), 513-519.
[http://dx.doi.org/10.1016/j.polymer.2012.11.081]
[32]
Chen, G.; Van Straalen, N.M.; Roelofs, D. The ecotoxicogenomic assessment of soil toxicity associated with the production chain of 2,5-furandicarboxylic acid (FDCA), a candidate bio-based green chemical building block. Green Chem., 2016, 18(16), 4420-4431.
[http://dx.doi.org/10.1039/C6GC00430J]
[33]
Lancefield, C.S.; Teunissen, L.W.; Weckhuysen, B.M.; Bruijnincx, P.C.A. Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chem., 2018, 20(14), 3214-3221.
[http://dx.doi.org/10.1039/C8GC01366G]
[34]
Eerhart, A.J.J.E.; Faaij, A.P.C.; Patel, M.K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci., 2012, 5(4), 6407-6422.
[http://dx.doi.org/10.1039/c2ee02480b]
[35]
Ball, G.L.; McLellan, C.J.; Bhat, V.S. Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: a category approach. Crit. Rev. Toxicol., 2012, 42(1), 28-67.
[http://dx.doi.org/10.3109/10408444.2011.623149] [PMID: 22050403]
[36]
Chadderdon, D.J.; Xin, L.; Qi, J.; Qiu, Y.; Krishna, P.; More, K.L.; Li, W. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-Furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem., 2014, 16(8), 3778-3786.
[http://dx.doi.org/10.1039/C4GC00401A]
[37]
Liu, X.; Xiao, J.; Ding, H.; Zhong, W.; Xu, Q.; Su, S.; Yin, D. Catalytic aerobic oxidation of 5hydroxymethylfurfural over VO2+ and Cu2+ immobilized on amino functionalized SBA-15. Chem. Eng. J., 2016, 283, 1315-1321.
[http://dx.doi.org/10.1016/j.cej.2015.08.022]
[38]
Liu, X.; Xu, Q.; Liu, J.; Yin, D.; Su, S.; Ding, H. Hydrolysis of cellulose into reducing sugars in ionic liquids. Fuel, 2016, 164, 46-50.
[http://dx.doi.org/10.1016/j.fuel.2015.09.086]
[39]
Lakshmi, D.D.; Rao, B.S.; Lingaiah, N. Synthesis of dimethyl carbonate from methanol and urea over zinc-strontia mixed oxide catalysts. Catal. Commun., 2019, 122(6), 1-4.
[http://dx.doi.org/10.1016/j.catcom.2019.01.005]]
[40]
Ban, H.; Pan, T.; Cheng, Y.; Wang, L.; Li, X. Solubilities of 2,5-furandicarboxylic acid in binary acetic acid + water, methanol + water, and ethanol + water solvent mixtures. J. Chem. Eng. Data, 2018, 63(6), 1987-1993.
[http://dx.doi.org/10.1021/acs.jced.7b01112]]
[41]
Xuan, Y.L.; He, R.; Han, B.; Wu, T.H.; Wu, Y. Catalytic conversion of cellulose into 5hydroxymethylfurfural using PSMIM HSO4 and ZnSO4 center dot 7H2O co-catalyst in biphasic system. Waste Biomass Valoriz., 2018, 9(3), 401-408.
[http://dx.doi.org/10.1007/s12649-016-9752-5]
[42]
Sajid, M.; Zhao, X.B.; Liu, D.H. Production of 2,5-furandicarboxylic acid (FDCA) from 5hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem., 2018, 20(24), 5427-5453.
[http://dx.doi.org/10.1039/C8GC02680G]
[43]
Dijkman, W.P.; Groothuis, D.E.; Fraaije, M.W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew. Chem. Int. Ed. Engl., 2014, 53(25), 6515-6518.
[http://dx.doi.org/10.1002/anie.201402904] [PMID: 24802551]
[44]
Chen, C.T.; Nguyen, C.V.; Wang, Z.Y.; Bando, Y.; Yamauchi, Y.; Bazziz, M.T.S.; Fatehmulla, A.; Farooq, W.A.; Yoshikawa, T.; Masuda, T.; Wu, K.C.W. Hydrogen peroxide assisted selective oxidation of 5-hydroxy-methylfurfural in water under mild conditions. ChemCatChem, 2018, 10(2), 361-365.
[http://dx.doi.org/10.1002/cctc.201701302]
[45]
Nam, D.H.; Taitt, B.J.; Choi, K.S. Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid. ACS Catal., 2018, 8(2), 1197-1206.
[http://dx.doi.org/10.1021/acscatal.7b03152] [PMID: 30775066]
[46]
Miao, Z.; Zhang, Y.; Pan, X.; Wu, T.; Zhang, B.; Li, J.; Yi, T.; Zhang, Z.; Yang, X. Superior catalytic performance of Ce1-xBixO2-delta solid solution and Au/Ce1-xBixO2-delta for 5-hydroxymethylfurfural conversion in alkaline aqueous solution. Catal. Sci. Technol., 2015, 5(2), 1314-1322.
[http://dx.doi.org/10.1039/C4CY01060D]
[47]
Wang, K.F.; Liu, C.L.; Sui, K.Y.; Guo, C.; Liu, C.Z. Efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by magnetic laccase catalyst. ChemBioChem, 2018, 19(7), 654-659.
[http://dx.doi.org/10.1002/cbic.201800008] [PMID: 29334175]
[48]
Davis, S.E.; Zope, B.N.; Davis, R.J. On the mechanism of selective oxidation of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem., 2012, 14(1), 143-147.
[http://dx.doi.org/10.1039/C1GC16074E]
[49]
Davis, S.E.; Benavidez, A.D.; Gosselink, R.W.; Bitter, J.H.; Jong, K.P.D.; Datye, A.K.; Davis, R.J. Kinetics and mechanism of 5-hydroxymethyl-furfural oxidation and their implications for catalyst development. J. Mol. Catal. Chem., 2014, 388, 123-132.
[http://dx.doi.org/10.1016/j.molcata.2013.09.013]
[50]
Siankevich, S.; Savoglidis, G.; Fei, Z.; Laurenczy, G.; Alexander, D.T.L.; Yan, N.; Dyson, P.J. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions. J. Catal., 2014, 315, 67-74.
[http://dx.doi.org/10.1016/j.jcat.2014.04.011]
[51]
Yan, D.; Xin, J.; Zhao, Q.; Gao, K.; Lu, X. Fe-Zr-O catalyzed base-free aerobic oxidation of 5HMF to 2,5-FDCA as a bio-based polyester monomer. Catal. Sci. Technol., 2018, 8(1)164175
[http://dx.doi.org/10.1039/C7CY01704A]
[52]
Yan, D.X.; Xin, J.Y.; Shi, C.Y.; Lu, X.M.; Ni, L.L.; Wang, G.Y.; Zhang, S.J. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic liquids. Chem. Eng. J., 2017, 323, 473-482.
[http://dx.doi.org/10.1016/j.cej.2017.04.021]
[53]
Yang, F.; Ding, Y.; Tang, J.; Zhou, S.; Wang, B.; Kong, Y. Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5hydroxymethylfurfural oxidation. Mol. Catal., 2017, 435, 144-155.
[http://dx.doi.org/10.1016/j.mcat.2017.03.034]
[54]
Yang, Z.; Qi, W.; Su, R.; He, Z. Selective synthesis of 2,5-diformylfuran and 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose catalyzed by magnetically separable catalysts. Energy Fuels, 2016, 31(1), 533-541.
[http://dx.doi.org/10.1021/acs.energyfuels.6b02012]
[55]
Xiaobin, Z.; Venkitasubramanian, P.; Busch, D.; Subramaniam, B. Optimization of Co/Mn/Br catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield and minimize substrate burning. ACS Sustain. Chem.& Eng., 2016, 4(7), 3659-3668.
[http://dx.doi.org/10.1021/acssuschemeng.6b00174]
[56]
Hayashi, E.; Komanoya, T.; Kamata, K.; Hara, M. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with MnO2. ChemSusChem, 2017, 10(4), 654-658.
[http://dx.doi.org/10.1002/cssc.201601443] [PMID: 27925403]
[57]
Song, K.; Su, K.; Li, Z. Study on catalytic synthesis of 2,5-furandicarboxylic acid from 5hydroxymethylfurfural. Mod. Chem. Ind., 2019, 39(9), 135-140.
[58]
Wang, S.; Zhang, Z.; Bing, L. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4–CoOx magnetite nanocatalyst. ACS Sustain. Chem.& Eng., 2015, 3(3), 406-412.
[http://dx.doi.org/10.1021/sc500702q]
[59]
Han, X.; Li, C.; Liu, X.; Xia, Q.; Wang, Y. Selective oxidation of 5-hydroxymethylfurfural to 2,5furandicarboxylic acid over MnOx–CeO2 composite catalysts. Green Chem., 2017, 19(4), 996-1004.
[http://dx.doi.org/10.1039/C6GC03304K]
[60]
Rao, K.T.V.; Rogers, J.L.; Souzanchi, S.; Dessbesell, L.; Ray, M.B.; Xu, C.C. Inexpensive but highly efficient Co-Mn mixed-oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemSusChem, 2018, 11(18), 3323-3334.
[http://dx.doi.org/10.1002/cssc.201800989] [PMID: 30006949]
[61]
Dibenedetto, A.; Ventura, M.; Nocito, F.; Giglio, E.; Cometa, S.; Altomare, A. Tunable mixed oxides based on CeO2 for the selective aerobic oxidation of 5-(hydroxymethyl) furfural to FDCA in water. Green Chem., 2018, 20(17), 3921-3926.
[http://dx.doi.org/10.1039/C8GC00972D]
[62]
Zhang, S.; Sun, X.; Zheng, Z.; Zhang, L. Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catal. Commun., 2018, 113, 19-22.
[http://dx.doi.org/10.1016/j.catcom.2018.05.004]
[63]
Neațu, F.; Marin, R.S.; Florea, M.; Petrea, N.; Pavel, O.D.; Pârvulescu, V.I. Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Appl. Catal. B, 2016, 180, 751-757.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.043]
[64]
Jain, A.; Jonnalagadda, S.C.; Ramanujachary, K.V.; Mugweru, A. Selective oxidation of 5hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catal. Commun., 2015, 58, 179-182.
[http://dx.doi.org/10.1016/j.catcom.2014.09.017]
[65]
Vinke, P.; Poel, W.V.D.; Bekkum, H.V. On the oxygen tolerance of noble metal catalysts in liquid phase alcohol oxidations the influence of the support on catalyst deactivation. Stud. Surf. Sci. Catal., 1991, 59, 385-394.
[http://dx.doi.org/10.1016/S0167-2991(08)61145-3]
[66]
Verdeguer, P.; Merat, N.; Gaset, A. Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J. Mol. Catal., 1993, 85(3), 327-344.
[http://dx.doi.org/10.1016/0304-5102(93)80059-4]
[67]
Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev., 2008, 37(9), 2077-2095.
[http://dx.doi.org/10.1039/b707319b] [PMID: 18762847]
[68]
Zheng, N.; Stucky, G.D. Promoting gold nanocatalysts in solvent-free selective aerobic oxidation of alcohols. Chem. Commun. (Cambridge, England), 2007, 37, 3862-3864.
[http://dx.doi.org/10.1039/B706864F]]
[69]
Casanova, O.; Iborra, S.; Corma, A. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem, 2009, 2(12), 1138-1144.
[http://dx.doi.org/10.1002/cssc.200900137] [PMID: 19760702]
[70]
Albonetti, S.; Lolli, A.; Morandi, V.; Migliori, A.; Lucarelli, C.; Cavani, F. Conversion of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: optimization of active phase and metal-support interaction. Appl. Catal. B, 2015, 163, 520-530.
[http://dx.doi.org/10.1016/j.apcatb.2014.08.026]
[71]
Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles. ACS Catal., 2014, 4(7), 2175-2185.
[http://dx.doi.org/10.1021/cs5003096]
[72]
Pasini, T.; Piccinini, M.; Blosi, M.; Bonelli, R.; Albonetti, S.; Dimitratos, N.; Lopez-Sanchez, J.; Sankar, M.; He, Q.; Kiely, C.; Hutchings, G.; Cavani, F. Selective oxidation of 5-hydroxymethyl-2furfural using supported gold-copper nanoparticles. Green Chem., 2011, 13, 2091-2099.
[http://dx.doi.org/10.1039/c1gc15355b]
[73]
Albonetti, S.; Pasini, T.; Lolli, A.; Blosi, M.; Piccinini, M.; Dimitratos, N.; Lopez-Sanchez, J.A.; Morgan, D.J.; Carley, A.F.; Hutchings, G.J.; Cavani, F. Selective oxidation of 5-hydroxymethyl-2furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal. Today, 2012, 195(1), 120-126.
[http://dx.doi.org/10.1016/j.cattod.2012.05.039]
[74]
Gorbanev, Y.Y.; Klitgaard, S.K.; Woodley, J.M.; Christensen, C.H.; Riisager, A. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem, 2009, 2(7), 672-675.
[http://dx.doi.org/10.1002/cssc.200900059] [PMID: 19593753]
[75]
Schade, O.; Kalz, K.; Neukum, D.; Kleist, W.; Grunwaldt, J.D. Supported gold- and silver-based catalysts for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to 2,5-furandicarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid. Green Chem., 2018, 20(15), 3530-3541.
[http://dx.doi.org/10.1039/C8GC01340C]
[76]
Sahu, R.; Dhepe, P.L. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5hydroxymethyl furfural over supported metal catalysts. React. Kinet. Mech. Catal., 2014, 112(1), 173-187.
[http://dx.doi.org/10.1007/s11144-014-0689-z]
[77]
Kai, Y.; Da, L.; Yajun, F.; Haochen, Y.; Yue, C. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1-xBixO2-δ. J. Catal., 2018, 365, 292-302.
[http://dx.doi.org/10.1016/j.jcat.2018.06.025]
[78]
Pichler, C.M.; Al-Shaal, M.G.; Gu, D.; Joshi, H.; Ciptonugroho, W.; Schüth, F. Ruthenium supported on high-surface-area zirconia as an efficient catalyst for the base-free oxidation of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemSusChem, 2018, 11(13), 2083-2090.
[http://dx.doi.org/10.1002/cssc.201800448] [PMID: 29761659]
[79]
Ferreira, A.D.F.; Mello, M.D.d.; Silva, M.A.P.d. Catalytic oxidation of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid over Ru/Al2O3 in a trickle-bed reactor. Ind. Eng. Chem. Res., 2019, 58(1), 128-137.
[http://dx.doi.org/10.1021/acs.iecr.8b05602]
[80]
Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E.J.M.; Nakajima, K. Aerobic oxidation of 5(hydroxymethyl)furfural cyclic acetal enables selective furan-2,5-dicarboxylic acid formation with CeO2-supported gold catalyst. Angew. Chem. Int. Ed. Engl., 2018, 57(27), 8235-8239.
[http://dx.doi.org/10.1002/anie.201805457] [PMID: 29761616]
[81]
Gorbanev, Y.Y.; Kegnaes, S.r.; Riisager, A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water. Top. Catal., 2011, 54(16-18), 1318-1324.
[http://dx.doi.org/10.1007/s11244-011-9754-2]
[82]
Zhou, C.; Deng, W.; Wan, X.; Zhang, Q.; Yang, Y.; Wang, Y. Inside cover: functionalized carbon nanotubes for biomass conversion: the base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem, 2015, 7(18), 2722-2722.
[http://dx.doi.org/10.1002/cctc.201500957]
[83]
Zheng, L.; Zhao, J.; Du, Z.; Zong, B.; Liu, H. Efficient aerobic oxidation of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts. Sci. China Chem., 2017, 60(7), 950-957.
[http://dx.doi.org/10.1007/s11426-016-0489-3]
[84]
Villa, A.; Schiavoni, M.; Campisi, S.; Veith, G.M.; Prati, L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem, 2013, 6(4), 609-612.
[http://dx.doi.org/10.1002/cssc.201200778] [PMID: 23495091]
[85]
Han, X.; Li, C.; Guo, Y.; Liu, X.; Zhang, Y.; Wang, Y. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Appl. Catal. A Gen., 2016, 526, 1-8.
[http://dx.doi.org/10.1016/j.apcata.2016.07.011]
[86]
Han, X.; Geng, L.; Guo, Y.; Jia, R.; Liu, X.; Zhang, Y.; Wang, Y. Base-free aerobic oxidation of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green Chem., 2016, 18(6), 1597-1604.
[http://dx.doi.org/10.1039/C5GC02114F]
[87]
Chen, C.; Li, X.; Wang, L.; Liang, T.; Wang, L.; Zhang, Y.; Zhang, J. Highly porous nitrogen-and phosphorus-codoped graphene: an outstanding support for Pd catalysts to oxidize 5hydroxymethylfurfural into 2,5-furandicarboxylic acid. ACS Sustain. Chem.& Eng., 2017, 5(12), 11300-11306.
[http://dx.doi.org/10.1021/acssuschemeng.7b02049]
[88]
Yi, G.; Teong, S.P.; Li, X.; Zhang, Y. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid. ChemSusChem, 2014, 7(8), 2131-2135.
[http://dx.doi.org/10.1002/cssc.201402105] [PMID: 24889713]
[89]
Yi, G.; Teong, S.; Zhang, Y. Base-free conversion of 5-hydroxymethylfurfural to 2,5furandicarboxylic acid over Ru/C catalyst. Green Chem., 2016, 18(4), 979-983.
[http://dx.doi.org/10.1039/C5GC01584G]
[90]
Davis, S.E.; Houk, L.R.; Tamargo, E.C.; Datye, A.K.; Davis, R.J. Oxidation of 5hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today, 2011, 160(1), 55-60.
[http://dx.doi.org/10.1016/j.cattod.2010.06.004]
[91]
Wang, Y.; Yu, K.; Lei, D.; Si, W.; Feng, Y.; Lou, L.L.; Liu, S. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions. ACS Sustain. Chem.& Eng., 2016, 4(9), 4752-4761.
[http://dx.doi.org/10.1021/acssuschemeng.6b00965]
[92]
Choudhary, H.; Ebitani, K. Hydrotalcite-supported PdPt-catalyzed aerobic oxidation of 5hydroxymethylfurfural to 2,5-furandicarboxylic acid in water. Chem. Lett., 2016, 45(6), 613-615.
[http://dx.doi.org/10.1246/cl.160178]
[93]
Liu, B.; Ren, Y.; Zhang, Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5furandicarboxylic acid in water under mild conditions. Green Chem., 2015, 17(3), 1610-1617.
[http://dx.doi.org/10.1039/C4GC02019G]
[94]
Zhang, Z.; Zhen, J.; Liu, B.; Lv, K.; Deng, K. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chem., 2015, 17(2), 1308-1317.
[http://dx.doi.org/10.1039/C4GC01833H]
[95]
Mei, N.; Liu, B.; Zheng, J.; Lv, K.; Tang, D.; Zhang, Z. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water. Catal. Sci. Technol., 2015, 5(6), 3194-3202.
[http://dx.doi.org/10.1039/C4CY01407C]
[96]
Zhang, Y.; Xue, Z.; Jinfang, W.; Zhao, X.; Deng, Y.; Zhao, W.; Mu, T. Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSCAdv, 2016, 6(56), 51229-51237.
[http://dx.doi.org/10.1039/C6RA06792A]
[97]
Cai, J.; Ma, H.; Zhang, J.; Song, Q.; Du, Z.; Huang, Y.; Xu, J. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chemistry, 2013, 19(42), 14215-14223.
[http://dx.doi.org/10.1002/chem.201301735] [PMID: 23999985]
[98]
Lei, D.; Yu, K.; Mengru, L.; Wang, Y.; Wang, Q.; Liu, T.; Liu, P.; Lou, L.L.; Wang, G.C.; Liu, S. Facet effect of single-crystalline Pd nanocrystals for aerobic oxidation of 5-hydroxymethyl-2-furfural. ACS Catal., 2016, 7(1), 421-432.
[http://dx.doi.org/10.1021/acscatal.6b02839]
[99]
Huang, M.; Rej, S.; Hsu, S.C. ChemInform abstract: facet-dependent properties of polyhedral nanocrystals. ChemInform, 2014, 2014, 45.
[http://dx.doi.org/10.1002/chin.201411245]
[100]
Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. J. Am. Chem. Soc., 2019, 141(2), 890-900.
[http://dx.doi.org/10.1021/jacs.8b09917] [PMID: 30612429]
[101]
Zhou, K.; Li, Y. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. Engl., 2012, 51(3), 602-613.
[http://dx.doi.org/10.1002/anie.201102619] [PMID: 22134985]
[102]
Li, Y.; Shen, W. Morphology-dependent nanocatalysts: rod-shaped oxides. Chem. Soc. Rev., 2014, 43(5), 1543-1574.
[http://dx.doi.org/10.1039/C3CS60296F] [PMID: 24356335]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy