Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Electromagnetic Field in Alzheimer’s Disease: A Literature Review of Recent Preclinical and Clinical Studies

Author(s): Reem H.M.A. Ahmad, Marc Fakhoury* and Nada Lawand*

Volume 17, Issue 11, 2020

Page: [1001 - 1012] Pages: 12

DOI: 10.2174/1567205017666201130085853

Price: $65

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloid-beta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.

Keywords: Alzheimer's disease, amyloid-beta, electromagnetic field, animal studies, human studies, neurons.

Next »
[1]
Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol 2013; 51(3): 169-88.
[http://dx.doi.org/10.5114/fn.2013.37702] [PMID: 24114635]
[2]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[3]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[4]
Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; 1CD005593
[PMID: 16437532]
[5]
Maidment ID, Fox CG, Boustani M, Rodriguez J, Brown RC, Katona CL. Efficacy of memantine on behavioral and psychological symptoms related to dementia: a systematic meta-analysis. Ann Pharmacother 2008; 42(1): 32-8.
[http://dx.doi.org/10.1345/aph.1K372] [PMID: 18056833]
[6]
Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1): CD001190
[http://dx.doi.org/10.1002/14651858.CD001190.pub2] [PMID: 16437430]
[7]
Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 2006; (1): CD001747
[http://dx.doi.org/10.1002/14651858.CD001747.pub3] [PMID: 16437436]
[8]
Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2009; 2CD001191
[PMID: 19370562]
[9]
Herrmann N, Chau SA, Kircanski I, Lanctôt KL. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs 2011; 71(15): 2031-65.
[http://dx.doi.org/10.2165/11595870-000000000-00000] [PMID: 21985169]
[10]
Areosa SA, Sherriff F. Memantine for dementia. Cochrane Database Syst Rev 2003; 4CD003154
[11]
McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev 2019; 3CD003154
[PMID: 30891742]
[12]
Sastre M, Gentleman SM. NSAIDs: how they work and their prospects as therapeutics in Alzheimer’s disease. Front Aging Neurosci 2010; 2: 20.
[http://dx.doi.org/10.3389/fnagi.2010.00020] [PMID: 20589102]
[13]
Aisen PS, Davis KL, Berg JD, et al. A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology 2000; 54(3): 588-93.
[http://dx.doi.org/10.1212/WNL.54.3.588] [PMID: 10680787]
[14]
Hessmann P, Dodel R, Baum E, et al. Antidepressant medication in a German cohort of patients with Alzheimer’s disease. Int J Clin Pharmacol Ther 2018; 56(3): 101-12.
[http://dx.doi.org/10.5414/CP203121] [PMID: 29350177]
[15]
Tifratene K, Manera V, Fabre R, et al. Antipsychotic prescribing for Alzheimer’s disease and related disorders in specialized settings from 2010 to 2014 in France: a repeated cross-sectional study. Alzheimers Res Ther 2017; 9(1): 34.
[http://dx.doi.org/10.1186/s13195-017-0256-8] [PMID: 28446209]
[16]
Kaune WT. Introduction to power-frequency electric and magnetic fields. Environ Health Perspect 1993; 101(4): 73-81.
[http://dx.doi.org/10.1289/ehp.93101s473] [PMID: 8206045]
[17]
Singh S, Kapoor N. Health implications of electromagnetic fields, mechanisms of action, and research needs Adv Biol 2014; 2014: 24..
[http://dx.doi.org/10.1155/2014/198609]
[18]
Vian A, Davies E, Gendraud M, Bonnet P. plant responses to high frequency electromagnetic fields. BioMed Res Int 2016; 20161830262
[http://dx.doi.org/10.1155/2016/1830262] [PMID: 26981524]
[19]
Jiang DP, Li JH, Zhang J, et al. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res 2016; 1642: 10-9.
[http://dx.doi.org/10.1016/j.brainres.2016.02.053] [PMID: 26972535]
[20]
Jiang DP, Li J, Zhang J, et al. Electromagnetic pulse exposure induces overexpression of beta amyloid protein in rats. Arch Med Res 2013; 44(3): 178-84.
[http://dx.doi.org/10.1016/j.arcmed.2013.03.005] [PMID: 23523687]
[21]
WHO. Electromagnetic fields (EMF) 2020. Available from:; https://www.who.int/peh-emf/about/WhatisEMF/en/index5.html(Last accessed June 22, 2020))..
[22]
Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA. Reduced excretion of a melatonin metabolite in workers exposed to 60 Hz magnetic fields. Am J Epidemiol 1999; 150(1): 27-36.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009914] [PMID: 10400550]
[23]
Wood AW, Armstrong SM, Sait ML, Devine L, Martin MJ. Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J Pineal Res 1998; 25(2): 116-27.
[http://dx.doi.org/10.1111/j.1600-079X.1998.tb00548.x] [PMID: 9755033]
[24]
Misa-Agustiño MJ, Leiro-Vidal JM, Gomez-Amoza JL, et al. EMF radiation at 2450 MHz triggers changes in the morphology and expression of heat shock proteins and glucocorticoid receptors in rat thymus. Life Sci 2015; 127: 1-11.
[http://dx.doi.org/10.1016/j.lfs.2015.01.027] [PMID: 25731700]
[25]
Coulton LA, Harris PA, Barker AT, Pockley AG. Effect of 50 Hz electromagnetic fields on the induction of heat-shock protein gene expression in human leukocytes. Radiat Res 2004; 161(4): 430-4.
[http://dx.doi.org/10.1667/RR3145] [PMID: 15038769]
[26]
Kim JH, Sohn UD, Kim HG, Kim HR. Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean J Physiol Pharmacol 2018; 22(3): 277-89.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.277] [PMID: 29719450]
[27]
Tekieh T, Sasanpour P, Rafii-Tabar H. Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: a Brownian dynamics study. Brain Res 2016; 1646: 560-9.
[http://dx.doi.org/10.1016/j.brainres.2016.06.034] [PMID: 27346366]
[28]
Amjad L, Shafighi M. Effect of electromagnetic fields on structure and pollen grains development in chenopodium Album L. Intern Conference on Biosci, Biochem Bioinform. 2010; 4(10): 83-7..
[29]
Hardell L, Carlberg M, Hansson Mild K. Use of cellular telephones and brain tumour risk in urban and rural areas. Occup Environ Med 2005; 62(6): 390-4.
[http://dx.doi.org/10.1136/oem.2004.017434] [PMID: 15901886]
[30]
Morgan LL, Miller AB, Sasco A, Davis DL. Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A).(review) Int J Oncol 2015; 46(5): 1865-71.
[http://dx.doi.org/10.3892/ijo.2015.2908] [PMID: 25738972]
[31]
Arendash GW, Sanchez-Ramos J, Mori T, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 2010; 19(1): 191-210.
[http://dx.doi.org/10.3233/JAD-2010-1228] [PMID: 20061638]
[32]
Jeong YJ, Kang GY, Kwon JH, et al. 1950 MHz electromagnetic fields ameliorate Aβ pathology in Alzheimer’s disease mice. Curr Alzheimer Res 2015; 12(5): 481-92.
[http://dx.doi.org/10.2174/156720501205150526114448] [PMID: 26017559]
[33]
Park J, Kwon JH, Kim N, Song K. Effects of 1950 MHz radiofrequency electromagnetic fields on Aβ processing in human neuroblastoma and mouse hippocampal neuronal cells. J Radiat Res 2018; 59(1): 18-26.
[http://dx.doi.org/10.1093/jrr/rrx045] [PMID: 29040655]
[34]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[35]
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Longev 2016; 20167361613
[http://dx.doi.org/10.1155/2016/7361613] [PMID: 27034741]
[36]
Huang HC, Jiang ZF. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 2009; 16(1): 15-27.
[http://dx.doi.org/10.3233/JAD-2009-0960] [PMID: 19158417]
[37]
Alves L, Correia AS, Miguel R, Alegria P, Bugalho P. Alzheimer’s disease: a clinical practice-oriented review. Front Neurol 2012; 3: 63.
[http://dx.doi.org/10.3389/fneur.2012.00063] [PMID: 22529838]
[38]
Winblad B, Cummings J, Andreasen N, et al. A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer’s disease-rivastigmine patch versus capsule. Int J Geriatr Psychiatry 2007; 22(5): 456-67.
[http://dx.doi.org/10.1002/gps.1788] [PMID: 17380489]
[39]
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther 2018; 24(9): 753-62.
[http://dx.doi.org/10.1111/cns.12971] [PMID: 29770579]
[40]
Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004; 291(3): 317-24.
[http://dx.doi.org/10.1001/jama.291.3.317] [PMID: 14734594]
[41]
Atri A, Shaughnessy LW, Locascio JJ, Growdon JH. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22(3): 209-21.
[http://dx.doi.org/10.1097/WAD.0b013e31816653bc] [PMID: 18580597]
[42]
Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry 2009; 80(6): 600-7.
[http://dx.doi.org/10.1136/jnnp.2008.158964] [PMID: 19204022]
[43]
Porsteinsson AP, Grossberg GT, Mintzer J, Olin JT, Memantine MEMMDSG. Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res 2008; 5(1): 83-9.
[http://dx.doi.org/10.2174/156720508783884576] [PMID: 18288936]
[44]
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 2018; 16(5): 508-18.
[http://dx.doi.org/10.2174/1570159X15666170720095240] [PMID: 28730967]
[45]
Gasparini L, Ongini E, Wenk G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J Neurochem 2004; 91(3): 521-36.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[46]
de Jong D, Jansen R, Hoefnagels W, et al. No effect of one-year treatment with indomethacin on Alzheimer’s disease progression: a randomized controlled trial. PLoS One 2008; 3(1)e1475
[http://dx.doi.org/10.1371/journal.pone.0001475] [PMID: 18213383]
[47]
Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology 1999; 53(1): 197-201.
[http://dx.doi.org/10.1212/WNL.53.1.197] [PMID: 10408559]
[48]
Townsend KP, Praticò D. Novel therapeutic opportunities for Alzheimer’s disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J 2005; 19(12): 1592-601.
[http://dx.doi.org/10.1096/fj.04-3620rev] [PMID: 16195368]
[49]
Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM. Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci USA 1997; 94(6): 2687-92.
[http://dx.doi.org/10.1073/pnas.94.6.2687] [PMID: 9122257]
[50]
Golde S, Coles A, Lindquist JA, Compston A. Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Eur J Neurosci 2003; 18(9): 2527-37.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02917.x] [PMID: 14622153]
[51]
Ballard C, Day S, Sharp S, Wing G, Sorensen S. Neuropsychiatric symptoms in dementia: importance and treatment considerations. Int Rev Psychiatry 2008; 20(4): 396-404.
[http://dx.doi.org/10.1080/09540260802099968] [PMID: 18925489]
[52]
Gauthier S, Cummings J, Ballard C, et al. Management of behavioral problems in Alzheimer’s disease. Int Psychogeriatr 2010; 22(3): 346-72.
[http://dx.doi.org/10.1017/S1041610209991505] [PMID: 20096151]
[53]
Thompson S, Herrmann N, Rapoport MJ, Lanctôt KL. Efficacy and safety of antidepressants for treatment of depression in Alzheimer’s disease: a metaanalysis. Can J Psychiatry 2007; 52(4): 248-55.
[http://dx.doi.org/10.1177/070674370705200407] [PMID: 17500306]
[54]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[55]
Ul Islam B, Khan MS, Jabir NR, Kamal MA, Tabrez S. Elucidating treatment of Alzheimer’s disease via different receptors. Curr Top Med Chem 2017; 17(12): 1400-7.
[http://dx.doi.org/10.2174/1568026617666170103163715] [PMID: 28049400]
[56]
Rao RR, Halper J, Kisaalita WS. Effects of 60 Hz electromagnetic field exposure on APP695 transcription levels in differentiating human neuroblastoma cells. Bioelectrochemistry 2002; 57(1): 9-15.
[http://dx.doi.org/10.1016/S1567-5394(02)00004-X] [PMID: 12049751]
[57]
Antonini RA, Benfante R, Gotti C, et al. Extremely low-frequency electromagnetic field (ELF-EMF) does not affect the expression of alpha3, alpha5 and alpha7 nicotinic receptor subunit genes in SH-SY5Y neuroblastoma cell line. Toxicol Lett 2006; 164(3): 268-77.
[http://dx.doi.org/10.1016/j.toxlet.2006.01.006] [PMID: 16513298]
[58]
Kása P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol 1997; 52(6): 511-35.
[http://dx.doi.org/10.1016/S0301-0082(97)00028-2] [PMID: 9316159]
[59]
Del Giudice E, Facchinetti F, Nofrate V, et al. Fifty Hertz electromagnetic field exposure stimulates secretion of beta-amyloid peptide in cultured human neuroglioma. Neurosci Lett 2007; 418(1): 9-12.
[http://dx.doi.org/10.1016/j.neulet.2007.02.057] [PMID: 17382472]
[60]
He GL, Luo Z, Shen TT, et al. Inhibition of STAT3- and MAPK-dependent PGE2 synthesis ameliorates phagocytosis of fibrillar β-amyloid peptide (1-42) via EP2 receptor in EMF-stimulated N9 microglial cells. J Neuroinflammation 2016; 13(1): 296.
[http://dx.doi.org/10.1186/s12974-016-0762-9] [PMID: 27871289]
[61]
Hirai T, Taniura H, Goto Y, Ogura M, Sng JC, Yoneda Y. Stimulation of ubiquitin-proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism. J Neurochem 2006; 96(6): 1519-30.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03655.x] [PMID: 16539681]
[62]
Marchesi N, Osera C, Fassina L, et al. Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J Cell Physiol 2014; 229(11): 1776-86.
[http://dx.doi.org/10.1002/jcp.24631] [PMID: 24676932]
[63]
Arendash GW, Mori T, Dorsey M, Gonzalez R, Tajiri N, Borlongan C. Electromagnetic treatment to old Alzheimer’s mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS One 2012; 7(4)e35751
[http://dx.doi.org/10.1371/journal.pone.0035751] [PMID: 22558216]
[64]
Dragicevic N, Bradshaw PC, Mamcarz M, et al. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer’s transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience 2011; 185: 135-49.
[http://dx.doi.org/10.1016/j.neuroscience.2011.04.012] [PMID: 21514369]
[65]
Liu X, Zuo H, Wang D, et al. Improvement of spatial memory disorder and hippocampal damage by exposure to electromagnetic fields in an Alzheimer’s disease rat model. PLoS One 2015; 10(5)e0126963
[http://dx.doi.org/10.1371/journal.pone.0126963] [PMID: 25978363]
[66]
Zhang Y, Liu X, Zhang J, Li N. Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer’s disease in rats. Int J Radiat Biol 2015; 91(1): 28-34.
[http://dx.doi.org/10.3109/09553002.2014.954058] [PMID: 25118893]
[67]
Akbarnejad Z, Esmaeilpour K, Shabani M, et al. Spatial memory recovery in Alzheimer’s rat model by electromagnetic field exposure. Int J Neurosci 2018; 128(8): 691-6.
[http://dx.doi.org/10.1080/00207454.2017.1411353] [PMID: 29185809]
[68]
Zuo H, Liu X, Wang D, et al. RKIP-mediated NF-κB signaling is involved in ELF-MF-mediated improvement in AD rat. Int J Med Sci 2018; 15(14): 1658-66.
[http://dx.doi.org/10.7150/ijms.28411] [PMID: 30588189]
[69]
Bouji M, Lecomte A, Gamez C, Blazy K, Villégier AS. Impact of cerebral radiofrequency exposures on oxidative stress and corticosterone in a rat model of Alzheimer’s disease. J Alzheimers Dis 2020; 73(2): 467-76.
[http://dx.doi.org/10.3233/JAD-190593] [PMID: 31796670]
[70]
Son Y, Jeong YJ, Kwon JH, et al. 1950MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice. Bioelectromagnetics 2016; 37(6): 391-9.
[http://dx.doi.org/10.1002/bem.21992] [PMID: 27434853]
[71]
Son Y, Kim JS, Jeong YJ, et al. Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett 2018; 666: 64-9.
[http://dx.doi.org/10.1016/j.neulet.2017.12.042] [PMID: 29273398]
[72]
Tsoy A, Saliev T, Abzhanova E, et al. The effects of mobile phone radiofrequency electromagnetic fields on β-amyloid-induced oxidative stress in human and rat primary astrocytes. Neuroscience 2019; 408: 46-57.
[http://dx.doi.org/10.1016/j.neuroscience.2019.03.058] [PMID: 30953670]
[73]
Guerriero F, Botarelli E, Mele G, et al. An innovative intervention for the treatment of cognitive impairment-emisymmetric bilateral stimulation improves cognitive functions in Alzheimer’s disease and mild cognitive impairment: an open-label study. Neuropsychiatr Dis Treat 2015; 11: 2391-404.
[http://dx.doi.org/10.2147/NDT.S90966] [PMID: 26425094]
[74]
Andel R, Crowe M, Feychting M, et al. Work-related exposure to extremely low-frequency magnetic fields and dementia: results from the population-based study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 2010; 65(11): 1220-7.
[http://dx.doi.org/10.1093/gerona/glq112] [PMID: 20622138]
[75]
Seidler A, Geller P, Nienhaus A, et al. Occupational exposure to low frequency magnetic fields and dementia: a case-control study. Occup Environ Med 2007; 64(2): 108-14.
[http://dx.doi.org/10.1136/oem.2005.024190] [PMID: 17043077]
[76]
Feychting M, Jonsson F, Pedersen NL, Ahlbom A. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology 2003; 14(4): 413-9.
[http://dx.doi.org/10.1097/01.EDE.0000071409.23291.7b] [PMID: 12843764]
[77]
Qiu C, Fratiglioni L, Karp A, Winblad B, Bellander T. Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiology 2004; 15(6): 687-94.
[http://dx.doi.org/10.1097/01.ede.0000142147.49297.9d] [PMID: 15475717]
[78]
Sandyk R. Alzheimer’s disease: improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields. Int J Neurosci 1994; 76(3-4): 185-225.
[http://dx.doi.org/10.3109/00207459408986003] [PMID: 7960477]
[79]
Li CY, Sung FC, Wu SC. Risk of cognitive impairment in relation to elevated exposure to electromagnetic fields. J Occup Environ Med 2002; 44(1): 66-72.
[http://dx.doi.org/10.1097/00043764-200201000-00011] [PMID: 11802468]
[80]
Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC. Elevated risk of Alzheimer’s disease among workers with likely electromagnetic field exposure. Neurology 1996; 47(6): 1477-81.
[http://dx.doi.org/10.1212/WNL.47.6.1477] [PMID: 8960730]
[81]
Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 51.
[http://dx.doi.org/10.1186/s13024-018-0284-2] [PMID: 30285785]
[82]
Guerriero F, Ricevuti G. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res 2016; 11(12): 1888-95.
[http://dx.doi.org/10.4103/1673-5374.195277] [PMID: 28197174]
[83]
Kawczyk-Krupka A, Sieron A, Shani J, Czuba Z, Krol W. Biological effects of extremely lowfrequency magnetic fields on stumlated macrophages J774-2 in cell culture Electromagn Biol Med 2002; 21: 141-53..
[http://dx.doi.org/10.1081/JBC-120006786]
[84]
Azanza MJ, del Moral A. Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog Neurobiol 1994; 44(6): 517-601.
[http://dx.doi.org/10.1016/0301-0082(94)90004-3] [PMID: 7701072]
[85]
Frahm J, Lantow M, Lupke M, Weiss DG, Simkó M. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J Cell Biochem 2006; 99(1): 168-77.
[http://dx.doi.org/10.1002/jcb.20920] [PMID: 16598759]
[86]
Reale M, Kamal MA, Patruno A, et al. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS One 2014; 9(8)e104973
[http://dx.doi.org/10.1371/journal.pone.0104973] [PMID: 25127118]
[87]
Cossarizza A, Monti D, Bersani F, et al. Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. FEBS Lett 1989; 248(1-2): 141-4.
[http://dx.doi.org/10.1016/0014-5793(89)80449-1] [PMID: 2785933]
[88]
Gómez-Ochoa I, Gómez-Ochoa P, Gómez-Casal F, Cativiela E, Larrad-Mur L. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol Int 2011; 31(10): 1283-9.
[http://dx.doi.org/10.1007/s00296-010-1488-0] [PMID: 20372910]
[89]
Pessina GP, Aldinucci C. Pulsed electromagnetic fields enhance the induction of cytokines by peripheral blood mononuclear cells challenged with phytohemagglutinin. Bioelectromagnetics 1998; 19(8): 445-51.
[http://dx.doi.org/10.1002/(SICI)1521-186X(1998)19:8<445:AID-BEM1>3.0.CO;2-5] [PMID: 9849913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy