Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Therapeutic Potential of Genus Pongamia and Derris: Phytochemical and Bioactivity

Author(s): Bharat Goel, Nancy Tripathi, Nivedita Bhardwaj, Bharat Sahu and Shreyans K. Jain*

Volume 21, Issue 8, 2021

Published on: 24 November, 2020

Page: [920 - 951] Pages: 32

DOI: 10.2174/1389557520999201124211846

Price: $65

Abstract

Genus Pongamia and Derris belong to the Leguminosae family and are reported synonymously in literature. Although many compounds have been isolated from different plant parts but seed oil is known to produce non-edible medicinally important furanoflavonoids. The seed oil, commonly known as Karanj oil in Ayurvedic and Siddha traditional systems of medicine, is reported for the treatment of various skin infections and psoriasis. Several phytopharmacological investigations have proved the medicinal potential of furanoflavonoids in the skin and other disorders. Not only furanoflavonoids but several other important phenolic constituents such as chalcones, dibenzoylmethanes, aurones, isoflavones, flavanone dihydroflavonol, flavans, pterocarpans, rotenoids, coumarins, coumestans, stilbenoids and peltygynoids and their glycosides have been reported for different biological activities including antihyperglycemic, anti-inflammatory, anticancer, insecticidal, anti-alzheimer’s, gastro protective, antifungal, antibacterial, etc. In the present review, the phytochemistry and pharmacological activities of the genera Pongamia and Derris have been summarized.

Keywords: Pongamia, Derris, Milletia, phytochemistry, furanoflavonoids, chromenoflavonoids, bioactivities.

Graphical Abstract

[1]
The Plant List Pongamia pinnata (L.) Pierre - The Plant List. http://www.theplantlist.org/tpl/record/ild-4759
[2]
Sree, R.; Rao, R. Gulshan; Aruna, S.; Prasanna, L. Pongamia: Assemble of natural wealth. Indo Am. J. Pharm. Res., 2014, 4(9), 3642-3653.
[3]
Talapatra, S.K.; Mallik, A.K.; Talapatra, B. Pongaglabol, a new hydroxyfuranoflavone, and aurantiamide acetate, a dipeptide from the flowers of Pongamia glabra. Phytochemistry, 1980, 19(6), 1199-1202.
[http://dx.doi.org/10.1016/0031-9422(80)83083-4]
[4]
Talapatra, S.K.; Mallik, A.K.; Talapatra, B. Isopongaglabol and 6-methoxyisopongaglabol, two new hydroxyfuranoflavones from Pongamia glabra. Phytochemistry, 1982, 21(3), 761-766.
[http://dx.doi.org/10.1016/0031-9422(82)83183-X]
[5]
Rao, R.R.; Tiwari, A.K.; Prabhakar Reddy, P.; Suresh Babu, K.; Ali, A.Z.; Madhusudana, K.; Madhusudana Rao, J. New furanoflavanoids, intestinal α-glucosidase inhibitory and free-radical (DPPH) scavenging, activity from antihyperglycemic root extract of Derris indica (Lam.). Bioorg. Med. Chem., 2009, 17(14), 5170-5175.
[http://dx.doi.org/10.1016/j.bmc.2009.05.051]
[6]
Lyra, D.A.; Francisco De Mello, J.; Delle Monache, G.; Delle Monache, F.; Marini-Bettolo, G.B. Flavonoids from Derris mollis. Gazz. Chim. Ital., 1979, 109(1-2), 93-94.
[7]
Maurya, R.; Yadav, P.P. Furanoflavonoids: An overview. Nat. Prod. Rep., 2005, 22(3), 400-424.
[http://dx.doi.org/10.1039/b505071p]
[8]
Yadav, P.P.; Ahmad, G.; Maurya, R. Furanoflavonoids from Pongamia pinnata fruits. Phytochemistry, 2004, 65(4), 439-443.
[http://dx.doi.org/10.1016/j.phytochem.2003.09.011]
[9]
Al Muqarrabun, L.M.R.; Ahmat, N.; Ruzaina, S.A.S.; Ismail, N.H.; Sahidin, I. Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: A review. J. Ethnopharmacol., 2013, 150(2), 395-420.
[http://dx.doi.org/10.1016/j.jep.2013.08.041]
[10]
Karmee, S.K.; Chadha, A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour. Technol., 2005, 96(13), 1425-1429.
[http://dx.doi.org/10.1016/j.biortech.2004.12.011]
[11]
Khare, C.P. Indian medicinal plants: An illustrated dictionary, 1st ed; Springer-Verlag: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[12]
Alam, M.S.; Lee, D-U. Cytotoxic and antimicrobial properties of furoflavones and furochalcones. J. Korean Soc. Appl. Biol. Chem., 2011, 54(5), 725-730.
[http://dx.doi.org/10.1007/BF03253151]
[13]
Li, J.; Jiang, Z.; Li, X.; Hou, Y.; Liu, F.; Li, N.; Liu, X.; Yang, L.; Chen, G. Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg. Med. Chem. Lett., 2015, 25(1), 53-58.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.015]
[14]
Likhitwitayawuid, K.; Sritularak, B.; Benchanak, K.; Lipipun, V.; Mathew, J.; Schinazi, R.F. Phenolics with antiviral activity from Millettia Erythrocalyx and Artocarpus Lakoocha. Nat. Prod. Res., 2005, 19(2), 177-182.
[http://dx.doi.org/10.1080/14786410410001704813]
[15]
Pan, S.; Mukherjee, B.; Ganguly, A.; Mitra, S.R.; Bhattacharyya, A. Antifungal activity of some naturally occurring flavonoids. J. Plant Dis. Prot., 1985, 92(4), 392-395.
[16]
Ragab, F.A.; Hassan, G.S.; Yossef, H.A.; Hashem, H.A. Synthesis of 6- and 9-alkylaminomethyl furoflavones as gastroprotective agents. Eur. J. Med. Chem., 2007, 42(8), 1117-1127.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.019]
[17]
Dixit, M.; Tripathi, B.K.; Tamrakar, A.K.; Srivastava, A.K.; Kumar, B.; Goel, A. Synthesis of benzofuran scaffold-based potential PTP-1B inhibitors. Bioorg. Med. Chem., 2007, 15(2), 727-734.
[http://dx.doi.org/10.1016/j.bmc.2006.10.053]
[18]
Mathayan, M.; Jayaraman, S.; Kulanthaivel, L.; Suresh, A. Inhibition studies of HBV DNA polymerase using seed extracts of Pongamia pinnata. Bioinformation, 2019, 15(7), 506-512.
[http://dx.doi.org/10.6026/97320630015506]
[19]
Hymavathi, A.; Devanand, P.; Suresh Babu, K.; Sreelatha, T.; Pathipati, U.R.; Madhusudana Rao, J. Vapor-phase toxicity of Derris scandens Benth.-derived constituents against four stored-product pests. J. Agric. Food Chem., 2011, 59(5), 1653-1657.
[http://dx.doi.org/10.1021/jf104411h]
[20]
Chen, Y.; Chen, W-N.; Hu, N.; Banwell, M.G.; Ma, C.; Gardiner, M.G.; Lan, P. Cytotoxicity and anti-inflammatory properties of apigenin-derived isolaxifolin. J. Nat. Prod., 2019, 82(9), 2451-2459.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00113]
[21]
Ahmad, G.; Yadav, P.P.; Maurya, R. Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry, 2004, 65(7), 921-924.
[http://dx.doi.org/10.1016/j.phytochem.2004.01.020]
[22]
Gupta, A.; Siddiqui, I.R.; Singh, J.; Sharma, J.P. Flavone and isoflavone derivative from the seeds of Derris robusta with pods. Indian J. Chem. Sect. B, 1998, 37B(4), 419-421.
[23]
Rangaswami, S.; Sastry, B.V.R. Lanceolatin C and lanceolatin B. Curr. Sci., 1955, 24, 13.
[24]
Garg, G.P.; Sharma, N.N.; Khanna, R.N. Two new furano compounds; Glabra I and Glabra II from the stem bark of Pongamia glabra. Indian J. Chem., 1978, 16B, 658-661.
[25]
Roy, D.; Khanna, R.N.; Ishibashi, M. Structure and synthesis of pongol a new component from seeds of P. glabra. Indian J. Chem., 1979, 18B, 525-528.
[26]
Khanna, R.N.; Seshadri, T.R. Pongaglabrone, a new component of the seeds of Pongamia glabra: Its constitution and synthesis. Tetrahedron, 1963, 19(1), 219-225.
[http://dx.doi.org/10.1016/0040-4020(63)80024-1]
[27]
Koysomboon, S.; Van Altena, I.; Kato, S.; Chantrapromma, K. Antimycobacterial flavonoids from Derris indica. Phytochemistry, 2006, 67(10), 1034-1040.
[http://dx.doi.org/10.1016/j.phytochem.2006.03.019]
[28]
Garg, G.P. A new component from leaves of Pongamia glabra. Planta Med., 1979, 37(1), 73-74.
[http://dx.doi.org/10.1055/s-0028-1097300]
[29]
Pathak, V.P.; Saini, T.R.; Khanna, R.N. A new furanoflavone from seeds of Pongamia glabra. Planta Med., 1983, 49(9), 61.
[http://dx.doi.org/10.1055/s-2007-969814]
[30]
Aneja, R.; Khanna, R.N.; Seshadri, T.R. 23. 6-Methoxyfuroflavone, a new component of the seeds of Pongamia glabra. J. Chem. Soc., 1963, 163-168.
[http://dx.doi.org/10.1039/jr9630000163]
[31]
Do Nascimento, M.C.; Mors, W.B. Flavonoids of Derris araripensis. Phytochemistry, 1981, 20(1), 147-152.
[http://dx.doi.org/10.1016/0031-9422(81)85235-1]
[32]
Yin, H.; Zhang, S.; Wu, J. Prenylated flavonoids from Pongamia pinnata. Z. Naturforsch., B. J. Chem. Sci., 2005, 60(3), 356-358.
[http://dx.doi.org/10.1515/znb-2005-0322]
[33]
Tanaka, T.; Iinuma, M.; Yuki, K.; Fujii, Y.; Mizuno, M. Flavonoids in root bark of Pongamia pinnata. Phytochemistry, 1992, 31(3), 993-998.
[http://dx.doi.org/10.1016/0031-9422(92)80055-J]
[34]
Pavanaram, S.K.; Row, L.R. New flavones from Pongamia pinnata. II. Synthesis of compounds “C” and “D”. Aust. J. Chem., 1956, 9, 132-136.
[http://dx.doi.org/10.1071/CH9560132]
[35]
Malik, S.B.; Sharma, P.; Seshadri, T.R. Furanoflavonoids from the leaves of Pongamia glabra. Indian J. Chem. Sect. B, 1977, 15B(6), 536-538.
[36]
Ganguly, A.; Bhattacharyya, A.; Adityachoudhury, N. Pongone: A new furanoflavone from the flowers of Pongamia glabra. Planta Med., 1988, 54(1), 90-91.
[http://dx.doi.org/10.1055/s-2006-962354]
[37]
Das Kanungo, P.; Ganguly, A.; Guha, A.; Bhattacharyya, A.; Adityachaudhury, N. Glabone, a new furano flavone from Pongamia glabra. Phytochemistry, 1987, 26(12), 3373-3374.
[http://dx.doi.org/10.1016/S0031-9422(00)82517-0]
[38]
Li, L.; Li, X.; Shi, C.; Deng, Z.; Fu, H.; Proksch, P.; Lin, W. Pongamone A-E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry, 2006, 67(13), 1347-1352.
[http://dx.doi.org/10.1016/j.phytochem.2006.05.016]
[39]
Pathak, V.P.; Saini, T.R.; Khanna, R.N. Isopongachromene, a chromenoflavone from Pongamia glabra seeds. Phytochemistry, 1983, 22(1), 308-309.
[http://dx.doi.org/10.1016/S0031-9422(00)80118-1]
[40]
Roy, D.; Sharma, N.N.; Khanna, R.N. Structure and synthesis of isopongaflavone, a new component of the seeds of Pongamia glabra. Indian J. Chem. Sect. B, 1977, 15B(12), 1138-1139.
[41]
Do Nascimento, M.C.; Dias, R.L.V.; Mors, W.B. Flavonoids of Derris obtusa: Aurones and auronols. Phytochemistry, 1976, 15(10), 1553-1558.
[http://dx.doi.org/10.1016/S0031-9422(00)88935-9]
[42]
Lin, Y-L.; Chen, Y-L.; Kuo, Y-H. Three new flavonoids, 3′-methoxylupinifolin, laxifolin, and isolaxifolin from the roots of Derris laxiflora Benth. Chem. Pharm. Bull. (Tokyo), 1991, 39(12), 3132-3135.
[http://dx.doi.org/10.1248/cpb.39.3132]
[43]
Carcache-Blanco, E.J.; Kang, Y-H.; Park, E.J.; Su, B-N.; Kardono, L.B.S.; Riswan, S.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of the stem bark of Pongamia pinnata with the potential to induce quinone reductase. J. Nat. Prod., 2003, 66(9), 1197-1202.
[http://dx.doi.org/10.1021/np030207g]
[44]
Malik, S.B.; Seshadri, T.R.; Sharma, P. Minor components of the leaves of Pongamia glabra. Indian J. Chem. Sect. B, 1976, 14B(3), 229-230.
[45]
Wen, R.; Lv, H-N.; Jiang, Y.; Tu, P-F. Anti-inflammatory flavone and chalcone derivatives from the roots of Pongamia pinnata (L.) Pierre. Phytochemistry, 2018, 149, 56-63.
[http://dx.doi.org/10.1016/j.phytochem.2018.02.005]
[46]
Patel, P.P.; Trivedi, N.D. Effect of karanjin on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in Balb/c mice. Indian J. Pharmacol., 2017, 49(2), 161-167.
[47]
Jaiswal, N.; Yadav, P.P.; Maurya, R.; Srivastava, A.K.; Tamrakar, A.K. Karanjin from Pongamia pinnata induces GLUT4 translocation in skeletal muscle cells in a phosphatidylinositol-3-kinase-independent manner. Eur. J. Pharmacol., 2011, 670(1), 22-28.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.049]
[48]
Martin, M.; Florian, R.; Thomas, N.; Mohsen, S.; Taravat, G.; Jindrich, C. Karanjin interferes with ABCB1, ABCC1, and ABCG2. J. Pharm. Amp. Pharm. Sci., 2014, 17(1), 92-105.
[49]
Vismaya; Belagihally, S.M.; Rajashekhar, S.; Jayaram, V.B.; Dharmesh, S.M.; Thirumakudalu, S.K.C. Gastroprotective properties of karanjin from karanja (Pongamia pinnata) seeds; Role as antioxidant and H+, K+-ATPase inhibitor Evid. Based Complement. Alternat. Med., 2011.
[50]
Saini, P.; Lakshmayya, L.; Bisht, V. Anti-Alzheimer activity of isolated karanjin from Pongamia pinnata (L.) pierre and embelin from Embelia ribes Burm. F. Ayu, 2017, 38(1), 76-81.
[http://dx.doi.org/10.4103/ayu.AYU_174_16]
[51]
Raghav, D.; Mahanty, S.; Rathinasamy, K. Biochemical and toxicological investigation of karanjin, a bio-pesticide isolated from Pongamia seed oil. Pestic. Biochem. Physiol., 2019, 157, 108-121.
[http://dx.doi.org/10.1016/j.pestbp.2019.03.011]
[52]
Verma, M.; Pradhan, S.; Sharma, S.; Naik, S.N.; Prasad, R. Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus). Int. Biodeterior. Biodegradation, 2011, 65(6), 877-882.
[http://dx.doi.org/10.1016/j.ibiod.2011.05.007]
[53]
Rao, A.P.; Niranjan, B. Juvenile-hormone-like activity of ‘karanjin’ against larvae of red flour beetle Tribolium castaneum H. Comp. Physiol. Ecol., 1982, 7(4), 234-236.
[54]
Mahli, S.S.; Basu, S.P.; Sinha, K.P.; Banerjee, N.C. Pharmacological effects of karanjin and pongamol. Indian J. Anim. Sci., 1989, 59(6), 657-660. from seed oil of Pongamia pinnata
[55]
Agrawal, B.H.; Singh, J. Two new flavone glycosides from Pongamia pinnata. Int. J. Pharmacogn., 1993, 31(4), 305-310.
[http://dx.doi.org/10.3109/13880209309082958]
[56]
Ghosh, A.; Tiwari, G.J. Role of nitric oxide-scavenging activity of karanjin and pongapin in the treatment of psoriasis 3 Biotech., 2018, 8(8), 338.
[57]
Roy, R.; Pal, D.; Sur, S.; Mandal, S.; Saha, P.; Panda, C.K. Pongapin and Karanjin, furanoflavanoids of Pongamia pinnata, induce G2/M arrest and apoptosis in cervical cancer cells by differential reactive oxygen species modulation, DNA damage, and nuclear factor kappa-light-chain-enhancer of activated B cell signaling. Phytother. Res., 2019, 33(4), 1084-1094.
[http://dx.doi.org/10.1002/ptr.6302]
[58]
Sharma, R.; Williams, I.S.; Gatchie, L.; Sonawane, V.R.; Chaudhuri, B.; Bharate, S.B. Furanoflavones pongapin and lanceolatin B blocks the cell cycle and induce senescence in CYP1A1-overexpressing breast cancer cells. Bioorg. Med. Chem., 2018, 26(23-24), 6076-6086.
[http://dx.doi.org/10.1016/j.bmc.2018.11.013]
[59]
Arshad, N.; Rashid, N.; Absar, S.; Abbasi, M.; Saleem, S.; Mirza, B. UV-absorption studies of interaction of karanjin and karanjachromene with ds. DNA: Evaluation of binding and antioxidant activity. Open Chem., 2013, 11(12), 2040-2047.
[http://dx.doi.org/10.2478/s11532-013-0327-z]
[60]
Rangaswami, S.; Seshadri, T.R. Synthetic experiments in the benzo-pyrone series. Proc. Indian Acad. Sci. Sect. A Phys. Sci., 1939, 9(3), 259-264.
[http://dx.doi.org/10.1007/BF03046466]
[61]
Manjunath, B.L.; Seetharamiah, A.; Siddappa, S. Konstitution von Karanjin aus den Wurzeln von Pongamia glabra vent Berichte der deutschen chemischen Gesellschaft (A and B Series), 1939, 72(1), 93-96.
[http://dx.doi.org/10.1002/cber.19390720121]
[62]
Ferreira, D.; van der Merwe, J.P.; Roux, D.G. Phytochemistry of the gum copal tree, Trachylobium verrucosum (gaertn.) oliv. The first natural α-hydroxychalcone and 2,3-cis- and 2,3-trans-3-methoxyflavanones. J. Chem. Soc., Perkin Trans. 1, 1974, (0), 1492-1498.
[http://dx.doi.org/10.1039/P19740001492]
[63]
Mittal, O.P.; Seshadri, T.R. 426. Demethoxykanugin: A new crystalline compound from Pongamia glabra. J. Chem. Soc., 1956, 2176-2178.
[http://dx.doi.org/10.1039/jr9560002176]
[64]
Rangaswami, S. Occurrence of kanugin in the stem bark of Pongamia glabra. Curr. Sci., 1946, 15, 127.
[65]
Shao, W.; Zhu, Y.; Guang, S.; Zhang, S.; Chen, F. Study on chemical constituents of thickfruit Millettia root Tian ran chan wu yan jiu yu kai fa, 2001, 13(1), 1-14.
[66]
Row, L.R. New flavones from Pongamia pinnata. Aust. J. Sci. Res. Ser. B, 1952, 5A, 754-759.
[67]
Roy, D.; Sharma, N.N.; Khanna, R.N. Flavones and furanoflavones from the seed shells of Pongamia glabra. Curr. Sci., 1977, 46(21), 743-744.
[68]
Pereira, A.S.; Afonso Serrano, M.A.; Aquino Neto, F.R.; Cunha Pinto, A.; Furtado Texeira, D.; Gilbert, B. Analysis and quantitation of rotenoids and flavonoids in Derris (Lonchocarpus urucu) by high-temperature high-resolution gas chromatography. J. Chromatogr. Sci., 2000, 38(4), 174-180.
[http://dx.doi.org/10.1093/chromsci/38.4.174]
[69]
Lakshmi, M.P.; Srimannarayana, G.; Rao, S.N.V. Pongaflavone, a new chromenochromone and an analog of karanjin isolated from Pongamia pinnata (syn. P. glabra). Indian J. Chem., 1974, 12(1), 8-9.
[70]
Naik Satam, P.G.; Bringi, N.V. Karanjachromene, a new flavone from Pongamia glabra seed oil. Indian J. Chem., 1973, 11(11), 1188-1189.
[71]
Mukerjee, S.K.; Sarkar, S.C.; Seshadri, T.R. The structure and synthesis of pongachromene, a new component of Pongamia glabra. Tetrahedron, 1969, 25(5), 1063-1069.
[http://dx.doi.org/10.1016/S0040-4020(01)82679-X]
[72]
Yin, H.; Zhang, S.; Wu, J.; Nan, H. Dihydropyranoflavones from Pongamia pinnata. J. Braz. Chem. Soc., 2006, 17(7), 1432-1435.
[http://dx.doi.org/10.1590/S0103-50532006000700034]
[73]
Yin, H.; Wu, J.; Nan, H.; Zhang, S. New prenylated flavones from Pongamia pinnata. Pharmazie, 2006, 61(1), 76-78.
[74]
Chauhan, D.; Chauhan, J.S. Two new flavonoid glycosides from Pongamia pinnata. Pharm. Biol., 2002, 40(3), 171-174.
[http://dx.doi.org/10.1076/phbi.40.3.171.5833]
[75]
Nair, A.G.R.; Seetharaman, T.R.; Sankarasubramanian, S.; Rao, G.R. Rhamnetin-3-O-neohesperidoside, a new flavonoid from the leaves of Derris trifoliata. J. Nat. Prod., 1986, 49(4), 710-711.
[http://dx.doi.org/10.1021/np50046a032]
[76]
Xu, L.R.; Wu, J.; Zhang, S. A new acylated flavonol glycoside from Derris triofoliata. J. Asian Nat. Prod. Res., 2006, 8(1-2), 9-13.
[http://dx.doi.org/10.1080/10286020500208428]
[77]
Xu, L.R.; Zhou, P.; Zhi, Y.E.; Wu, J.; Zhang, S. Three new flavonol triglycosides from Derris trifoliata. J. Asian Nat. Prod. Res., 2009, 11(1), 79-84.
[http://dx.doi.org/10.1080/10286020802514598]
[78]
Fonseca, B.F.; Predes, D.; Cerqueira, D.M.; Reis, A.H.; Amado, N.G.; Cayres, M.C.L.; Kuster, R.M.; Oliveira, F.L.; Mendes, F.A.; Abreu, J.G. Derricin and derricidin inhibit Wnt/β-catenin signaling and suppress colon cancer cell growth in vitro. PLoS One, 2015, 10(3)e0120919
[http://dx.doi.org/10.1371/journal.pone.0120919]
[79]
Borges-Argaez, R.; Vela-Catzin, T.; Yam-Puc, A.; Chan-Bacab, M.J.; Moo-Puc, R.E.; Caceres-Farfan, M. Antiprotozoal and cytotoxic studies on some isocordoin derivatives. Planta Med., 2009, 75(12), 1336-1338.
[http://dx.doi.org/10.1055/s-0029-1185670]
[80]
Fontenele, J.B.; Leal, L.K.A.M.; Ferreira, M.A.D.; Silveira, E.R.; Viana, G.S.B. Antiplatelet effect of lonchocarpin and derricin isolated from Lonchocarpus sericeus. Pharm. Biol., 2005, 43(8), 726-731.
[http://dx.doi.org/10.1080/13880200500387406]
[81]
Xiao, Z.; Li, C.H.; Chan, S.L.; Xu, F.; Feng, L.; Wang, Y.; Jiang, J-D.; Sung, J.J.Y.; Cheng, C.H.K.; Chen, Y. A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res., 2014, 74(21), 6236-6247.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0855]
[82]
Wen, D.; Peng, Y.; Lin, F.; Singh, R.K.; Mahato, R.I. Micellar delivery of miR-34a modulator rubone and paclitaxel in resistant prostate cancer. Cancer Res., 2017, 77(12), 3244-3254.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2355]
[83]
Chokchaichamnankit, D.; Kongjinda, V.; Khunnawutmanotham, N.; Chimnoi, N.; Pisutcharoenpong, S.; Techasakul, S. Prenylated flavonoids from the leaves of Derris malaccensis and their cytotoxicity. Nat. Prod. Commun., 2011, 6(8), 1103-1106.
[http://dx.doi.org/10.1177/1934578X1100600813]
[84]
Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S.R. Wahajuddin; Sijwali, P.S.; Kumar, V.; Mohammad, I.S. Synthesis and insight into the structure–activity relationships of chalcones as antimalarial agents. J. Med. Chem., 2013, 56(1), 31-45.
[http://dx.doi.org/10.1021/jm300588j]
[85]
Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem., 2009, 17(9), 3229-3256.
[http://dx.doi.org/10.1016/j.bmc.2009.02.050]
[86]
Fang, N.; Casida, J.E. New bioactive flavonoids and stilbenes in cubé resin insecticide. J. Nat. Prod., 1999, 62(2), 205-210.
[http://dx.doi.org/10.1021/np980119+]
[87]
Jeon, J-H.; Kim, S-J.; Kim, C.G.; Kim, J-K.; Jun, J-G. Synthesis of biologically active chalcones and their anti-inflammatory effects. Bull. Korean Chem. Soc., 2012, 33(3), 953-957.
[http://dx.doi.org/10.5012/bkcs.2012.33.3.953]
[88]
Jang, H-M.; Kang, G-D.; Van Le, T.K.; Lim, S-M.; Jang, D-S.; Kim, D-H. 4-Methoxylonchocarpin attenuates inflammation by inhibiting lipopolysaccharide binding to Toll-like receptor of macrophages and M1 macrophage polarization. Int. Immunopharmacol., 2017, 45, 90-97.
[http://dx.doi.org/10.1016/j.intimp.2017.02.003]
[89]
Tamrakar, A.K.; Yadav, P.P.; Tiwari, P.; Maurya, R.; Srivastava, A.K. Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits. J. Ethnopharmacol., 2008, 118(3), 435-439.
[http://dx.doi.org/10.1016/j.jep.2008.05.008]
[90]
Tamrakar, A.K.; Jaiswal, N.; Yadav, P.P.; Maurya, R.; Srivastava, A.K. Pongamol from Pongamia pinnata stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells. Mol. Cell. Endocrinol., 2011, 339(1), 98-104.
[http://dx.doi.org/10.1016/j.mce.2011.03.023]
[91]
Baki, M.; Golam, S.; Mondal, K.A.M.; Mosaddik, M.; Rahman, M. Methylkarranjic acid and pongamol from Derris indica seeds and their antibacterial activity. Dhaka Univ. J. Pharmaceut. Sci., 2007, 6(1), 9-13.
[http://dx.doi.org/10.3329/dujps.v6i1.337]
[92]
Badole, S.L.; Pimple, B.P. Pongamia pinnata (Linn.) Used in Skin Disease.Bioactive Dietary Factors and Plant Extracts in Dermatology; Watson, R; Zibadi, S., Ed.; Humana Press: Totowa, NJ, 2013, pp. 471-473.
[http://dx.doi.org/10.1007/978-1-62703-167-7_44]
[93]
Yadav, P.P.; Ahmad, G.; Maurya, R. An efficient route for commercially viable syntheses of furan- and thiophene-anellated β-hydroxychalcones. Tetrahedron Lett., 2005, 46(34), 5621-5624.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.111]
[94]
Do Nascimento, M.C.; Mors, W.B. Chalcones of the root bark of Derris sericea. Phytochemistry, 1972, 11(10), 3023-3028.
[http://dx.doi.org/10.1016/0031-9422(72)80097-9]
[95]
Filho, R.B.; Gottiieb, O.R.; Mourão, A.P.; Da Rocha, I.A.; Oliveira, F.S. Flavonoids from Derris species. Phytochemistry, 1975, 14(5-6), 1454-1456.
[http://dx.doi.org/10.1016/S0031-9422(00)98664-3]
[96]
Do Nascimento, M.C.; Mors, W.B. Flavonoids of Derris sericea. An. Acad. Brasil. Cienc., 1970, 42(Suppl.), 87-92.
[97]
Chibber, S.S.; Sharma, R.P.; Dutt, S.K. Rubone, a new chalcone from Derris robusta seed shells. Phytochemistry, 1979, 18(12), 2056-2056.
[http://dx.doi.org/10.1016/S0031-9422(00)82745-4]
[98]
Gandhidasan, R.; Neelakantan, S.; Raman, P.V.; Devaraj, S. Components of the galls on. The leaves of Pongamia glabra: Structures of pongagallone-a and pongagallone-b. Phytochemistry, 1986, 26(1), 281-283.
[http://dx.doi.org/10.1016/S0031-9422(00)81528-9]
[99]
Ganapaty, S.; Thomas, P.S.; Josaphine, J.S.; Than, N.N.; Laatsch, H. C-prenylflavonoids from Derris heyneana. Nat. Prod. Commun., 2006, 1(2), 81-85.
[http://dx.doi.org/10.1177/1934578X0600100201]
[100]
Pathak, V.P.; Saini, T.R.; Khanna, R.N. Glabrachalcone, a chromenochalcone from Pongamia glabra seeds. Phytochemistry, 1983, 22(5), 1303-1304.
[http://dx.doi.org/10.1016/0031-9422(83)80254-4]
[101]
Mahey, S.; Sharma, P.; Seshadri, T.R.; Mukerjee, S.K. Structure and synthesis of glabrachromene, a new constituent of Pongamia glabra. Indian J. Chem., 1972, 10(6), 585-588.
[102]
Subrahmanyam, K.; Rao, J.M.; Rao, K.V.J. Chemical examination of the heartwood of Pongamia glabra Vent.: Isolation of chromenochalcones and synthesis of pongachalcones I and II. Indian J. Chem. Sect. B, 1977, 15(1), 12-15.
[http://dx.doi.org/10.1002/chin.197731335]
[103]
Maximo, P.; Lourenco, A.; Feio, S.S.; Roseiro, J.C. Flavonoids from Ulex species. Z. Naturforsch. C. J. Biosci., 2000, 55(7/8), 506-510.
[104]
Sharma, P.; Seshadri, T.R.; Mukerjee, S.K. Synthetic and natural analogs of glabrachromene. Indian J. Chem., 1973, 11(10), 985-986.
[105]
Saini, T.R.; Pathak, V.P.; Khanna, R.N. Glabrachromene II, a minor constituent of seeds of Pongamia glabra. J. Nat. Prod., 1983, 46(6), 936.
[http://dx.doi.org/10.1021/np50030a020]
[106]
Singhai Nabin, C.; Barua Ram, P.; Sharma Jogendra, N.; Baruah, A.K. A chalcone and an isoflavone from Millettia pachycarpa seeds. Phytochemistry, 1983, 22(4), 1005-1006.
[http://dx.doi.org/10.1016/0031-9422(83)85042-0]
[107]
Tanaka, T.; Iinuma, M.; Yuki, K.; Fujii, Y.; Mizuno, M. Two new β-hydroxychalcones from the root bark of Pongamia pinnata. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1473-1475.
[http://dx.doi.org/10.1248/cpb.39.1473]
[108]
Kitagawa, I.; Zhang, R.; Hori, K.; Tsuchiya, K.; Shibuya, H. Indonesian medicinal plants. II. Chemical structures of pongapinones A and B, two new phenylpropanoids from the bark of Pongamia pinnata (Papilionaceae). Chem. Pharm. Bull. (Tokyo), 1992, 40(8), 2041-2043.
[http://dx.doi.org/10.1248/cpb.40.2041]
[109]
Lin, Y.L.; Chen, Y.L.; Kuo, Y.H. Two new chalcones, laxichalcone and derrichalcone, from the roots of Derris laxiflora benth. Chem. Express, 1991, 6(10), 747-750.
[110]
Lin, Y.L.; Chen, Y.L.; Kuo, Y.H. Two new flavanones and two new chalcones from the root of Derris laxiflora Benth. Chem. Pharm. Bull. (Tokyo), 1992, 40(9), 2295-2299.
[http://dx.doi.org/10.1248/cpb.40.2295]
[111]
Yin, H.; Zhang, S.; Wu, J.; Nan, H.; Long, L.; Yang, J.; Li, Q. Pongaflavanol: A prenylated flavonoid from Pongamia pinnata with a modified ring A. Molecules, 2006, 11(10), 786-791.
[http://dx.doi.org/10.3390/11100786]
[112]
Mahabusarakam, W.; Deachathai, S.; Phongpaichit, S.; Jansakul, C.; Taylor, W.C. A benzil and isoflavone derivatives from Derris scandens Benth. Phytochemistry, 2004, 65(8), 1185-1191.
[http://dx.doi.org/10.1016/j.phytochem.2004.03.006]
[113]
Saha, M.M.; Mallik, U.K.; Mallik, A.K. A chromenoflavanone and two caffeic esters from Pongamia glabra. Phytochemistry, 1991, 30(11), 3834-3836.
[http://dx.doi.org/10.1016/0031-9422(91)80130-S]
[114]
Vasconcelos, M.A.; Arruda, F.V.S.; de Alencar, D.B.; Saker-Sampaio, S.; Albuquerque, M.R.J.R.; dos Santos, H.S.; Bandeira, P.N.; Pessoa, O.D.L.; Cavada, B.S.; Henriques, M.; Pereira, M.O.; Teixeira, E.H. Antibacterial and antioxidant activities of derriobtusone a isolated from Lonchocarpus obtusus. BioMed Res. Int., 2014, 2014, 9.
[http://dx.doi.org/10.1155/2014/248656]
[115]
Miadoková, E. Isoflavonoids - an overview of their biological activities and potential health benefits. Interdiscip. Toxicol., 2009, 2(4), 211-218.
[http://dx.doi.org/10.2478/v10102-009-0021-3]
[116]
Hadden, M.K.; Galam, L.; Gestwicki, J.E.; Matts, R.L.; Blagg, B.S.J. Derrubone, an inhibitor of the Hsp90 protein folding machinery. J. Nat. Prod., 2007, 70(12), 2014-2018.
[http://dx.doi.org/10.1021/np070190s]
[117]
Ausawasamrit, A.; Itthiwarapornkul, N.; Chaotham, C.; Sukrong, S.; Chanvorachote, P. Lupalbigenin from Derris scandens sensitizes detachment-induced cell death in human lung cancer cells. Anticancer Res., 2015, 35(5), 2827-2834.
[118]
Jo, Y.H.; Choi, K-M.; Liu, Q.; Kim, S.B.; Ji, H-J.; Kim, M.; Shin, S-K.; Do, S-G.; Shin, E.; Jung, G.; Yoo, H-S.; Hwang, B.Y.; Lee, M.K. Anti-obesity effect of 6,8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata Fruits in high-fat diet-induced obese mice. Nutrients, 2015, 7(12), 10480-10490.
[http://dx.doi.org/10.3390/nu7125544]
[119]
Ahn, S.J.; Park, S.N.; Lee, Y.J.; Cho, E.J.; Lim, Y.K.; Li, X.M.; Choi, M.H.; Seo, Y.W.; Kook, J.K. In vitro antimicrobial activities of 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein against Streptococcus mutans. Caries Res., 2015, 49(1), 78-89.
[http://dx.doi.org/10.1159/000362676]
[120]
Sekine, T.; Inagaki, M.; Ikegami, F.; Fujii, Y.; Ruangrungsi, N. Six diprenylisoflavones, derrisisoflavones A-F, from Derris scandens. Phytochemistry, 1999, 52(1), 87-94.
[http://dx.doi.org/10.1016/S0031-9422(99)00103-X]
[121]
Kuete, V.; Ngameni, B.; Simo, C.C.F.; Tankeu, R.K.; Ngadjui, B.T.; Meyer, J.J.M.; Lall, N.; Kuiate, J.R. Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). J. Ethnopharmacol., 2008, 120(1), 17-24.
[http://dx.doi.org/10.1016/j.jep.2008.07.026]
[122]
Han, X.H.; Hong, S.S.; Hwang, J.S.; Jeong, S.H.; Hwang, J.H.; Lee, M.H.; Lee, M.K.; Lee, D.; Ro, J.S.; Hwang, B.Y. Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch. Pharm. Res., 2005, 28(12), 1324-1327.
[http://dx.doi.org/10.1007/BF02977895]
[123]
Lim, J-Y.; Hwang, B.Y.; Hwang, K-W.; Park, S-Y. Methylalpinumisoflavone Inhibits Lipopolysaccharide-Induced Inflammation in Microglial Cells by the NF-kappaB and MAPK Signaling Pathway. Phytother. Res., 2012, 26(12), 1948-1956.
[http://dx.doi.org/10.1002/ptr.4810]
[124]
Peleyeju, G.B.; Emmanuel, T.; Tata, C.M.; Djuidje Fotsing, M.C.; Niemann, N.; Rhyman, L.; Arderne, C.; Ndinteh, D.T.; Ramasami, P. Crystal structure and antibacterial activity of scandenone (warangalone) from Erythrina plants. J. Mol. Struct., 2019, 1191, 43-51.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.070]
[125]
Kupeli, E.; Orhan, I.; Toker, G.; Yesilada, E. Anti-inflammatory and antinociceptive potential of Maclura pomifera (Rafin.) Schneider fruit extracts and its major isoflavonoids, scandenone and auriculasin. J. Ethnopharmacol., 2006, 107(2), 169-174.
[http://dx.doi.org/10.1016/j.jep.2006.02.021]
[126]
Raksat, A.; Maneerat, W.; Andersen, R.J.; Pyne, S.G.; Laphookhieo, S. Antibacterial prenylated isoflavonoids from the stems of Millettia extensa. J. Nat. Prod., 2018, 81(8), 1835-1840.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00321]
[127]
Hui, Bing Ternai B.; Polya, G. Specific inhibition of cyclic ampdependent protein kinase by warangalone and robustic acid. phytochemistry 1997, 44(5), 787-796.
[128]
Ndemangou, B.; Tedjon Sielinou, V.; Vardamides, J.C.; Shaiq Ali, M.; Lateef, M.; Iqbal, L.; Afza, N.; Nkengfack, A.E. Urease inhibitory isoflavonoids from different parts of Calopogonium mucunoides (Fabaceae). J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1156-1161.
[http://dx.doi.org/10.3109/14756366.2012.719025]
[129]
Sreelatha, T.; Hymavathi, A.; Rama Subba Rao, V.; Devanand, P.; Usha Rani, P.; Madhusudana Rao, J.; Suresh Babu, K. A new benzil derivative from Derris scandens: Structure-insecticidal activity study. Bioorg. Amp. Med. Chem. Lett., 2010, 20(2), 549-553.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.103]
[130]
Rukachaisirikul, V.; Sukpondma, Y.; Jansakul, C.; Taylor, W.C. Isoflavone glycosides from Derris scandens. Phytochemistry, 2002, 60(8), 827-834.
[http://dx.doi.org/10.1016/S0031-9422(02)00163-2]
[131]
Chibber, S.S.; Sharma, R.P. 5–Hydroxy–7–Methoxyisoflavone from Seeds of Derris robusta. Planta Med., 1979, 36(08), 379-380.
[http://dx.doi.org/10.1055/s-0028-1097285]
[132]
Chibber, S.S.; Sharma, R.P. Robustigenin-5-O-methyl ether, a new isoflavone from Derris robusta. Indian J. Chem. Sect. B, 1979, 17B(6), 649-650.
[133]
Chibber, S.S.; Sharma, R.P. Robustigenin, a new isoflavone from Derris robusta seed shells. Phytochemistry, 1979, 18(6), 1082-1082.
[http://dx.doi.org/10.1016/S0031-9422(00)91494-8]
[134]
Chibber, S.S.; Sharma, R.P. Derrugenin, a new isoflavone from Derris robusta seed shells. Phytochemistry, 1979, 18(9), 1583-1584.
[http://dx.doi.org/10.1016/S0031-9422(00)98510-8]
[135]
East, A.J.; Ollis, W.D.; Wheeler, R.E. Natural occurrence of 3-aryl-4-hydroxycoumarins. I. Phytochemical examination of Derris robusta. J. Chem. Soc. C, 1969, (3), 365-374.
[http://dx.doi.org/10.1039/j39690000365]
[136]
Shankar, T.; Muthusubramanian, S.; Gandhidasan, R. Newer constituents of Derris indica stem. Nat. Prod. Commun., 2008, 3(8), 1329-1331.
[http://dx.doi.org/10.1177/1934578X0800300818]
[137]
Zhang, H-X.; Lunga, P-K.; Li, Z-J.; Dai, Q.; Du, Z-Z. Flavonoids and stilbenoids from Derris eriocarpa. Fitoterapia, 2014, 95, 147-153.
[http://dx.doi.org/10.1016/j.fitote.2014.03.015]
[138]
Da Rocha, A.I.; Zoghbi, M.G.B. Isoflavones in roots of Derris species (Leguminosae). Acta Amazon., 1982, 12(3), 615-618.
[http://dx.doi.org/10.1590/1809-43921982123615]
[139]
Chibber, S.S.; Sharma, R.P. Chemical constituents of seeds of Derris robusta. Indian J. Chem. Sect. B, 1979, 18B(5), 471-472.
[140]
Falshaw, C.P.; Harmer, R.A.; Ollis, W.D.; Wheeler, R.E.; Lalitha, V.R.; Rao, N.V.S. Natural occurrence of 3-aryl-4-hydroxycoumarins. Part II. Phytochemical examination of Derris scandens(roxb.) benth. J. Chem. Soc. C, 1969, (3), 374-382.
[http://dx.doi.org/10.1039/j39690000374]
[141]
Rao, M.N.; Krupadanam, G.L.D.; Srimannarayana, G. Four isoflavones and two 3-aryl coumarins from stems of Derris scandens. Phytochemistry, 1994, 37(1), 267-269.
[http://dx.doi.org/10.1016/0031-9422(94)85038-0]
[142]
Chuankamnerdkarn, M.; Sutthivaiyakit, S.; Thasana, N.; Pisutjaroenpong, S. Two new isoflavones from Derris scandens. Heterocycles, 2002, 57(10), 1901-1906.
[http://dx.doi.org/10.3987/COM-02-9544]
[143]
Delle Monache, F.; Valera, G.C.; Sialer de Zapata, D.; Marini-Bettolo, G.B. 3-Aryl-4-methoxycoumarins and isoflavones from Derris glabrescens. Gazz. Chim. Ital., 1977, 107(7-8), 403-407.
[144]
Chibber, S.S.; Sharma, R.P.; Dutt, S.K. Derrone-4′-O-methyl ether from seeds of Derris robusta. Curr. Sci., 1981, 50(18), 818-819.
[145]
Mizuno, M.; Tanaka, T.; Tamura, K-I.; Matsuura, N.; Iinuma, M.; Phengklai, C. Flavonoids in the roots of Euchresta horsfieldii in Thailand. Phytochemistry, 1990, 29(8), 2663-2665.
[http://dx.doi.org/10.1016/0031-9422(90)85208-W]
[146]
Garcia, M.; Kano, M.H.C.; Vieira, D.M.; Do Nascimento, M.C.; Mors, W.B. Isoflavonoids from Derris spruceana. Phytochemistry, 1986, 25(10), 2425-2427.
[http://dx.doi.org/10.1016/S0031-9422(00)81713-6]
[147]
Harper, S.H.; Underwood, W.G.E. Active principles of leguminous fish-poison plants. X. Toxicarol isoflavone. J. Chem. Soc., 1965, 4203-4204.
[http://dx.doi.org/10.1039/jr9650004203]
[148]
Babu, T.H.; Tiwari, A.K.; Rao, V.R.S.; Ali, A.Z.; Rao, J.M.; Babu, K.S. A new prenylated isoflavone from Derris scandens Benth. J. Asian Nat. Prod. Res., 2010, 12(7), 634-638.
[http://dx.doi.org/10.1080/10286020.2010.486378]
[149]
Magalhães, A.F.; Tozzi, A.M.G.A.; Magalhães, E.G.; Moraes, V.R.S. Prenylated flavonoids from Deguelia hatschbachii and their systematic significance in Deguelia. Phytochemistry, 2001, 57(1), 77-89.
[http://dx.doi.org/10.1016/S0031-9422(00)00509-4]
[150]
Parthasarathy, M.R.; Seshadri, T.R.; Varma, R.S. New isoflavonoid glycosides from Dalbergia paniculata. Phytochemistry, 1976, 15(6), 1025-1027.
[http://dx.doi.org/10.1016/S0031-9422(00)84395-2]
[151]
Li, D.; Ouyang, M.; Chaweewan, J.; Yang, C. Two isoflavonoid glycosides from Derris scandens. Yao Xue Xue Bao, 1999, 34(1), 43-45.
[152]
Yang, L-F.; Wang, K.; Jiang, M-G.; Liu, H-C.; Wang, X.; Qin, P-Y.; Ouyang, Q-L. Isolation and characterization of a new bioactive isoflavone from Derris eriocarpa. J. Asian Nat. Prod. Res., 2015, 17(10), 1002-1009.
[http://dx.doi.org/10.1080/10286020.2015.1042370]
[153]
Trinh Thi Thanh, V.; Doan Thi Mai, H.; Pham, V.C.; Litaudon, M.; Dumontet, V.; Guéritte, F.; Nguyen, V.H.; Chau, V.M. Acetylcholinesterase Inhibitors from the leaves of Macaranga kurzii. J. Nat. Prod., 2012, 75(11), 2012-2015.
[http://dx.doi.org/10.1021/np300660y]
[154]
Domínguez-Villegas, V.; Domínguez-Villegas, V.; García, M.L.; Calpena, A.; Clares-Naveros, B.; Garduño-Ramírez, M.L. Anti-inflammatory, antioxidant and cytotoxicity activities of methanolic extract and prenylated flavanones isolated from leaves of Eysehardtia platycarpa. Nat. Prod. Commun., 2013, 8(2), 177-180.
[http://dx.doi.org/10.1177/1934578X1300800211]
[155]
Prasad, S.K.; Laloo, D.; Kumar, M.; Hemalatha, S. Antidiarrhoeal evaluation of root extract, its bioactive fraction, and lupinifolin isolated from Eriosema chinense. Planta Med., 2013, 79(17), 1620-1627.
[http://dx.doi.org/10.1055/s-0033-1351021]
[156]
Limsuwan, S.; Moosigapong, K.; Jarukitsakul, S.; Joycharat, N.; Chusri, S.; Jaisamut, P.; Voravuthikunchai, S.P. Lupinifolin from Albizia myriophylla wood: A study on its antibacterial mechanisms against cariogenic Streptococcus mutans. Arch. Oral Biol., 2018, 93, 195-202.
[http://dx.doi.org/10.1016/j.archoralbio.2017.10.013]
[157]
Yenesew, A.; Twinomuhwezi, H.; Kabaru, J.; Akala, H.; Kiremire, B.; Heydenreich, M.; Peter, M.; Eyase, F.; Waters, N.; Walsh, D. Antiplasmodial and larvicidal flavonoids from Derris trifoliata. Bull. Chem. Soc. Ethiop., 2009, 23(3), 409-414.
[http://dx.doi.org/10.4314/bcse.v23i3.47665]
[158]
Itoigawa, M.; Ito, C.; Ju-ichi, M.; Nobukuni, T.; Ichiishi, E.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer chemopreventive activity of flavanones on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2002, 176(1), 25-29.
[http://dx.doi.org/10.1016/S0304-3835(01)00740-6]
[159]
Mahidol, C.; Prawat, H.; Kaweetripob, W.; Ruchirawat, S. Two new pyranoflavanones from the stems of Derris reticulata. Heterocycles, 2002, 57(7), 1287-1292.
[http://dx.doi.org/10.3987/COM-02-9483]
[160]
Mahidol, C.; Prawat, H.; Ruchirawat, S.; Lihkitwitayawuid, K.; Lin, L-Z.; Cordell, G.A. Prenylated flavanones from Derris reticulata. Phytochemistry, 1997, 45(4), 825-829.
[http://dx.doi.org/10.1016/S0031-9422(97)00001-0]
[161]
Wang, W.; Wang, J.; Li, N.; Zhang, X.; Zhao, W.; Li, J.; Si, Y. Chemopreventive flavonoids from Millettia pulchra Kurz var-laxior (Dunn) Z.Wei (Yulangsan) function as Michael reaction acceptors. Bioorg. Med. Chem. Lett., 2015, 25(5), 1078-1081.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.009]
[162]
Wen, R.; Lv, H.; Jiang, Y.; Tu, P. Anti-inflammatory flavanones and flavanols from the roots of Pongamia pinnata. Planta Med., 2018, 84(16), 1174-1182.
[http://dx.doi.org/10.1055/a-0626-7356]
[163]
Filho, R.B.; Gottlieb, O.R.; Mourão, A.P. A stilbene and two flavanones from Derris rariflora. Phytochemistry, 1975, 14(1), 261-263.
[http://dx.doi.org/10.1016/0031-9422(75)85051-5]
[164]
Prawat, H.; Mahidol, C.; Ruchirawat, S. Reinvestigation of Derris reticulata. Pharm. Biol., 2000, 38(Suppl.), 63-67.
[http://dx.doi.org/10.1076/phbi.38.6.63.5960]
[165]
Satam, P.G.N.; Bringi, N.V. Occurrence of (-)-isolonchocarpin and demethoxykanugin in karanja (Pongamia glabra) seed oil. Indian J. Chem., 1973, 11(3), 209-210.
[166]
Lou, H-Y.; Wu, H-G.; Tan, Y-H.; Lan, J-J.; Ma, X-P.; Liang, G-Y.; Yi, P.; Pan, W-D. Two new flavonoids from Derris eriocarpa How. Helv. Chim. Acta, 2016, 99(4), 302-305.
[http://dx.doi.org/10.1002/hlca.201500247]
[167]
Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res., 2008, 52(1), 79-104.
[http://dx.doi.org/10.1002/mnfr.200700137]
[168]
Orlow, S.J.; Komatsu, L.N. Compound composition and method for preveting skin darkning. US8563754B2 2011.
[169]
Yagi, A.; Fukunaga, M.; Akita, K.; Fujimoto, K.; Okuzako, N. Antifungal pterocarpan derivatives. Japan. J. Pharmacol., 1993, 47(2), 105-110.
[170]
Stevenson, P.C.; Turner, H.C.; Haware, M.P. Phytoalexin accumulation in the roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to fusarium wilt (Fusarium oxysporum f.sp.ciceri). Physiol. Mol. Plant Pathol., 1997, 50(3), 167-178.
[http://dx.doi.org/10.1006/pmpp.1997.0082]
[171]
Aratanechemuge, Y.; Hibasami, H.; Katsuzaki, H.; Imai, K.; Komiya, T. Induction of apoptosis by maackiain and trifolirhizin (maackiain glycoside) isolated from sanzukon (Sophora Subprostrate Chen et T. Chen) in human promyelotic leukemia HL-60 cells. Oncol. Rep., 2004, 12(6), 1183-1188.
[http://dx.doi.org/10.3892/or.12.6.1183]
[172]
Bezerra-Silva, P.C.; Santos, J.C.; Santos, G.K.N.; Dutra, K.A.; Santana, A.L.B.D.; Maranhão, C.A.; Nascimento, M.S.; Navarro, D.M.A.F.; Bieber, L.W. Extract of Bowdichia virgilioides and maackiain as larvicidal agent against Aedes aegypti mosquito. Exp. Parasitol., 2015, 153, 160-164.
[http://dx.doi.org/10.1016/j.exppara.2015.03.018]
[173]
Obara, Y.; Matsubara, H. Isolation and identification of (-)-maackiain from Derris roots. Meijo Daigaku Nogakubu Gakujutsu Hokoku, 1981, 17, 40-41.
[174]
Lin, Y.L.; Kuo, Y.H. 6a,12a-Dehydro-β-toxicarol and derricarpin, two new isoflavonoids, from the roots of Derris oblonga Benth. Chem. Pharm. Bull. (Tokyo), 1993, 41(8), 1456-1458.
[http://dx.doi.org/10.1248/cpb.41.1456]
[175]
Wen, R.; Lv, H-N.; Jiang, Y.; Tu, P-F. Anti-inflammatory pterocarpanoids from the roots of Pongamia pinnata. J. Asian Nat. Prod. Res., 2019, 21(9), 859-866.
[http://dx.doi.org/10.1080/10286020.2018.1529759]
[176]
Crombie, L. Chemistry of the Natural Rotenoids. Progress in the Chemistry of Organic Natural Products/Progrès. DansLa Chimie Des Substances Organiques Naturelles; Zechmeister, L., Ed.; Springer: Vienna, 1963, Vol. 21, pp. 275-325.
[http://dx.doi.org/10.1007/978-3-7091-7149-3_6]
[177]
Gerhauser, C.; Mar, W.; Lee, S.K.; Suh, N.; Luo, Y.; Kosmeder, J.; Luyengi, L.; Fong, H.H.S. KingHorn, A.D.; Moriarty, R.M.; Mehta, R.G.; Constantinou, A.; Moon, R.C.; Pezzuto, J.M. Rotenoids mediate potent cancer chemopreventive activity through transcriptional regulation of ornithine decarboxylase. Nat. Med., 1995, 1(3), 260-266.
[http://dx.doi.org/10.1038/nm0395-260]
[178]
Udeani, G.O.; Gerh, Ã. ¤user, C.; Thomas, C.F.; Moon, R.C.; Kosmeder, J.W.; Kinghorn, A.D.; Moriarty, R.M.; Pezzuto, J.M. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res., 1997, 57(16), 3424-3428.
[179]
Chun, K-H.; Kosmeder, J.W.; Sun, S.; Pezzuto, J.M.; Lotan, R.; Hong, W.K.; Lee, H-Y. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J. Natl. Cancer Inst., 2003, 95(4), 291-302.
[http://dx.doi.org/10.1093/jnci/95.4.291]
[180]
Woo, J.K.; Choi, D.S.; Tran, H.T.; Gilbert, B.E.; Hong, W.K.; Lee, H-Y. Liposomal encapsulation of deguelin: Evidence for enhanced antitumor activity in tobacco carcinogen–induced and oncogenic k-ras–induced lung tumorigenesis. Cancer Prev. Res. (Phila.), 2009, 2(4), 361-369.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0237]
[181]
Thamilselvan, V.; Menon, M.; Thamilselvan, S. Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 beta/beta-catenin pathway. Int. J. Cancer, 2011, 129(12), 2916-2927.
[http://dx.doi.org/10.1002/ijc.25949]
[182]
Suh, Y.A.; Kim, J.H.; Sung, M.A.; Boo, H.J.; Yun, H.J.; Lee, S.H.; Lee, H.J.; Min, H.Y.; Suh, Y.G.; Kim, K.W.; Lee, H.Y. A novel antitumor activity of deguelin targeting the insulin-like growth factor (IGF) receptor pathway via up-regulation of IGF-binding protein-3 expression in breast cancer. Cancer Lett., 2013, 332(1), 102-109.
[http://dx.doi.org/10.1016/j.canlet.2013.01.022]
[183]
Kang, W.; Zheng, X.; Wang, P.; Guo, S. Deguelin exerts anticancer activity of human gastric cancer MGC-803 and MKN-45 cells in vitro. Int. J. Mol. Med., 2018, 41(6), 3157-3166.
[http://dx.doi.org/10.3892/ijmm.2018.3532]
[184]
Caboni, P.; Sherer, T.B.; Zhang, N.; Taylor, G.; Na, H.M.; Greenamyre, J.T.; Casida, J.E. Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem. Res. Toxicol., 2004, 17(11), 1540-1548.
[http://dx.doi.org/10.1021/tx049867r]
[185]
Li, J.; Wang, X-L.; Fang, Y-C.; Wang, C-Y. Tephrosin-induced autophagic cell death in A549 non-small cell lung cancer cells. J. Asian Nat. Prod. Res., 2010, 12(11), 992-1000.
[http://dx.doi.org/10.1080/10286020.2010.513034]
[186]
Ito, C.; Itoigawa, M.; Kojima, N.; Tan, H.T.W.; Takayasu, J.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer chemopreventive activity of rotenoids from Derris trifoliata. Planta Med., 2004, 70(6), 585-588.
[http://dx.doi.org/10.1055/s-2004-815447]
[187]
Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Chantrapromma, K. Cytotoxic rotenoloids from the stems of Derris trifoliata. Can. J. Chem., 2007, 85(12), 1019-1022.
[http://dx.doi.org/10.1139/v07-120]
[188]
Takashima, J.; Chiba, N.; Yoneda, K.; Ohsaki, A. Derrisin, a new rotenoid from the roots of Derris malaccensis plain and anti-helicobacter pylori activity of its related constituents. J. Nat. Prod., 2002, 65(4), 611-613.
[http://dx.doi.org/10.1021/np010126p]
[189]
Simin, K.; Ali, Z.; Khaliq-uz-Zaman, S.M.; Ahmad, V.U. Structure and biological activity of pongarotene, a new rotenoid from Pongamia pinnata. Nat. Prod. Lett., 2002, 16(5), 351-357.
[http://dx.doi.org/10.1080/10575630290033114]
[190]
Clark, E.P.; Deguelin, I. The preparation, purification and properties of deguelin, a constituent of certain tropical fish-poisoning plants. J. Am. Chem. Soc., 1931, 53(1), 313-317.
[http://dx.doi.org/10.1021/ja01352a045]
[191]
Boam, J.J.; Cahn, R.S. 336. Buckley’s substance, m. p. 183°, from Derris extract. J. Chem. Soc., 1938, 1818-1820.
[http://dx.doi.org/10.1039/JR9380001818]
[192]
Harper, S.H. 173. The active principles of leguminous fish-poison plants. Part I. The properties of l-[small alpha]-toxicarol isolated from Derris malaccensis(Kinta type). J. Chem. Soc., 1939, 812-816.
[http://dx.doi.org/10.1039/JR9390000812]
[193]
Haller, H.L.; Goodhue, L.D.; Jones, H.A. The constituents of Derris and other rotenone-bearing plants. Chem. Rev., 1942, 30(1), 33-48.
[http://dx.doi.org/10.1021/cr60095a002]
[194]
Clark, E.P.; Keenan, G.L. Note on the occurrence of dehydrodeguelin and dehydrotoxicarol in some samples of Derris root. J. Am. Chem. Soc., 1933, 55(1), 422-423.
[http://dx.doi.org/10.1021/ja01328a504]
[195]
Lu, H-Y.; Liang, J-Y.; Yu, P.; Chen, X-Y. Rotenoids from the root of Derris elliptica (Roxb.) Benth. II. Chin. J. Nat. Med., 2009, 7(1), 24-27.
[http://dx.doi.org/10.3724/SP.J.1009.2009.00024]
[196]
Lin, Y-L.; Kuo, Y-H. 6-Oxo-6a,12a-dehydro-α-toxicarol, a 6-oxodehydrorotenone from the roots of Derris oblonga Benth. Heterocycles, 1995, 41(9), 1959-1965.
[http://dx.doi.org/10.3987/COM-95-7069]
[197]
Fang, N.; Casida, J.E. Cube´ resin insecticide: Identification and biological activity of 29 rotenoid constituents. J. Agric. Food Chem., 1999, 47, 2130-2136.
[http://dx.doi.org/10.1021/jf981188x]
[198]
Lu, H.Y.; Liang, J.Y.; Yu, P.; Qu, W.; Zhao, L. Two new rotenoids from the root of Derris elliptica. Chin. Chem. Lett., 2008, 19(10), 1218-1220.
[http://dx.doi.org/10.1016/j.cclet.2008.06.014]
[199]
Yenesew, A.; Kiplagat, J.T.; Derese, S.; Midiwo, J.O.; Kabaru, J.M.; Heydenreich, M.; Peter, M.G. Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata. Phytochemistry, 2006, 67(10), 988-991.
[http://dx.doi.org/10.1016/j.phytochem.2006.01.002]
[200]
Haller, H.L.; LaForge, F.B.; Rotenone, X.X.X. The non-crystalline constituents of Derris root. J. Am. Chem. Soc., 1934, 56(11), 2415-2419.
[http://dx.doi.org/10.1021/ja01326a060]
[201]
Harper, S.H. 239. The active principles of leguminous fish-poison plants. Part II. The isolation of 1-elliptone from Derris elliptica. J. Chem. Soc., 1939, 1099-1105.
[http://dx.doi.org/10.1039/jr9390001099]
[202]
Harper, S.H. 304. The active principles of lequminous fish-poison plants. Part III. The structure of elliptone. J. Chem. Soc., 1939, 1424-1427.
[http://dx.doi.org/10.1039/jr9390001424]
[203]
Harper, S.H. 120. The active principles of leguminous fish-poison plants. Part VII. The reduction of elliptone. J. Chem. Soc., 1942, 587-593.
[http://dx.doi.org/10.1039/jr9420000587]
[204]
Harper, S.H. 63. The active principles of leguminous fish-poison plants. Part IV. The isolation of malaccol from Derris malaccensis. J. Chem. Soc., 1940, 309-314.
[http://dx.doi.org/10.1039/jr9400000309]
[205]
Thasana, N.; Chuankamnerdkarn, M.; Ruchirawat, S. A new 12a-hydroxyelliptone from the stems of Derris malaccensis. Heterocycles, 2001, 55, 1121-1125.
[http://dx.doi.org/10.3987/COM-01-9184]
[206]
Ahmed, M.K.F. S.; M.A., R.; Mahmud-UL-Ameen A future rotenoid from Derris elliptica. Planta Med., 1989, 55(2), 207-208.
[http://dx.doi.org/10.1055/s-2006-961936]
[207]
Lin, Y-L.; Chen, Y-L.; Kuo, Y-H. A novel 12-deoxorotenone, 12-deoxo- 12α-acetoxyelliptone, from the roots of Derris oblonga. J. Nat. Prod., 1993, 56(7), 1187-1189.
[http://dx.doi.org/10.1021/np50097a029]
[208]
Wangteeraprasert, R.; Likhitwitayawuid, K. A new rotenoid from Derris malaccensis. Heterocycles, 2008, 75(2), 403-406.
[http://dx.doi.org/10.3987/COM-07-11214]
[209]
Poumale, H.M.P.; Hamm, R.; Zang, Y.; Shiono, Y.; Kuete, V. 8 - Coumarins and related compounds from the medicinal plants of africa. Medicinal Plant Research in Africa; Kuete, V., Ed.; Elsevier: Oxford, 2013, pp. 261-300.
[http://dx.doi.org/10.1016/B978-0-12-405927-6.00008-4]
[210]
Srimmannarayana, G.; Rao, D.R. Insecticidal plant chemicals as antifeedants; Tamil Nadu Agric; Univ., 1985, pp. 18-24.
[211]
Hussain, H.; Al-Harrasi, A.; Krohn, K.; Kouam, S.F.; Abbas, G.; Shah, A.; Raees, M.A.; Ullah, R.; Aziz, S.; Schulz, B. Phytochemical investigation and antimicrobial activity of Derris scandens. J. King Saud Univ. Sci., 2015, 27(4), 375-378.
[http://dx.doi.org/10.1016/j.jksus.2015.01.001]
[212]
Johnson, A.P.; Pelter, A.; Stainton, P. Extractives from Derris scandens. Part I. The structures of scandenin and lonchocarpic acid. J. Chem. Soc. C: Org. 1966, 192-203.
[213]
Johnson, A.P.; Pelter, A.; Barber, M. The structure of robustic acid. Tetrahedron Lett., 1964, 5(20), 1267-1274.
[http://dx.doi.org/10.1016/S0040-4039(00)90463-5]
[214]
Johnson, A.P.; Pelter, A. The structure of robustic acid, a new 4- hydroxy-3-phenylcoumarin. J. Chem. Soc. C: Org., 1966, 606-612.
[215]
Rao, S.A.; Srinivas, P.V.; Tiwari, A.K.; Vanka, U.M.S.; Rao, R.V.S.; Dasari, K.R.; Rao, M.J. Isolation, characterization and chemobiological quantification of α-glucosidase enzyme inhibitory and free radical scavenging constituents from Derris scandens Benth. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 855(2), 166-172.
[http://dx.doi.org/10.1016/j.jchromb.2007.04.048]
[216]
Tuskaev, V.A. Synthesis and biological activity of coumestan derivatives. Pharm. Chem. J., 2013, 47(1), 1-11.
[http://dx.doi.org/10.1007/s11094-013-0886-5]
[217]
Lin, Y.L. Kuo, u.H. Two new coumaronochromone derivatives, oblongin and oblonginol from the roots of Derris oblonga benth. Heterocycles, 1993, 36(7), 1501-1507.
[http://dx.doi.org/10.3987/COM-92-6288]
[218]
Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci., 2009, 177(3), 143-155.
[http://dx.doi.org/10.1016/j.plantsci.2009.05.012]
[219]
Shen, T.; Wang, X-N.; Lou, H-X. Natural stilbenes: An overview. Nat. Prod. Rep., 2009, 26(7), 916-935.
[http://dx.doi.org/10.1039/b905960a]
[220]
Robinson, G.M.; Robinson, R. Leuco-anthocyanins and leuco-anthocyanidins. Part I. The isolation of peltogynol and its molecular structure. J. Chem. Soc., 1935, 744-752.
[http://dx.doi.org/10.1039/jr9350000744]
[221]
Zhang, X.; Li, Z.; Qiu, M. Three new triterpenoids from Derris eriocarpa. Yunnan Zhi Wu Yan Jiu, 2002, 24(6), 787-791.
[222]
Zhang, H-X.; Sun, G.; Gu, J-L.; Du, Z-Z. New sweet-tasting oleanane-type triterpenoid saponins from “Tugancao” (Derris eriocarpa How). J. Agric. Food Chem., 2017, 65(11), 2357-2363.
[http://dx.doi.org/10.1021/acs.jafc.7b00137]
[223]
Rascon-Valenzuela, L.A.; Velazquez-Contreras, C.; Garibay-Escobar, A.; Robles-Zepeda, R.E. Triterpenoids: synthesis, use in cancer treatment and other biological activities. Adv. Med. Biol.; Berhardt, L.V; Pulishers, N.S. New York, 2017, Vol. 106, pp. 139-181.
[224]
Parente, J.P.; Mors, W.B. Derrissaponin, a new hydrophilic constituent of Timbo-urucu. An. Acad. Bras. Cienc., 1980, 52(3), 503-514.
[225]
World Health Organization. Coronavirus disease, 2019.https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[226]
The Hindu. Coronavirus | BHU professors plan clinical trial of ayurvedic drug against COVID-19. https://www.thehindu.com/sci-tech/health/coronavirus-bhu-professors-plan-clinical-trial-of-ayurvedic-drug-against-covid-19/article31407754.ece

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy