[1]
Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov., 2020, 1-15.
[http://dx.doi.org/10.1080/17460441.2020.1798926] [PMID: 32735147]
[http://dx.doi.org/10.1080/17460441.2020.1798926] [PMID: 32735147]
[2]
Borah, P.; Hazarika, S.; Deka, S.; Venugopala, K.N.; Nair, A.B.; Attimarad, M.; Sreeharsha, N.; Mailavaram, R.P. Application of advanced technologies in natural product research: a re-view with special emphasis on ADMET profiling. Curr. Drug Metab., 2020, 21. E-pub Ahead of Print.
[http://dx.doi.org/10.2174/1389200221666200714144911] [PMID: 32664837]
[http://dx.doi.org/10.2174/1389200221666200714144911] [PMID: 32664837]
[3]
Yu, Y.; Wang, S.; Wang, Y.; Cao, Y.; Yu, C.; Pan, Y.; Su, D.; Lu, Q.; Zuo, Y.; Yang, L. Using reduced amino acid alphabet and biological properties to analyze and predict animal neurotoxin protein. Curr. Drug Metab., 2020, 21. E-pub Ahead of Print
[PMID: 32433000]
[PMID: 32433000]
[4]
Sinha, J.; Duffull, S.B.; Green, B.; Al-Sallami, H.S. evaluating lean liver volume as a potential scaler for in vitro-in vivo extrapolation of drug clearance in obesity using the model drug antipyrine. Curr. Drug Metab., 2020, 21. E-pub Ahead of Print
[http://dx.doi.org/10.2174/1389200221666200515105800] [PMID: 32410559]
[http://dx.doi.org/10.2174/1389200221666200515105800] [PMID: 32410559]