[2]
Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets 2014; 2672-80.
[3]
Zhang Y, Pei Y, Qin H, et al. Masseter muscle segmentation from cone-beam ct images using generative adversarial network ISBI. 2019; 1188-92.
[4]
Larsen ABL, Sønderby SK, Larochelle H, Winther O. Autoencoding beyond pixels using a learned similarity metric 2016; 1558-66.
[11]
Lin Y-J, Chung IF. Medical data augmentation using generative adversarial networks: X-ray image generation for transfer learning of hip fracture detection.2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI). 2019; pp. 1-5.
[16]
Vasudeva B, Deora P, Bhattacharya S, Pradhan PM. Co-VeGAN: complex-valued generative adversarial network for compressive sensing mr image reconstruction. CoRR 2020.
[18]
Li Z, Zhang T, Wan P, Zhang D. SEGAN: Structure-enhanced generative adversarial network for compressed sensing mri reconstruction. Computer Vision and Pattern Recognition 2019; 1012-9.
[25]
Iakovidis DK, Koulaouzidis A. Automatic lesion detection in wireless capsule endoscopy - A simple solution for a complex problem. ICIP 2014; 2236-40.
[26]
Hernandez-Matas C, Zabulis X, Argyros AA. An experimental evaluation of the accuracy of keypoints-based retinal image registration. EMBC 2017; 377-81.
[27]
Azzopardi G, Petkov N. Detection of retinal vascular bifurcations
by trainable V4-like filters. CAIP(4) 2011; 451-9.
[28]
Porwal P, Pachade S, Kamble R, et al. Indian Diabetic Retinopathy Image Dataset (IDRiD): A database for diabetic retinopathy screening research. Data 2018; 25.
[33]
Yadav AK, Shah S, Xu Z, Jacobs DW, Goldstein T. Stabilizing Adversarial Nets with Prediction Methods. ICLR 2018.
[35]
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 2015; 448-56.
[36]
Elibol M, Lei L, Jordan MI. Variance Reduction with Sparse Gradients. CoRR 2020.
[37]
Mirza M, Osindero S. Conditional generative adversarial nets. Comput Sci 2014; 2672-80.
[38]
Reed SE, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H. Generative adversarial text to image synthesis. ICML 2016; 1060-9.
[39]
Larsen ABL, Sønderby SK, Larochelle H, Winther O. Autoencoding beyond pixels using a learned similarity metric. ICML 2016; 1558-66.
[40]
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. ICML 2017; 214-23.
[41]
Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved training of wasserstein GANs. NIPS 2017; 5767-77.
[42]
Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. nfoGAN: interpretable representation learning by information maximizing generative adversarial nets. NIPS 2016; 2172-80.
[43]
Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks. CoRR 2017.
[46]
Máttyus G, Urtasun R. Matching Adversarial Networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2018; 8024-32.
[47]
Odena A. Conditional image synthesis with auxiliary classifier gans. 34th International Conference on Machine Learning 6: 4043-55.
[49]
Petzka H. On the regularization of Wasserstein GANs. 6th International Conference on Learning Representations.
[50]
Seff A. L. L, Barbu A, Roth H, Shin H-C, Summers R M. Leveraging mid-level semantic boundary cues for automated lymph node detection. International Conference on Medical Image Computing and Computer-Assisted Intervention. 53-61.
[56]
Tang Y, Oh S, Tang Y, Xiao J, Summers RM. Summers, CTrealistic data augmentation using generative adversarial network for robust lymph node segmentation. Medical Imaging: Computer- Aided Diagnosis 2019; 109503V.
[57]
Venu SK. Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images. CoRR 2020.
[58]
Konidaris F, Tagaris T, Sdraka M, Stafylopatis A. Generative adversarial networks as an advanced data augmentation technique for MRI data. VISIGRAPP 2019; 48-59.
[59]
Mok TCW, Chung ACS. Learning Data Augmentation for Brain Tumor Segmentation with Coarse-to-Fine Generative Adversarial Networks. BrainLes@MICCAI 2018; 70-80.
[60]
Majurski M, Manescu P, Padi S, et al. Cell image segmentation using generative adversarial networks, transfer learning, and augmentations. CVPR Workshops 2019.
[61]
Yan K, Wang X, Lu L, et al. Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database 2018; 9261-70.
[64]
Tang Y, Cai J, Lu L, et al. CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement. Lecture Notes in Computer Science 2018; 46-54.
[65]
Jin D, Xu Z, Tang Y, Harrison AP, Mollura DJ. CT-Realistic lung nodule simulation from 3d conditional generative adversarial networks for robust lung segmentation. MICCAI 2018; 732-40.
[66]
Tan J, Jing L, Huo Y, Tian Y, Akin O. LGAN: Lung segmentation in CT scans using generative adversarial network. CoRR 2019.
[67]
Huo Y, Xu Z, Bao S, et al. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Medical Imaging: Image Processing 2018; 1057409.
[71]
Wang X. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases.Computer Vision and Pattern Recognition 2017; 2097-106.
[74]
Bowles C, Gunn RN, Hammers A, Rueckert D. Modelling the progression of Alzheimer's disease in MRI using generative adversarial networks. Medical Imaging: Image Processing 2018; 105741K.
[75]
Kim G, Shim H, Baek J. Feasibility study of deep convolutional generative adversarial networks to generate mammography images Medical Imaging: Image Perception. Observer Performance, and Technology Assessment 2018; p. 105771C.
[76]
Tanner C, Özdemir F, Profanter R, Vishnevsky V, Konukoglu E, Göksel O. Generative adversarial networks for MR-CT deformable image registration. CoRR 2018.
[78]
Zhang L, Gooya A, Frangi AF. Semi-supervised Assessment of Incomplete LV Coverage in Cardiac MRI Using Generative Adversarial Nets. SASHIMI@MICCAI 2017; 61-8.
[83]
Shin H-C, Tenenholtz NA, Rogers JK, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. SASHIMI@MICCAI 2018; 1-11.
[84]
Curto JD, Zarza IC. Torre FDl, King I, Lyu MR. High-resolution deep convolutional generative adversarial networks. CoRR 2017.
[86]
Ying X, Guo H, Ma K, Wu J, Weng Z, Zheng Y. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. Clin Orthop Relat Res 2019; 10619-28.
[90]
Zhang T, Fu H, Zhao Y, et al. SkrGAN: Sketching-rendering unconditional generative adversarial networks for medical image synthesis.MICCAI 2019; 777-85.
[91]
Senaras Ç, Sahiner B, Tozbikian G, Lozanski G, Gurcan MN. Creating synthetic digital slides using conditional generative adversarial networks: application to Ki67 staining. Medical Imaging: Digital Pathology 2018; 1058103.
[94]
Fox NK, Brenner SE, Chandonia J-M. SCOPe: Structural Classification of Proteins - extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 2014; 42(Database-Issue): 304-9.
[98]
Singh VK, Romani S, Rashwan HA, et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification.MICCAI 2018; 833-40.
[99]
Rezaei M, Yang H, Meinel C. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. WACV 2019; 1836-45.
[101]
Schlegl T, Waldstein SM, Vogl W-D, Schmidt-Erfurth U, Langs G. Predicting semantic descriptions from medical images with convolutional neural networks. IPMI 2015; 437-48.
[103]
Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. ISBI 2018; 289-93.
[104]
Beers A, Brown JM, Chang K, et al. High-resolution medical image synthesis using progressively grown generative adversarial networks. CoRR 2018.
[106]
Haehn D. Slice: drop: collaborative medical imaging in the browser. SIGGRAPH Computer Animation Festival 2013; 104.
[108]
Hamarneh G, Jassi P, Tang L. Simulation of ground-truth validation data via physically- and statistically-based warps. MICCAI 2008; 459-67.
[112]
Rocha GMd. Ciferri CDA, Img DW. Generator: a tool for generating data for medical image data warehouses. SBBD Companion 2018; 23-8.
[114]
Izzo R, Steinman DA, Manini S, Faggiano E, Antiga L. The vascular modeling toolkit: a python library for the analysis of tubular structures in medical images. J Open Source Soft 2018; 745.
[121]
Mirsky Y, Mahler T, Shelef I, Elovici Y CT-GAN. Malicious Tampering of 3D Medical Imagery using Deep Learning 2019; 461-78.
[122]
Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. arXiv preprint 2018.
[124]
Salimans T, Goodfellow IJ, Zaremba W, Cheung V, Radford A, Chen X. Improved Techniques Training GANs 2016; 2226-34.
[125]
Odena A, Olah C, Shlens J. Conditional Image Synthesis with Auxiliary Classifier GANs. arXiv 2017; 2642-51.
[126]
Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs trained by a two time-scale update rule converge to a local nash equilibrium. 31st Conference on Neural Information Processing Systems (NIPS 2017) 2017; 6626-37.