Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Elucidating the Biological Activity of Fish-Derived Collagen and Gelatine Hydrolysates using Animal Cell Culture - A Review

Author(s): Jordan Kevin Magtaan*, Brian Fitzpatrick and Ronan Murphy

Volume 27, Issue 11, 2021

Published on: 10 December, 2020

Page: [1365 - 1381] Pages: 17

DOI: 10.2174/1381612826666201210112119

Price: $65

Abstract

A large percentage of a fish's weight is generally discarded during fish processing. Reducing the waste products of marine origin is a subject of great interest within the scientific community. Pelagic byproducts, such as the structural protein collagen, which can be generated during the processing of fish, have been proposed as an alternative to terrestrial, mammalian sources due to advantages including high availability and low risk of zoonotic disease transmission. Gelatine has multiple possible applications, ranging from nutraceutical applications to cosmetics and has the advantage of being generally regarded as safe. In this multidisciplinary review, the chemistry of gelatine and its parent protein collagen, the chemical reactions to generate their hydrolysates, and studies on their biological activities using animal cell culture are discussed.

Keywords: Fish gelatine hydrolysates, green chemistry, animal cell culture, cell health, bioactive peptides, collagen.

[1]
Bellmann C, Tipping A, Sumaila UR. Global trade in fish and fishery products: An overview. Mar Policy 2016; 69: 181-8.
[http://dx.doi.org/10.1016/j.marpol.2015.12.019]
[2]
Shahbandeh M. Statista: Seafood market value worldwide from 2016 to 2023 2018. Available from: . https://www.statista.com/statistics/821023/global-seafood-market-value/
[3]
Alves A, Marques A, Martins E, Silva T, Reis R. Cosmetic potential of marine fish skin collagen. Cosmetics 2017; 4(4): 39. Available from: http://www.mdpi.com/2079-9284/4/4/39.
[http://dx.doi.org/10.3390/cosmetics4040039]
[4]
Shahidi F. Seafood processing by-products Seafoods: Chemistry, Processing Technology and Quality Boston, MA: Springer US 1994; 320-34. Available from: http://link.springer.com/10.1007/ 978-1-4615-2181-5_16.
[http://dx.doi.org/10.1007/978-1-4615-2181-5_16]
[5]
Hayes M, McKeon K. Advances in the Processing of marine discard and by-products Seafood processing by-products. New York, NY, USA: Springer New York 2014; pp. 125-43. Available from: http://link.springer.com/10.1007/978-1-4614-9590-1.
[http://dx.doi.org/10.1007/978-1-4614-9590-1_7]
[6]
Muralidharan N, Jeya Shakila R, Sukumar D, Jeyasekaran G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J Food Sci Technol 2013; 50(6): 1106-13. Available from: http://link.springer.com/10.1007/s13197-011-0440-y.
[http://dx.doi.org/10.1007/s13197-011-0440-y] [PMID: 24426022]
[7]
Copalis Available from: http://www.copalis.fr/.
[8]
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol 2011; 3(1): a004978-8. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a004978.
[http://dx.doi.org/10.1101/cshperspect.a004978] [PMID: 21421911]
[9]
Benjakul S, Nalinanon S, Shahidi F. Fish collagen. Food biochemistry and food processing Oxford, UK: Wiley-Blackwell 2012; 365-87. Available from: http://doi.wiley.com/10.1002/ 9781118308035.ch20.
[http://dx.doi.org/10.1002/9781118308035.ch20]
[10]
Karayannakidis PD, Zotos A. Fish processing by-products as a potential source of gelatin: a review. J Aquat Food Prod Technol 2016; 25(1): 65-92. Available from: .
[http://dx.doi.org/10.1080/10498850.2013.827767]
[11]
Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 2018; 17(1): 20-6. Available from: http://doi.wiley.com/10.1111/jocd.12450.
[http://dx.doi.org/10.1111/jocd.12450] [PMID: 29144022]
[12]
Roger M, Fullard N, Costello L, et al. Bioengineering the microanatomy of human skin. J Anat 2019; 234(4): 438-55. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.12942.
[http://dx.doi.org/10.1111/joa.12942] [PMID: 30740672]
[13]
Milovanovic I, Hayes M. Marine gelatine from rest raw materials. Appl Sci (Basel) 2018; 8(12): 2407. Available from: http://www.mdpi.com/2076-3417/8/12/2407.
[http://dx.doi.org/10.3390/app8122407]
[14]
Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A. The review of versatile application of collagen. Polym Adv Technol 2017; 28(1): 4-9. Available from: http://doi.wiley.com/10.1002/pat.3842.
[http://dx.doi.org/10.1002/pat.3842]
[15]
Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. J Mater Sci Mater Med 2009; 20(S1)(Suppl. 1): S3-8. Available from: http://link.springer.com/10.1007/s10856-008-3415-4.
[http://dx.doi.org/10.1007/s10856-008-3415-4] [PMID: 18379858]
[16]
Sikorski ZE, Kołakowska A, Pan BS. The nutritive composition of the major groups of marine food organisms Seafood: resources, nutritional composition and preservation. Boca Raton, FL, USA: CRC Press 1990; pp. 29-54.
[17]
Hong H, Fan H, Chalamaiah M, Wu J. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem 2019; 301.Available from: .
[http://dx.doi.org/http://dx.doi.org/10.1016/j.foodchem.2019.125222] [PMID: 31382108]
[18]
Karsdal MA, Leeming DJ, Henriksen K, Bay-Jensen AC, Eds. Biochemistry of Collagens, Laminins and Elastin: Structure. Function and Biomarkers 2016; pp. 1-238.
[19]
Hennet T. Collagen glycosylation. Curr Opin Struct Biol 2019; 56: 131-8.
[http://dx.doi.org/10.1016/j.sbi.2019.01.015] [PMID: 30822656]
[20]
Brodsky B, Ramshaw JAM. The collagen triple-helix structure. Matrix Biol 1997; 15(8-9): 545-54.Available from:. 5 https://linkinghub.elsevier.com/retrieve/pii/S0945053X97900305
[http://dx.doi.org/10.1016/S0945-053X(97)90030-5] [PMID: 9138287]
[21]
Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem 2019.Available from:. http://xlink.rsc.org/?DOI=C9OB01646E
[http://dx.doi.org/10.1039/C9OB01646E]
[22]
Foegeding EA, Lanier TC, Hultin HO. Characteristics of edible muscle tissues Food Chemistry. New York, NY, USA: Marcel Dekker, Inc 1996; pp. 902-6.Available from: . http://ci.nii.ac.jp/naid/10021219721/
[23]
Srivastava AK, Khare P, Nagar HK, Raghuwanshi N, Srivastava R. Hydroxyproline: A potential biochemical marker and its role in the pathogenesis of different diseases. Curr Protein Pept Sci 2016; 17(6): 596-602.Available from:. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2037&volume=17&issue=6&spage=596
[http://dx.doi.org/10.2174/1389203717666151201192247] [PMID: 26916157]
[24]
Król Ż, Malik M, Marycz K, Jarmoluk A. Physicochemical properties of biopolymer hydrogels treated by direct electric current. Polymers (Basel) 2016; 8(7): 248.http://www.mdpi.com/2073-4360/8/7/248
[http://dx.doi.org/10.3390/polym8070248] [PMID: 30974532]
[25]
Kanwate BW, Ballari RV, Kudre TG. Influence of spray-drying, freeze-drying and vacuum-drying on physicochemical and functional properties of gelatin from Labeo rohita swim bladder. Int J Biol Macromol 2019; 121: 135-41. Available from:. https://linkinghub.elsevier.com/retrieve/pii/S0141813018337930
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.015] [PMID: 30290261]
[26]
Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM. Collagen and gelatin. Annu Rev Food Sci Technol 2015; 6(1): 527-57. Available from: . http://www.annualreviews.org/doi/10.1146/annurev-food-031414-111800
[http://dx.doi.org/10.1146/annurev-food-031414-111800] [PMID: 25884286]
[27]
Nagai T, Suzuki N, Nagashima T. Collagen from common minke whale (Balaenoptera acutorostrata) unesu Food Chem 2008; 111(2): 296-301. Available from: . https://linkinghub.elsevier.com/retrieve/ pii/ S0308814608003506
[http://dx.doi.org/10.1016/j.foodchem.2008.03.087] [PMID: 26047426]
[28]
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of collagen for biomaterials in skin wound healing. Bioengineering (Basel) 2019; 6(3): 56. Available from: . https://www.mdpi.com/2306-5354/6/3/56
[http://dx.doi.org/10.3390/bioengineering6030056] [PMID: 31261996]
[29]
Kittiphattanabawon P, Benjakul S, Visessanguan W, Nagai T, Tanaka M. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chem 2005; 89(3): 363-72.Available from:. https://linkinghub.elsevier.com/retrieve/pii/S0308814604002080
[http://dx.doi.org/10.1016/j.foodchem.2004.02.042]
[30]
Szpak P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J Archaeol Sci 2011; 38(12): 3358-72.
[http://dx.doi.org/10.1016/j.jas.2011.07.022]
[31]
Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 1998; 22(3): 181-7. Available from:. https://linkinghub.elsevier.com/retrieve/pii/S8756328297002792
[http://dx.doi.org/10.1016/S8756-3282(97)00279-2] [PMID: 9514209]
[32]
Sharabi M, Wade K, Haj-Ali R. The mechanical role of collagen fibers in the intervertebral disc Biomechanics of the Spine. Elsevier 2018; pp. pp 105-123.
[http://dx.doi.org/10.1016/B978-0-12-812851-0.00007-0]
[33]
Lv L-C, Huang Q-Y, Ding W, Xiao X-H, Zhang H-Y, Xiong L-X. Fish gelatin: The novel potential applications. J Funct Foods 2019; 63(January)103581 Available from: . https://linkinghub.elsevier.com/retrieve/pii/S1756464619305055
[http://dx.doi.org/10.1016/j.jff.2019.103581]
[34]
Schrieber R, Gareis H. From Collagen to Gelatine. Gelatine Handbook 2007; 45-117.Available from: . http://doi.wiley.com/10.1002/9783527610969.ch2
[http://dx.doi.org/10.1002/9783527610969.ch2]
[35]
Shankar S, Jaiswal L, Rhim J-W. Gelatin-Based Nanocomposite films Antimicrobial Food Packaging. Elsevier 2016; pp. 339-48.
[http://dx.doi.org/10.1016/B978-0-12-800723-5.00027-9]
[36]
Karim AA, Bhat R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 2009; 23(3): 563-76.
[http://dx.doi.org/10.1016/j.foodhyd.2008.07.002]
[37]
Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll 2011; 25(8): 1813-27.
[http://dx.doi.org/10.1016/j.foodhyd.2011.02.007]
[38]
Yang X-R, Zhao Y-Q, Qiu Y-T, Chi C-F, Wang B. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Mar Drugs 2019; 17(2): 78. Available from:. http://www.mdpi.com/1660-3397/17/2/78
[http://dx.doi.org/10.3390/md17020078] [PMID: 30678362]
[39]
Grand View Research: Collagen market size, share trends analysis report by source (bovine, porcine), by Product (gelatin, native, hydrolyzed), by Application (food beverages, healthcare), and segment forecasts . 2019. Available from:. https://www.grandviewresearch.com/industry-analysis/collagen-market?utm_source=google&utm_medium=cpc&utm_campaign=AdWords_Collagen_Type2_CMFE&gclid=EAIaIQobChMI-byXuNTA4QIVxUOGCh1RjwuxEAAYASAAEgL8gPD_BwE
[40]
Lamas GA, Navas-Acien A, Mark DB, Lee KL. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J Am Coll Cardiol 2016; 67(20): 2411-8.Available from: . https://linkinghub.elsevier.com/retrieve/pii/S0735109716015989
[http://dx.doi.org/10.1016/j.jacc.2016.02.066] [PMID: 27199065]
[41]
PharmaFactz: Medicinal Chemistry - Chelation Therapy 2019.Available from:. https://pharmafactz.com/medicinal-chemistry-chelation-therapy/
[42]
Tsai H-C, Wu S-Y, Chang L-T, Peng S. Calcium-activated gene transfection from DNA/poly(amic acid-co-imide) complexes Int J Nanomedicine 1637; 10: 1637.Available from:. http://www.dovepress.com/calcium-activated-gene-transfection-from-dnapolyamic-acid-co-imide-com-peer-reviewed-article-IJN
[43]
Suresh PV, Kudre TG, Johny LC. Sustainable valorization of seafood processing by-product/discard. Waste to wealth Singapore: Springer 2018; 111-39.Available from:. http://link.springer.com/10.1007/978-981-10-7431-8_7
[http://dx.doi.org/10.1007/978-981-10-7431-8_7]
[44]
Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. Boarfish (Capros aper): review of a new capture fishery and its valorization potential. In: Anderson E, Ed ICES J Mar Sci 2017; 74(8): 2059-68.Available from:. https://academic.oup.com/icesjms/article/74/8/2059/3738531
[45]
Eubleekeria splendens, Splendid ponyfish : Fisheries. Available from:. https://www.fishbase.in/summary/Eubleekeria-splendens.html
[46]
Perciformes FAO. Percoidei: Leiognathidae http://wwwfaoorg/3/y0770e/y0770e04pdf
[47]
Prabha J, Nithin A, Mariarose L, Vincent S. Processing of nutritive fish protein hydrolysate from Leiognathus splendens. Int J Pept Res Ther 2019.
[http://dx.doi.org/10.1007/s10989-019-09892-6]
[48]
Theisen TC, Bowen BW, Lanier W, Baldwin JD. High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 2008; 17(19): 4233-47.Available from:. http://doi.wiley.com/10.1111/j.1365-294X.2008.03913.x
[http://dx.doi.org/10.1111/j.1365-294X.2008.03913.x] [PMID: 19378403]
[49]
Hall M, Gilman E, Minami H, Mituhasi T, Carruthers E. Mitigating bycatch in tuna fisheries. Rev Fish Biol Fish 2017; 27(4): 881-908.Available from:. http://link.springer.com/10.1007/s11160-017-9478-x
[http://dx.doi.org/10.1007/s11160-017-9478-x]
[50]
Akita M, Kono T, Lloyd K, Mitsui T, Morioka K, Adachi K. Biochemical study of type I collagen purified from skin of warm sea teleost Mahi mahi (Coryphaena hippurus), with a focus on thermal and physical stability. J Food Biochem 2019; 43(11)Available from:. https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13013
[http://dx.doi.org/10.1111/jfbc.13013] [PMID: 31407365]
[51]
Barange M, Pillar SC, Hampton I. Distribution patterns, stock size and life-history strategies of Cape horse mackerel Trachurus trachurus capensis, based on bottom trawl and acoustic surveys. S Afr J Mar Sci 1998; (19): 433-47.
[http://dx.doi.org/10.2989/025776198784126917]
[52]
Barrion SC. Physico-biochemical properties of extruded Cape Horse mackerel (Trachurus capensis). University of Surrey 2018.
[53]
Le T, Maki H, Takahashi K, Okazaki E, Osako K. Properties of gelatin film from horse mackerel (Trachurus japonicus) scale. J Food Sci 2015; 80(4): E734-41.Available from:. http://doi.wiley.com/10.1111/1750-3841.12806
[http://dx.doi.org/10.1111/1750-3841.12806] [PMID: 25716323]
[54]
Dang TT, Gringer N, Jessen F, et al. Emerging and potential technologies for facilitating shrimp peeling: A review. Innov Food Sci Emerg Technol 2018; 45: 228-40.
[http://dx.doi.org/10.1016/j.ifset.2017.10.017]
[55]
Sivakumar P, Chandrakasan G. Marine invertebrate collagens: The prevalence of type V and XI like collagens in some marine crustacean and molluscan tissues. Proc Indian Acad Sci Chem Sci 1999; 111(1): 87-104.
[http://dx.doi.org/10.1002/chin.199929309]
[56]
SciFinder Available from:. https://scifinder.cas.org
[57]
El Fargani H, Lakhmiri R, Albourine A, Cherkaoui O, Safi M. Valorization of shrimp co-products “Pandalus borealis”: Chitosan production and its use in adsorption of industrial dyes. J Mater Environ Sci 2016; 7(4): 1334-46.
[58]
Montroni D, Valle F, Rapino S, Fermani S, Calvaresi M, Harrington MJ, et al. Functional Biocompatible Matrices from Mussel Byssus Waste. ACS Biomater Sci Eng 2018; 4(1): 57-65.Available from:. https://pubs.acs.org/doi/10.1021/acsbiomaterials.7b00743
[http://dx.doi.org/10.1021/acsbiomaterials.7b00743]
[59]
Coyne KJ, Qin X, Waite JH. Extensible Collagen in Mussel Byssus: A Natural Block Copolymer Science (80- ) 1997; 277(5333): 1830-2.Available from:. http://www.sciencemag.org/cgi/doi/10.1126/science.277.5333.1830
[http://dx.doi.org/10.1126/science.277.5333.1830]
[60]
Rodríguez F, Morán L, González G, Troncoso E, Zúñiga RN. Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. J Food Sci Technol 2017; 54(5): 1228-38.Available from:. http://link.springer.com/10.1007/s13197-017-2566-z
[http://dx.doi.org/10.1007/s13197-017-2566-z] [PMID: 28416873]
[61]
Neves AC, Harnedy PA, FitzGerald RJ. Angiotensin Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory, and Antioxidant Activities of a Blue Mussel (Mytilus edulis) Meat Protein Extract and Its Hydrolysates. J Aquat Food Prod Technol 2016; 25(8): 1221-33.
[http://dx.doi.org/10.1080/10498850.2015.1051259]
[62]
Shamshak GL, King JR. From cannery to culinary luxury: The evolution of the global geoduck market. Mar Policy 2015; 55: 81-9.
[http://dx.doi.org/10.1016/j.marpol.2015.01.014]
[63]
Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev 2010; 39(1): 301-12.Available from:. http://pubs.rsc.org/en/Content/ArticleHTML/2010/CS/B918763B
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[64]
Sheldon RA. E factors, green chemistry and catalysis: an odyssey. Chem Commun (Camb) 2008; (29): 3352-65.Available from:. http://www.ncbi.nlm.nih.gov/pubmed/18633490
[http://dx.doi.org/10.1039/b803584a] [PMID: 18633490]
[65]
Raman M, Gopakumar K. Fish collagen and its applications in food and pharmaceutical industry: a review. EC Nutr 2018; 12(13): 752-67.
[66]
Bruno SF, Ekorong FJAA, Karkal SS, Cathrine MSB, Kudre TG. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci Technol 2018; 85: 10-22.
[67]
Kusumaningtyas E, Nurilmala M, Sibarani D. Antioxidant and antifungal activities of collagen hydrolysates from skin of milkfish (Chanos chanos) hydrolyzed using various bacillus proteases IOP Conf Ser Earth Environ Sci 2019; 278(1 : 012040.)Available from:. https://iopscience.iop.org/article/10.1088/1755-1315/278/1/012040
[68]
Ouellette RJ, Rawn JD. Amines and Amides Principles of Organic Chemistry. Waltham, MA, USA: Elsevier 2015; pp. 315-42.Available from:. https://linkinghub.elsevier.com/retrieve/pii/B9780128024447000124
[http://dx.doi.org/10.1016/B978-0-12-802444-7.00012-4]
[69]
Aluko RE. Food protein-derived peptides: Production, isolation, and purification. Proteins in Food Processing Elsevier 2018; 389-412.Available from:. https://linkinghub.elsevier.com/retrieve/pii/B9780081007228000164
[http://dx.doi.org/10.1016/B978-0-08-100722-8.00016-4]
[70]
Gudipati V, Kannuchamy N. Recovery of gelatin with improved functionality from seafood processing waste Seafood processing by-products. New York, NY, USA: Springer New York 2014; pp. 145-69.http://link.springer.com/10.1007/978-1-4614- 9590-1_8
[http://dx.doi.org/10.1007/978-1-4614-9590-1_8]
[71]
Abuine R, Rathnayake AU, Byun HG. Biological activity of peptides purified from fish skin hydrolysates. Fish Aquat Sci 2019; 22(1): 1-14.
[http://dx.doi.org/10.1186/s41240-019-0125-4]
[72]
Felician FF, Xia C, Qi W, Xu H. Collagen from marine biological sources and medical applications. Chem Biodivers 2018; 15(5)e1700557Available from:. http://doi.wiley.com/10.1002/cbdv.201700557
[http://dx.doi.org/10.1002/cbdv.201700557] [PMID: 29521032]
[73]
Ruan J, Chen J, Zeng J, et al. The protective effects of Nile tilapia (Oreochromis niloticus) scale collagen hydrolysate against oxidative stress induced by tributyltin in HepG2 cells. Environ Sci Pollut Res Int 2019; 26(4): 3612-20.Available from: . http://link.springer.com/10.1007/s11356-018-3729-9
[http://dx.doi.org/10.1007/s11356-018-3729-9] [PMID: 30523527]
[74]
Alolod GAL, Nuñal SN, Nillos MGG, Peralta JP. Bioactivity and functionality of gelatin hydrolysates from the skin of oneknife unicornfish (Naso thynnoides). J Aquat Food Prod Technol 2019; 28(10): 1013-26.
[http://dx.doi.org/10.1080/10498850.2019.1682094]
[75]
Tkaczewska J, Bukowski M, Mak P. Identification of antioxidant peptides in enzymatic hydrolysates of carp (cyprinus carpio) skin gelatin. Molecules 2018; 24(1): 97.Available from: . http://www.mdpi.com/1420-3049/24/1/97
[http://dx.doi.org/10.3390/molecules24010097] [PMID: 30597854]
[76]
Jang IS, Park SJ. Hydroxyproline-containing collagen peptide derived from the skin of the Alaska pollack inhibits HIV-1 infection. Mol Med Rep 2016; 14(6): 5489-94.Available from:. https://www.spandidos-publications.com/10.3892/mmr.2016.5949
[http://dx.doi.org/10.3892/mmr.2016.5949] [PMID: 27878297]
[77]
Sae-leaw T, O’Callaghan YC, Benjakul S, O’Brien NM. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysates from seabass (Lates calcarifer) skins. Int J Food Sci Technol 2016; 51(7): 1545-51.Available from:. http://doi.wiley.com/10.1111/ijfs.13123
[http://dx.doi.org/10.1111/ijfs.13123]
[78]
Abdelhedi O, Nasri R, Mora L, Toldrá F, Nasri M, Jridi M. Collagenous proteins from black-barred halfbeak skin as a source of gelatin and bioactive peptides. Food Hydrocoll 2017; 70: 123-33.Available from: . https://linkinghub.elsevier.com/retrieve/pii/S0268005X16307421
[http://dx.doi.org/10.1016/j.foodhyd.2017.03.030]
[79]
Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci 2020; 41(6): 363-82.
[http://dx.doi.org/10.1016/j.tips.2020.03.006] [PMID: 32291112]
[80]
Keane OM, O’Shaughnessy J. Anthelmintic resistance in ruminants in Ireland ONE HEALTH: Awareness to Action Antimicrobial and Anthelmintic Resistance Conference Tullamore. Offaly, Ireland: Teagasc 2019; pp. 64-7.
[81]
US CDC: Amebiasis Available from:. https://www.cdc.gov/parasites/amebiasis/pathogen.html
[82]
Kendall JM. Designing a research project: randomised controlled trials and their principles. Emerg Med J 2003; 20(2): 164-8.Available from:. http://emj.bmj.com/cgi/doi/10.1136/emj.20.2.164
[http://dx.doi.org/10.1136/emj.20.2.164] [PMID: 12642531]
[83]
Ugarte MD, Militino A, Arnholt AT. Probability and Statistics with R. 2nd ed. Boca Raton, FL, USA: Taylor & Francis Group, LLC 2016.
[84]
Patrick GL. An Introduction to Medicinal Chemistry. 5th ed. Oxford, UK: Oxford University Press 2013.
[85]
Mahmoodani F, Ghassem M, Babji AS, Yusop SM, Khosrokhavar R. ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. J Food Sci Technol 2014; 51(9): 1847-56.http://link.springer.com/10.1007/s13197-012-0742-8
[http://dx.doi.org/10.1007/s13197-012-0742-8] [PMID: 25190839]
[86]
U G Y Bhat I,. Karunasagar I, B S M. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit Rev Food Sci Nutr 2019; 59(15): 2363-74.
[http://dx.doi.org/10.1080/10408398.2018.1452182] [PMID: 29533693]
[87]
Merrifield B. Solid phase synthesis. Nobel lecture, 8 December 1984. Biosci Rep 1985; 5(5): 353-76.
[http://dx.doi.org/10.1007/BF01116553] [PMID: 4027355]
[88]
Merrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 1963; 85(14): 2149-54.
[http://dx.doi.org/10.1021/ja00897a025]
[89]
Jensen KJ, Shelton PT, Pedersen SL, Eds. Springer Protocols. Springer Protocols Methods in Molecular Biology 1047: Peptide Synthesis and Applications. 2nd ed New York, NY, USA: Springer Science + Business Media. 2013.
[90]
Chandrudu S, Simerska P, Toth I. Chemical methods for peptide and protein production. Molecules 2013; 18: 4373-88.http://www.mdpi.com/1420-3049/18/4/4373
[91]
Jad YE, Kumar A, El-Faham A, de la Torre BG, Albericio F. Green transformation of solid-phase peptide synthesis. ACS Sustain Chem& Eng 2019; 7(4): 3671-83.Available from:. http://pubs.acs.org/doi/10.1021/acssuschemeng.8b06520
[http://dx.doi.org/10.1021/acssuschemeng.8b06520]
[92]
Přibylka A, Krchňák V, Schütznerová E. Environmentally friendly SPPS I. Application of NaOH in 2-MeTHF/methanol for Fmoc removal 2019.Available from:. http://xlink.rsc.org/?DOI=C8GC03778G
[93]
Magtaan JK, Devocelle M, Kelleher F. Regeneration of aged DMF for use in solid-phase peptide synthesis. J Pept Sci 2019; 25(1)Available from:. http://doi.wiley.com/10.1002/psc.3139
[http://dx.doi.org/10.1002/psc.3139] [PMID: 30585396]
[94]
Varnava KG, Sarojini V. Making solid-phase peptide synthesis greener: a review of the literature. Chem - An Asian J 2019.Available from:. http://doi.wiley.com/10.1002/asia.201801807
[http://dx.doi.org/10.1002/asia.201801807]
[95]
Ferrazzano L, Corbisiero D, Martelli G, et al. Green solvent mixtures for solid-phase peptide synthesis: a dimethylformamide-free highly efficient synthesis of pharmaceutical-grade peptides. ACS Sustain Chem& Eng 2019; 7(15): 12867-77.Available from:. https://pubs.acs.org/doi/10.1021/acssuschemeng.9b01766
[http://dx.doi.org/10.1021/acssuschemeng.9b01766]
[96]
Magtaan JK, Devocelle M, Kelleher F. Assessing the correlation of microscopy-based and volumetry-based measurements for resin swelling in a range of potential greener solvents for SPPS. J Pept Sci 2020; 26(6)Available from: . http://doi.wiley.com/10.1002/psc.3250
[http://dx.doi.org/10.1002/psc.3250] [PMID: 32215981]
[97]
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95(1): 1-46.Available from:. https://www.physiology.org/doi/10.1152/physrev.00012.2014
[http://dx.doi.org/10.1152/physrev.00012.2014] [PMID: 25540137]
[98]
Ahmed F, Mohammed A. Magnesium: the forgotten electrolyte-a review on hypomagnesemia. Med Sci (Basel) 2019; 7(4): 56.Available from:. https://www.mdpi.com/2076-3271/7/4/56
[http://dx.doi.org/10.3390/medsci7040056] [PMID: 30987399]
[99]
Phelan K, May KM. Basic techniques in mammalian cell tissue culture. Current Protocols in Toxicology 2016. Available from: http://doi.wiley.com/10.1002/cptx.13.
[http://dx.doi.org/10.1002/cptx.13]
[100]
Philippeos C, Hughes RD, Dhawan A, Mitry RR. Introduction to Cell Culture Human Cell Culture Protocols. New York, NY, USA: Humana Press Inc 2012; pp. 1-13.Available from: . http://link.springer.com/10.1007/978-1-61779-367-7_1
[http://dx.doi.org/10.1007/978-1-61779-367-7_1]
[101]
Patil MP, Bayaraa E, Subedi P, Piad LLA, Tarte NH, Kim G-D. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J Drug Deliv Sci Technol 2019; 51: 83-90.
[http://dx.doi.org/10.1016/j.jddst.2019.02.021]
[102]
Ullah H, Previtali V, Mihigo HB, et al. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines Eur J Med Chem 2019; 181(Iv):111544)
[103]
Skloot R. The immortal life of henrietta lacks. New York, NY, USA: Crown Publishers 2010.
[104]
Oyeleye OO, Ogundeji ST, Ola SI, Omitogun OG. Basics of animal cell culture: Foundation for modern science Biotechnol Mol Biol Rev 2016; 11(2): 6-16.http://academicjournals.org/journal/BMBR/article-abstract/7A2154261212
[http://dx.doi.org/10.5897/BMBR2016.0261]
[105]
Fundamental Techniques in Cell Culture; Laboratory Handbook 3rd Edition 2019. Available from:. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs /Sigma-Aldrich/General_Information/1/fundamental-techniques-in-cell-culture.pdf
[107]
Introduction to animal cell culture https://pharmafactz.com/animal-cell-culture/
[108]
ABM Cell culture - an introduction.; Available from: . https://www.abmgood.com/marketing/knowledge_base/cell_culture_introduction.php
[109]
YouTube: Animal cell culture search result Available from:. https://www.youtube.com/results?search_query=animal+cell+culture
[110]
Geraghty RJ, Capes-Davis A, Davis JM, et al. Cancer Research UK. Guidelines for the use of cell lines in biomedical research. Br J Cancer 2014; 111(6): 1021-46.Available from: . http://www.nature.com/articles/bjc2014166
[http://dx.doi.org/10.1038/bjc.2014.166] [PMID: 25117809]
[111]
[113]
Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2002; 2(4): 315-9.Available from:. http://www.nature.com/articles/nrc775
[http://dx.doi.org/10.1038/nrc775] [PMID: 12001993]
[115]
Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 2016; 36(6): 1110-22.Available from:. https://www.tandfonline.com/doi/full/10.3109/07388551.2015.1084266
[http://dx.doi.org/10.3109/07388551.2015.1084266] [PMID: 26383226]
[116]
Li SA, Cadelis MM, Sue K, et al. 6-Bromoindolglyoxylamido derivatives as antimicrobial agents and antibiotic enhancers. Bioorg Med Chem 2019; 27(10): 2090-9.
[http://dx.doi.org/10.1016/j.bmc.2019.04.004] [PMID: 30975502]
[117]
Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 2004; 22(11): 1393-8.Available from: . http://www.nature.com/articles/nbt1026
[http://dx.doi.org/10.1038/nbt1026] [PMID: 15529164]
[118]
Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol 2019; 60(60): 128-37.
[http://dx.doi.org/10.1016/j.copbio.2019.01.011] [PMID: 30826670]
[120]
Stringer T, Wiesner L, Smith GS. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur J Med Chem 2019; 179: 78-83.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.023] [PMID: 31238252]
[121]
Fogh J, Wright WC, Loveless JD. Absence of HeLa cell contamination in 169 cell lines derived from human tumors 1977.Available from:. https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/58.2.209
[122]
Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Eds. The Impact of Food Bioactives on Health. Cham: Springer International Publishing 2015.Available from: . http://link.springer.com/10.1007/978-3-319-16104-4
[http://dx.doi.org/10.1007/978-3-319-16104-4]
[123]
Artursson P, Tavelin S. 2004.http://doi.wiley.com/10.1002/3527601473.ch4
[124]
Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 2005; 21(1): 1-26.Available from: . http://link.springer.com/10.1007/s10565-005-0085-6
[http://dx.doi.org/10.1007/s10565-005-0085-6] [PMID: 15868485]
[125]
Ai Z, Liu S, Qu F, Zhang H, Chen Y, Ni D. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Molecules 2019; 24(6): 1185.Available from: . https://www.mdpi.com/1420-3049/24/6/1185
[http://dx.doi.org/10.3390/molecules24061185] [PMID: 30917581]
[126]
Comşa Ş, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 Years of experience in research. Anticancer Res 2015; 35(6): 3147-54.
[127]
[128]
MacLean L, Karcz D, Jenkins H, et al. Copper(II) complexes of coumarin-derived Schiff base ligands: Pro- or antioxidant activity in MCF-7 cells? J Inorg Biochem 2019; •••: 197.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110702] [PMID: 31103891]
[129]
Liabakk N-B, Waage A, Lien E, Stenvik J, Espevik T. Cytokine Bioassays Meningococcal Disease. Totowa, NJ, USA: Humana Press 2001; pp. 487-97.http://link.springer.com/10.1385/1-59259-149-3:487
[http://dx.doi.org/10.1385/1-59259-149-3:487]
[130]
van Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay Cancer Cell Culture: Methods and Protocols. 2nd ed. New York, NY, USA: Humana Press 2011; pp. 237-45.http://link.springer.com/10.1007/978-1-61779-080-5_20
[http://dx.doi.org/10.1007/978-1-61779-080-5_20]
[132]
Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 1991; 142(2): 257-65.https://linkinghub.elsevier.com/retrieve/pii/002217599190114U
[http://dx.doi.org/10.1016/0022-1759(91)90114-U] [PMID: 1919029]
[133]
Ke N, Wang X, Xu X, Abassi YA. The xCELLigence system for real-time and label-free monitoring of cell viability Mammalian cell viability methods in molecular biology (Methods and Protocols). New York, NY, USA: Humana Press 2011; pp. 33-43.http://link.springer.com/10.1007/978-1-61779-108-6_6
[http://dx.doi.org/10.1007/978-1-61779-108-6_6]
[135]
Kho D, MacDonald C, Johnson R, et al. Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors (Basel) 2015; 5(2): 199-222.http://www.mdpi.com/2079-6374/5/2/199
[http://dx.doi.org/10.3390/bios5020199] [PMID: 25893878]
[136]
Atmaca H, Bozkurt E, Kısım A, Uslu R. Comparative analysis of XTT assay and xCELLigence system by measuring cytotoxicity of resveratrol in human cancer cell lines 2016.https://www.degruyter.com/view/j/tjb.2016.41.issue-6/tjb-2016-0128/tjb-2016-0128.xml
[137]
Kaskova ZM, Tsarkova AS, Yampolsky IV. 2016.http://xlink.rsc.org/?DOI=C6CS00296J
[138]
Vieira J, Pinto da Silva L, Esteves da Silva JCG. Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. J Photochem Photobiol B 2012; 117: 33-9.http://www.ncbi.nlm.nih.gov/pubmed/23026386
[http://dx.doi.org/10.1016/j.jphotobiol.2012.08.017] [PMID: 23026386]
[139]
Pinto da Silva L, Santos AJM, Esteves da Silva JCG. Efficient firefly chemi/bioluminescence: evidence for chemiexcitation resulting from the decomposition of a neutral firefly dioxetanone molecule. J Phys Chem A 2013; 117(1): 94-100.https://pubs.acs.org/doi/10.1021/jp311711p
[http://dx.doi.org/10.1021/jp311711p] [PMID: 23244350]
[140]
Ramesh C, Mohanraju R. A Review on Bioluminescence and its Applications. Int J Lumin Appl 2015; 5(1): 2277-636245.
[141]
Strober W. Trypan Blue Exclusion Test of Cell ViabilityCurrent Protocols in Immunology. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2001.http://doi.wiley.com/10.1002/0471142735.ima03bs21
[http://dx.doi.org/10.1002/0471142735.ima03bs21]
[142]
Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes 2008.http://www.nature.com/articles/
[http://dx.doi.org/10.1038/nprot.2008.95]
[143]
Sakamuru S, Attene-Ramos MS, Xia M. Mitochondrial membrane potential assay High-throughput screening assays in toxicology. New York, NY, USA: Humana Press 2016; pp. 17-22.http://link.springer.com/10.1007/978-1-4939-6346-1_2
[http://dx.doi.org/10.1007/978-1-4939-6346-1_2]
[145]
Csepregi R, Lemli B, Kunsági-Máté S, et al. Complex Formation of Resorufin and Resazurin with B-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay? Molecules 2018; 23(2): 382.http://www.mdpi.com/1420-3049/23/2/382
[http://dx.doi.org/10.3390/molecules23020382] [PMID: 29439432]
[146]
Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel) 2012; 12(9): 12347-60.http://www.mdpi.com/1424-8220/12/9/12347
[http://dx.doi.org/10.3390/s120912347] [PMID: 23112716]
[147]
O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000; 267(17): 5421-6.http://doi.wiley.com/10.1046/j.1432-1327.2000.01606.x
[http://dx.doi.org/10.1046/j.1432-1327.2000.01606.x] [PMID: 10951200]
[149]
Das J, Dey P, Chakraborty T, Saleem K, Nagendra R, Banerjee P. Utilization of marine industry waste derived collagen hydrolysate as peroxide inhibition agents in lipid‐based food. J Food Process Preserv 2018; 42(2)e13430https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.13430
[http://dx.doi.org/10.1111/jfpp.13430]
[150]
Chotphruethipong L, Aluko RE, Benjakul S. Hydrolyzed collagen from porcine lipase-defatted seabass skin: Antioxidant, fibroblast cell proliferation, and collagen production activities. J Food Biochem 2019; 43(5)e12825https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.12825
[http://dx.doi.org/10.1111/jfbc.12825] [PMID: 31353514]
[151]
Ding D, Yu T, Du B, Huang Y. Collagen hydrolysate from Thunnus orientalis bone induces osteoblast proliferation and differentiation. Chem Eng Sci 2019; 205: 143-50.
[http://dx.doi.org/10.1016/j.ces.2019.04.040]
[152]
Himaya SWA, Ngo D-H, Ryu B, Kim S-K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem 2012; 132(4): 1872-82.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.020]
[153]
Hou H, Zhao X, Li B, Zhaohui Z, Zhuang Y. Inhibition of melanogenic activity of gelatin and polypeptides from pacific cod skin in B16 melanoma cells. J Food Biochem 2011; 35(4): 1099-116.http://doi.wiley.com/10.1111/j.1745-4514.2010.00437.x
[http://dx.doi.org/10.1111/j.1745-4514.2010.00437.x]
[154]
Alemán A, Pérez-Santín E, Bordenave-Juchereau S, Arnaudin I, Gómez-Guillén MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int 2011; 44(4): 1044-51.
[http://dx.doi.org/10.1016/j.foodres.2011.03.010]
[155]
Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of vero cell lines Current protocols in microbiology. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2008.http://doi.wiley.com/10.1002/9780471729259.mca04es11
[156]
Mendis E, Rajapakse N, Kim S-K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 2005; 53(3): 581-7.https://pubs.acs.org/doi/10.1021/jf048877v
[http://dx.doi.org/10.1021/jf048877v] [PMID: 15686405]
[157]
Zheng L, Yu H, Wei H, et al. Antioxidative peptides of hydrolysate prepared from fish skin gelatin using ginger protease activate antioxidant response element-mediated gene transcription in IPEC-J2 cells J Funct Foods 2018;.2018.
[http://dx.doi.org/10.1016/j.jff.2018.08.033]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy