Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Anti-Inflammatory, Antimicrobial and Insecticidal Properties of Daucus Gracilis Steinh Flowers Essential Oil

Author(s): Bouhassane Nadia*, Nouria Merad-Boussalah*, Fatima Benyoucef, Arrar Zoheir, Alain Muselli and Mohammed El Amine Dib

Volume 20, Issue 3, 2021

Published on: 08 December, 2020

Page: [264 - 270] Pages: 7

DOI: 10.2174/1871523019999201208202319

Price: $65

Abstract

Background: Daucus gracilis Steinh belongs to the Apiaceae family. The flowers of this plant have been used by the population of western Algeria for the treatment of mouth ulcers. However, very few studies exist concerning the biological properties of essential oil of Daucus gracilis Steinh flowers.

Objectives: The purpose of this work was to study the chemical composition of the essential oil of Daucus gracilis flowers and to evaluate their antimicrobial, insecticidal and anti-inflammatory properties.

Methods: The distilled essential oil was analyzed by GC and GC-MS. The antimicrobial activity of the essential oil was evaluated using two methods i) diffusion method, and ii) micro dilution technique. The insecticidal activity of essential oil was evaluated against adults of Tribolium confusum by fumigant test. The in vitro assessment of the anti-inflammatory property of essential oil was assessed by the protein denaturation method.

Results: Daucus gracilis flowers essential oil mainly represented oxygenated monoterpenes such as geranyl acetate (18.3%), lavandulyl acetate (15.2%), lavandulyl isobutyrate (13.6%) and citronellyl isobutyrate (6.8%). According to the results of antimicrobial activity, the essential oil of flowers presented prominent inhibitory action against Aspergillus flavus (0.06 μg/mL), followed by Staphylococcus aureus, Escherichia faecalis, Bacillus cereus and Candida albicans with MIC values of 0.125 μg/mL. The Daucus gracilis essential oil flowers proved to be very biocidal toward adults of Tribolium confusum; mortality of 100% of the population was noted with a dose of 2 μl/L air after 24 hours of exposure. Furthermore, the oil has shown a very good inhibition of protein denaturation comparable to Diclofenac at a concentration of 30 μL/mL.

Conclusion: Daucus gracilis essential oil can be used as a pharmacological tools for inflammatory, antimicrobial and insecticidal properties.

Keywords: Essential oil, flowers, fumigant pesticides, antifungal effect, Candida albicans, Aspergillus flavus, inhibitory effect.

Graphical Abstract

[1]
Ducrot, C.; Fric, D.; Lalmanach, C.D.; Monnet, V.; Sanders, P.; Schouler, C. Perspectives d’alternatives thérapeutiques antimicrobiennes aux antibiotiques en élevage. INRA Prod. Anim., 2017, 30(1), 77-88.
[http://dx.doi.org/10.20870/productions-animales.2017.30.1.2234]
[2]
Zahar, J.R.; Lesprit, P. Management of multidrug resistant bacterial endemic. Med. Mal. Infect., 2014, 44(9), 405-411.
[http://dx.doi.org/10.1016/j.medmal.2014.07.006] [PMID: 25169940]
[3]
Raison-Peyron, N. Hypersensibilité/ Intolérance aux AINS: multiples aspects cliniques? Rev. Fr. Allergol. Immunol. Clin., 2007, 47, S55-S59.
[http://dx.doi.org/10.1016/S0335-7457(07)80015-3]
[4]
Shin, S.; Kim, J.H. In vitro inhibitory activities of essential oils from two Korean thymus species against antibiotic-resistant pathogens. Arch. Pharm. Res., 2005, 28(8), 897-901.
[http://dx.doi.org/10.1007/BF02973874] [PMID: 16178414]
[5]
Bulfon, C.; Volpatti, D.; Galeotti, M. Current research on the use of plant-derived products in farmed fish. Aquacult. Res., 2015, 46, 513-551.
[http://dx.doi.org/10.1111/are.12238]
[6]
Anjarwalla, P.; Ofori, D.A.; Jamnadass, R.; Mowo, J.G.; Stevenson, P.C. Proceedings of the training workshop on sustainable production, harvesting and conservation of botanical pesticides. World Agroforestry Centre (ICRAF), Nairobi, Kenya, 2013.
[7]
Anjarwalla, P.; Ofori, D.A.; Belmain, S.; Jamnadass, R.; Stevenson, P.C. Proceedings of the training workshop on Optimisation of Pesticidal plants: Technology, Innovation, Outreach & Networks (OPTIONs). World Agroforestry Centre (ICRAF), Nairobi, Kenya, 2015.
[8]
Gachkar, L.; Yadegari, D.; Bagher, Rezaei, M.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem., 2007, 102, 898-904.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.035]
[9]
Rasooli, I.; Fakoor, M.H.; Yadegarinia, D.; Gachkar, L.; Allameh, A.; Rezaei, M.B. Antimycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils. Int. J. Food Microbiol., 2008, 122(1-2), 135-139.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.048] [PMID: 18190993]
[10]
Saad, H.E.A.; ElSharkawy, S.H.; Halim, A.F. Essential oils of Daucus carota ssp. maximus. Pharm. Acta Helv., 1995, 70, 79-84.
[http://dx.doi.org/10.1016/0031-6865(94)00054-Y]
[11]
Pinilla, M.G.; Pérez-Alonso, M.J.; Velasco-Negueruela, A. Volatile constituents from fruits of Daucus carota L. gummifer Hook. Fil. J. Essent. Oil Res., 1995, 7, 433-435.
[http://dx.doi.org/10.1080/10412905.1995.9698556]
[12]
Tavares, A.C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Lopes, M.C.; Canhoto, J.; Salgueiro, L.R. Essential oil of Daucus carota subsp. halophilus: composition, antifungal activity and cytotoxicity. J. Ethnopharmacol., 2008, 119(1), 129-134.
[http://dx.doi.org/10.1016/j.jep.2008.06.012] [PMID: 18606215]
[13]
Imamu, X.; Yili, A.; Aisa, H.A.; Maksimov, V.V.; Salikhov, O.N.; Sh, I. Chemical composition and antimicrobial activity of essential oil from Daucus carota sativa seeds. Chem. Nat. Compd., 2007, 43, 495-496.
[http://dx.doi.org/10.1007/s10600-007-0174-2]
[14]
El Amine Dib, M.; Djabou, N.; Desjobert, J.M.; Allali, H.; Tabti, B.; Muselli, A.; Costa, J. Characterization of volatile compounds of Daucus crinitus Desf. Headspace solid phase microextraction as alternative technique to hydrodistillation. Chem. Cent. J., 2010, 4(16), 16.
[http://dx.doi.org/10.1186/1752-153X-4-16] [PMID: 20858266]
[15]
Bendiabdellah, A.; El Amine Dib, M.; Djabou, N.; Allali, H.; Tabti, B.; Muselli, A.; Costa, J. Biological activities and volatile constituents of Daucus muricatus L. from Algeria. Chem. Cent. J., 2012, 6(1), 48.
[http://dx.doi.org/10.1186/1752-153X-6-48] [PMID: 22647252]
[16]
Meliani, N.; Dib, M.A.; Djabou, N.; Costa, J.; Allali, H.; Tabti, B.; Muselli, A. Chemical composition and antimicrobial activity of Daucus aureus essential oils from Algeria. Nat. Prod. Commun., 2013, 8(6), 835-840.
[http://dx.doi.org/10.1177/1934578X1300800639]
[17]
Benyelles, B.; Allali, H.; Dib, M.E.A.; Djabou, N.; Paolini, J.; Costa, J. Chemical composition variability of essential oils of Daucus gracilis Steinh. from Algeria. Chem. Biodivers., 2017, 14(6), e1600490.
[http://dx.doi.org/10.1002/cbdv.201600490] [PMID: 28212458]
[18]
El Kolli, M.; Laouer, H.; El Kolli, H.; Akkal, S.; Sahli, F. Chemical analysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action. Asian Pac. J. Trop. Biomed., 2016, 6(1), 8-15.
[http://dx.doi.org/10.1016/j.apjtb.2015.08.004]
[19]
Mami, R.I.; Belabbes, R.; Dib, M.A.; Tabti, B.; Costa, J.; Muselli, A. Biological activities of carlina oxide isolated from the roots of Carthamus caeruleus. Nat. Prod. J., 2020, 10, 145-152.
[http://dx.doi.org/10.2174/2210315509666190117152740]
[20]
Jennings, W.; Shibamoto, T. Qualitative analysis of flavour and fragrance volatiles by glass-capillary gas chromatographyJovanovich, H.B (Ed.), First ed; Academic Press: New-York, 1980.
[21]
König, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and Related Constituents of Essential oils, first ed.; Library of Mass Finder 2.1: Institute of Organic Chemistry: Hamburg, 2001.
[22]
Mc Lafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectra Data, first ed.; Wiley-Interscience: New-York, 1988.
[23]
Mc Lafferty, F.W.; Stauffer, D.B. Wiley Registry of Mass Spectral Data, 6th ed.; Mass Spectrometry Library Search System Bench- Top/PBM, version 3.10d. Palisade: Newfield, 1994.
[24]
National Institute of Standards and Technology: PC Version 1.7 of the NIST/EPA/NIH Mass Spectral Library; Perkin-Elmer Corp, Norwalk, CT, USA, 1999.
[25]
Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers., 2017, 14(5), e1600482.
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[26]
Ríos, J.L.; Recio, M.C.; Villar, A. Antimicrobial activity of selected plants employed in the Spanish Mediterranean area. J. Ethnopharmacol., 1987, 21(2), 139-152.
[http://dx.doi.org/10.1016/0378-8741(87)90124-3] [PMID: 3325696]
[27]
Bassole, I.H.N.; Ouattara, A.S.; Nebie, R.; Ouattara, C.A.; Kabore, Z.I.; Traore, S.A.; Kabore, Z.I.; Traore, S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry, 2003, 62(2), 209-212.
[http://dx.doi.org/10.1016/S0031-9422(02)00477-6] [PMID: 12482458]
[28]
Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae). Ecotoxicol. Environ. Saf., 2014, 100, 1-6.
[http://dx.doi.org/10.1016/j.ecoenv.2013.11.013] [PMID: 24433784]
[29]
Mejdoub, K.; Mami, R.I.; Belabbes, R.; Dib, M.A.; DJabou, N.; Tabti, B.; Gaouar Benyelles, N.; Costa, J. Muselli. Chemical variability of Atractylis gummifera essential oils at three developmental stages and investigation of their antioxidant, antifungal and insecticidal activities. Curr. Bioact. Compd., 2020, 16, 489-497.
[http://dx.doi.org/10.2174/1573407215666190126152112]
[30]
Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of anti-inflammatory effect of ashwagandha: A preliminary study in vitro. Pharmacogn. J., 2012, 4, 47-49.
[http://dx.doi.org/10.5530/pj.2012.29.7]
[31]
Klein, G.; Rüben, C.; Upmann, M. Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr. Microbiol., 2013, 67(2), 200-208.
[http://dx.doi.org/10.1007/s00284-013-0354-1] [PMID: 23503789]
[32]
Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog., 2020, 141, 103980.
[http://dx.doi.org/10.1016/j.micpath.2020.103980] [PMID: 31962183]
[33]
Khayyat, S.A.; Sameeh, M.Y. Bioactive epoxides and hydroperoxides derived from naturally monoterpene geranyl acetate. Saudi Pharm. J., 2018, 26(1), 14-19.
[http://dx.doi.org/10.1016/j.jsps.2017.11.005] [PMID: 29379328]
[34]
Lee, B.H.; Choi, W.S.; Lee, S.E.; Park, B.S. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot., 2001, 20, 317-320.
[http://dx.doi.org/10.1016/S0261-2194(00)00158-7]
[35]
Lee, S.E.; Lee, B.H.; Choi, W.S.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag. Sci., 2001, 57(6), 548-553.
[http://dx.doi.org/10.1002/ps.322] [PMID: 11407032]
[36]
Govindarajan, M.; Benelli, G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf., 2016, 133, 395-402.
[http://dx.doi.org/10.1016/j.ecoenv.2016.07.035] [PMID: 27504617]
[37]
Quintans-Júnior, L.; Moreira, J.C.F.; Pasquali, M.A.B.; Rabie, S.M.S.; Pires, A.S.; Schröder, R.; Rabelo, T.K.; Santos, J.P.A.; Lima, P.S.S.; Cavalcanti, S.C.H.; Araújo, A.A.S.; Quintans, J.S.S.; Gelain, D.P. Antinociceptive activity and redox profile of the monoterpenes (+)-Camphene, p-cymene, and geranyl acetate in experimental models. ISRN Toxicol., 2013, 2013, 459530.
[http://dx.doi.org/10.1155/2013/459530] [PMID: 23724298]
[38]
Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 2002, 9(8), 721-726.
[http://dx.doi.org/10.1078/094471102321621322] [PMID: 12587692]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy