Abstract
Background: Chiral β-hydroxy esters and α-substituted β-hydroxy esters represent versatile building blocks for pheromones, β-lactam antibiotics and 1,2- or 1,3-aminoalcohols.
Objective: Synthesis of versatile α-substituted β-keto esters and their diastereoselective reduction to the corresponding syn- or anti-α-substituted β-hydroxy esters. Assignment of the relative configuration by NMR-spectroscopy after a Curtius rearrangement of α-substituted β-keto esters to 4-substituted 5-methyloxazolidin-2-ones.
Methods: Diastereoselective reduction was achieved by using different Lewis acids (zinc, titanium and cerium) in combination with complex borohydrides as reducing agents. Assignment of the relative configuration was verified by 1H-NMR spectroscopy after Curtius-rearrangement of α-substituted β-hydroxy esters to 4-substituted 5-methyloxazolidin-2-ones.
Results: For the syn-selective reduction, titanium tetrachloride (TiCl4) in combination with a pyridine-borane complex (py BH3) led to diastereoselectivities up to 99% dr. High anti-selective reduction was achieved by using cerium trichloride (CeCl3) and steric hindered reducing agents such as lithium triethylborohydride (LiEt3BH). After Curtius-rearrangement of each α-substituted β-hydroxy ester to the corresponding 4-substituted 5-methyloxazolidin-2-one, the relative configuration was confirmed by 1H NMR-spectroscopy.
Conclusion: We have expanded the procedure of Lewis acid-mediated diastereoselective reduction to bulky α-substituents such as the isopropyl group and the electron withdrawing phenyl ring.
Keywords: Diastereoselectivity, Keto esters, β-Hydroxy esters, Stereoselective reduction, NMR Spectroscopy, α-substituted.
Graphical Abstract
b) Zheng, J-F.; Lan, H-Q.; Yang, R-F.; Peng, Q-L.; Xiao, Z-H.; Tuo, S-C.; Hu, K-Z.; Xiang, Y-G.; Wei, Z.; Zhang, Z.; Huang, P-Q. Asymmetric Syntheses of the Sex Pheromones of Pine Sawflies, Their Homologs and Stereoisomers. Helv. Chim. Acta, 2012, 95, 1799-1808.
c) Mori, K. Synthesis of optically active pheromones. Tetrahedron, 1989, 45, 3233-3298.
[http://dx.doi.org/10.1002/ejoc.201101319]
b) Didier, E.; Loubinoux, B.; Ramos Tombo, G.H.; Rihs, G. Chemo-enzymatic synthesis of 1,2- and 1,3- amino-alcohols and their use in the enantioselective reduction of acetophenone and anti-acetophenone oxime methyl ether with borane. Tetrahedron, 1991, 47, 4941-4958.
c) Ghosh, A.K.; Cho, H.; Onishi, M. Asymmetric alkylations and aldol reactions: (1S,2R)-2-aminocyclopentan-1-ol derived new chiral auxiliary. Tetrahedron Asymmetry, 1997, 8(6), 821-824.
d) Varga, A.; Zaharia, V.; Nógrádi, M.; Poppe, L. Chemoenzymatic synthesis of both enantiomers of 3-hydroxy- and 3-amino-3-phenylpropanoic acid. Tetrahedron Asymmetry, 2013, 24, 1389-1394.
[http://dx.doi.org/10.1016/S0040-4020(01)80959-5] [http://dx.doi.org/10.1016/S0957-4166(97)00065-7] [PMID: 30387787] [http://dx.doi.org/10.1016/j.tetasy.2013.09.007]
b) Zhu, D.; Mukherjee, C.; Rozzell, J.D.; Kambourakis, S.; Hua, L. A recombinant ketoreductase tool-box. Assessing the substrate selectivity and stereoselectivity toward the reduction of β-ketoesters. Tetrahedron, 2006, 62, 901-905.
[http://dx.doi.org/10.1002/ejoc.201101695] [http://dx.doi.org/10.1016/j.tet.2005.10.044]
[http://dx.doi.org/10.1016/j.indcrop.2016.11.048]
[http://dx.doi.org/10.1021/cs400684x]
b) Kholod, I.; Vallat, O.; Buciumas, A-M.; Neels, A.; Neier, R. Synthetic Strategies for the Synthesis and Transformation of Substituted Pyrrolinones as Advanced Intermediates for Rhazinilam Analogues. Eur. J. Org. Chem., 2014, 2014, 7865-7877.
c) Ramachandran, P.V.; Chanda, P.B. Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction. Chem. Commun. (Camb.), 2013, 49(30), 3152-3154.
[http://dx.doi.org/10.1002/ange.200704841] [http://dx.doi.org/10.1002/ejoc.201402903] [http://dx.doi.org/10.1039/c3cc40860d] [PMID: 23478288]
[http://dx.doi.org/10.1021/ja00207a038]
[http://dx.doi.org/10.1021/jo9821574] [PMID: 11674293]
[http://dx.doi.org/10.1055/s-2002-34247]
[http://dx.doi.org/10.1021/acs.orglett.8b00433] [PMID: 29557666]
[http://dx.doi.org/10.1002/ejoc.200500038]
[http://dx.doi.org/10.1016/j.tetlet.2007.02.136]
b) Kimball, R.H.; Jefferson, G.D.; Pike, A.B. ETHYL a-PHENYLACETOACETATE. Org. Synth., 1938.
[http://dx.doi.org/10.1021/ja0782293] [PMID: 18186640]
[http://dx.doi.org/10.1039/b907151b] [PMID: 19662254]
b) Nakata, T.; Oishi, T. Stereoselective reduction of β-keto esters with zinc borohydride. stereoselective synthesis of -3-hydroxy-2-alkylpropionates. Tetrahedron Lett., 1980, 21, 1641-1644.
c) Sato, T.; Nishio, M.; Otera, J. Unusual anti-Selective Reduction of α-Methyl β-Alkylketo Esters by Organotin Hydride-Titanium Tetrachloride. Synlett, 1995, 1995, 965-966.
[http://dx.doi.org/10.1016/S0040-4039(00)87875-2] [http://dx.doi.org/10.1016/S0040-4039(00)77774-4] [http://dx.doi.org/10.1055/s-1995-5136]
[http://dx.doi.org/10.1002/047084289X.rz004]
[http://dx.doi.org/10.1515/znb-1991-1222]
[http://dx.doi.org/10.1002/adsc.200404075]
[http://dx.doi.org/10.1002/jlac.198019800710]
[http://dx.doi.org/10.1021/jo800066a] [PMID: 18410148]
[http://dx.doi.org/10.1002/9780470034590.emrstm0587]
[http://dx.doi.org/10.1021/ci049913t] [PMID: 15446826]
[http://dx.doi.org/10.1016/S0040-4039(96)01479-7]