Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

融合粒酶B的HPV16E7亲和素组成的亲和素在体外和体内对宫颈癌的靶向生物学效应。

卷 21, 期 3, 2021

发表于: 07 December, 2020

页: [232 - 243] 页: 12

弟呕挨: 10.2174/1568009620666201207145720

价格: $65

摘要

背景:人类乳头瘤病毒(HPV16)的高危16型与50%的子宫颈癌相关,目前尚缺乏可靠的靶向治疗方法。 HPV早期蛋白7(E7)是负责细胞恶性转化的癌蛋白。在我们之前的工作中,开发了针对HPV16E7(ZHPV16E7)的高度特异性的亲和体。目的:为改善靶向治疗效果,本研究制备了由ZHPV16E7与颗粒酶B(GrB)融合的抗毒素,即ZHPV16E7-GrB,并对其在体内外的靶向作用进行了评价。 方法:ZHPV16E7-GrB融合蛋白是在原核表达系统中产生的。 ZHPV16E7-GrB与HPV16E7的靶向结合特性已通过宫颈癌细胞系中的免疫荧光测定(IFA),临床样本中宫颈癌组织的免疫组织化学测定(IHA)以及荷瘤小鼠的近红外成像得以证实。进一步评估了对体外子宫颈癌细胞和体内荷瘤小鼠的抗肿瘤作用。 结果:在大肠杆菌中产生了一个34 kDa的ZHPV16E7-GrB融合蛋白,并显示出相应的免疫反应性。 IFA显示ZHPV16E7-GrB与HPV16阳性TC-1和SiHa细胞特异性结合。 IHA显示ZHPV16E7-GrB还与HPV16阳性临床组织标本特异性结合。另外,近红外成像结果表明ZHPV16E7-GrB在肿瘤组织中富集。此外,ZHPV16E7-GrB亲和素和ZHPV16E7亲和体(无GrB)均显着降低了子宫颈癌细胞的体外和体内荷瘤小鼠的增殖,并且ZHPV16E7-GrB的抗增殖作用高于ZHPV16E7的亲和体。 结论:通过将亲和体与GrB偶联而获得的亲和毒素是一种有前途的靶向治疗剂,具有靶向亲和体和GrB细胞毒素的双重优势。

关键词: HPV 16型,早期蛋白7,亲和体,颗粒酶B,宫颈癌,有针对性的疗效。

图形摘要

[1]
Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol., 2010, 11(11), 1048-1056.
[http://dx.doi.org/10.1016/S1470-2045(10)70230-8] [PMID: 20952254]
[2]
Castle, P.E.; Stoler, M.H.; Wright, T.C., Jr; Sharma, A.; Wright, T.L; Behrens, C.M. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: a subanalysis of the ATHENA study Lancet Oncol., 2011, 12(9), 880-90.
[3]
Females United to Unilaterally Reduce Endo/Ectocervical Disease (FUTURE) I Investigators. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med., 2007, 356(19), 1928-43.
[4]
Jacob, W.; James, I.; Hasmann, M.; Weisser, M. Clinical development of HER3-targeting monoclonal antibodies: Perils and progress. Cancer Treat. Rev., 2018, 68, 111-123.
[http://dx.doi.org/10.1016/j.ctrv.2018.06.011] [PMID: 29944978]
[5]
Vezina, H.E.; Cotreau, M.; Han, T.H.; Gupta, M. Antibody-drug conjugates as cancer therapeutics: past, present, and future. J. Clin. Pharmacol., 2017, 57(Suppl. 10), S11-S25.
[http://dx.doi.org/10.1002/jcph.981] [PMID: 28921650]
[6]
Farina, M.S.; Lundgren, K.T.; Bellmunt, J. Immunotherapy in urothelial cancer: recent results and future perspectives Drugs, 2017, 77(10), 1077-1089.
[http://dx.doi.org/10.1007/s40265-017-0748-7]
[7]
Fontoura, P. . Monoclonal antibody therapy in multiple sclerosis: Paradigm shifts and emerging challenges MAbs, 2010, 2, 670-681.
[8]
Storz, U. Antibody-drug conjugates: Intellectual property considerations MAbs, 2015, 7, 989-1009.
[9]
Grimm, S.; Salahshour, S.; Nygren, P.A. Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity N.Biotechnol, 2012, 29(5), 534-42.
[http://dx.doi.org/10.1016/j.nbt.2011.10.008]
[10]
Altai, M.; Leitao, C.D.; Rinne, S.S.; Vorobyeva, A.; Atterby, C.; Ståhl, S.; Tolmachev, V.; Löfblom, J.; Orlova, A. Influence of molecular design on the targeting properties of ABD-fused mono- and bi-valent anti-HER3 affibody therapeutic constructs. Cells, 2018, 7(10), 30314301.
[http://dx.doi.org/10.3390/cells7100164] [PMID: 30314301]
[11]
Oroujeni, M.; Garousi, J.; Andersson, K.G.; Löfblom, J.; Mitran, B.; Orlova, A.; Tolmachev, V. Preclinical evaluation of [68Ga]Ga-DFO-ZEGFR:2377: a promising affibody-based probe for noninvasive PET imaging of EGFR expression in tumors Cells, 2018, 7(9), 141.
[12]
Zahaf, N.I.; Schmidt, G. Bacterial toxins for cancer therapy Toxins (Basel), 2017, 9(8), 236.
[13]
Wei, J.; Bera, T.K.; Liu, X.F.; Zhou, Q.; Onda, M.; Ho, M.; Tai, C.; Pastan, I. Recombinant immunotoxins with albumin-binding domains have long half-lives and high antitumor activity Proc. Natl. Acad. Sci, 2018, 115, 3501-3508.
[http://dx.doi.org/10.1073/pnas.1721780115]
[14]
Appelbaum, F. R.; Bernstein, I. D. Gemtuzumab ozogamicin for acute myeloid leukemia Blood, 2017, 130(22), 2373-2376.
[http://dx.doi.org/10.1182/blood-2017-09-797712]
[15]
Bera, T.K.; Abe, Y.; Ise, T.; Oberle, A.; Gallardo, D.; Liu, X.F.; Nagata, S.; Binder, M.; Pastan, I. Recombinant immunotoxins targeting B-cell maturation antigen are cytotoxic to myeloma cell lines and myeloma cells from patients. Leukemia, 2018, 32(2), 569-572.
[http://dx.doi.org/10.1038/leu.2017.315] [PMID: 29149102]
[16]
Mazor, R.; King, E.M.; Pastan, I. Strategies to reduce the immunogenicity of recombinant immunotoxins. Am. J. Pathol., 2018, 188(8), 1736-1743.
[http://dx.doi.org/10.1016/j.ajpath.2018.04.016] [PMID: 29870741]
[17]
Heusel, J.W.; Wesselschmidt, R.L.; Shresta, S.; Russell, J.H.; Ley, T.J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells Cells, 1994, 76(6), 977-987.
[http://dx.doi.org/10.1016/0092-8674(94)90376-X]
[18]
Hoves, S.; Sutton, V.R.; Trapani, J.A. A novel role for granzymes in anti-tumor immunity Oncoimmunology, 2012, 1(2), 219-221.
[http://dx.doi.org/10.4161/onci.1.2.18102]
[19]
Mao, M.; Zhang, M.; Ge, A.Q.; Ge, X.; Gu, R.; Zhang, C.; Fu, Y.; Gao, J.Y.; Wang, X.Y.; Liu, Y.; Zhu, D.L. Granzyme B deficiency promotes osteoblastic differentiation and calcification of vascular smooth muscle cells in hypoxic pulmonary hypertension Cell Death Dis., 2018, 9(2), 221.
[http://dx.doi.org/10.1038/s41419-018-0315-5]
[20]
Adams, J. The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer, 2004, 4(5), 349-360.
[http://dx.doi.org/10.1038/nrc1361] [PMID: 15122206]
[21]
Mansilla, C.; Berraondo, P.; Durantez, M.; Martínez, M.; Casares, N.; Arribillaga, L.; Rudilla, F.; Fioravanti, J.; Lozano, T.; Villanueva, L.; Sarobe, P.; Borrás, F.; Leclerc, C.; Prieto, J.; Lasarte, J.J. Eradication of large tumors expressing human papillomavirus E7 protein by therapeutic vaccination with E7 fused to the extra domain a from fibronectin. Int. J. Cancer, 2012, 131(3), 641-651.
[http://dx.doi.org/10.1002/ijc.26412] [PMID: 21898393]
[22]
Xue, X.; Wang, B.; Du, W.; Zhang, C.; Song, Y.; Cai, Y.; Cen, D.; Wang, L.; Xiong, Y.; Jiang, P.; Zhu, S.; Zhao, K.N.; Zhang, L. Generation of affibody molecules specific for HPV16 E7 recognition. Oncotarget, 2016, 7(45), 73995-74005.
[http://dx.doi.org/10.18632/oncotarget.12174] [PMID: 27659535]
[23]
Li, Y.L.; Ma, Z.L.; Zhao, Y.; Zhang, J. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice. Oncol. Lett., 2015, 9(4), 1851-1856.
[http://dx.doi.org/10.3892/ol.2015.2911] [PMID: 25789055]
[24]
Wentzensen, N.; Schiffman, M. Filling a gap in cervical cancer screening programmes. Lancet Oncol., 2014, 15(3), 249-251.
[http://dx.doi.org/10.1016/S1470-2045(14)70073-7] [PMID: 24529698]
[25]
Zighelboim, I.; Wright, J.D.; Gao, F.; Case, A.S.; Massad, L.S.; Mutch, D.G.; Powell, M.A.; Thaker, P.H.; Eisenhauer, E.L.; Cohn, D.E.; Valea, F.A.; Alvarez Secord, A.; Lippmann, L.T.; Dehdashti, F.; Rader, J.S. Multicenter phase II trial of topotecan, cisplatin and bevacizumab for recurrent or persistent cervical cancer. Gynecol. Oncol., 2013, 130(1), 64-68.
[http://dx.doi.org/10.1016/j.ygyno.2013.04.009] [PMID: 23591400]
[26]
Symonds, R.P.; Gourley, C.; Davidson, S.; Carty, K.; McCartney, E.; Rai, D.; Banerjee, S.; Jackson, D.; Lord, R.; McCormack, M.; Hudson, E.; Reed, N.; Flubacher, M.; Jankowska, P.; Powell, M.; Dive, C.; West, C.M.L.; Paul, J. Cediranib combined with carboplatin and paclitaxel in patients with metastatic or recurrent cervical cancer (CIRCCa): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol., 2015, 16(15), 1515-1524.
[http://dx.doi.org/10.1016/S1470-2045(15)00220-X] [PMID: 26474517]
[27]
Thaker, P.H.; Salani, R.; Brady, W.E.; Lankes, H.A.; Cohn, D.E.; Mutch, D.G.; Mannel, R.S.; Bell-McGuinn, K.M.; Di Silvestro, P.A.; Jelovac, D.; Carter, J.S.; Duan, W.; Resnick, K.E.; Dizon, D.S.; Aghajanian, C.; Fracasso, P.M. A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: an NRG Oncology Study (NCT#01281852). Ann. Oncol., 2017, 28(3), 505-511.
[http://dx.doi.org/10.1093/annonc/mdw635] [PMID: 27998970]
[28]
Ståhl, S.; Gräslund, T.; Eriksson Karlström, A.; Frejd, F.Y.; Nygren, P.A.; Löfblom, J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol., 2017, 35(8), 691-712.
[http://dx.doi.org/10.1016/j.tibtech.2017.04.007] [PMID: 28514998]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy