Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Crucial Genes and Diagnostic Value Analysis in Major Depressive Disorder Using Bioinformatics Analysis

Author(s): Yao Gao, Huiliang Zhao, Teng Xu, Junsheng Tian* and Xuemei Qin*

Volume 25, Issue 1, 2022

Published on: 24 November, 2020

Page: [13 - 20] Pages: 8

DOI: 10.2174/1386207323999201124204413

Price: $65

Abstract

Aim and Objective: Despite the prevalence and burden of major depressive disorder (MDD), our current understanding of the pathophysiology is still incomplete. Therefore, this paper aims to explore genes and evaluate their diagnostic ability in the pathogenesis of MDD.

Methods: Firstly, the expression profiles of mRNA and microRNA were downloaded from the gene expression database and analyzed by the GEO2R online tool to identify differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs). Then, the DAVID tool was used for functional enrichment analysis. Secondly, the comprehensive protein-protein interaction (PPI) network was analyzed using Cytoscape, and the network MCODE was applied to explore hub genes. Thirdly, the receiver operating characteristic (ROC) curve of the core gene was drawn to evaluate clinical diagnostic ability. Finally, mirecords was used to predict the target genes of DEMs.

Results: A total of 154 genes were identified as DEGs, and 14 microRNAs were identified as DEMs. Pathway enrichment analysis showed that DEGs were mainly involved in hematopoietic cell lineage, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, chemokine signaling pathway, and JAK-STAT signaling pathway. Three important modules are identified and selected by the MCODE clustering algorithm. The top 12 hub genes, including CXCL16, CXCL1, GNB5, GNB4, OPRL1, SSTR2, IL7R, MYB, CSF1R, GSTM1, GSTM2, and GSTP1, were identified as important genes for subsequent analysis. Among these important hub genes, GSTM2, GNB4, GSTP1 and CXCL1 have the good diagnostic ability. Finally, by combining these four genes, the diagnostic ability of MDD can be improved to 0.905, which is of great significance for the clinical diagnosis of MDD.

Conclusion: Our results indicate that GSTM2, GNB4, GSTP1 and CXCL1 have potential diagnostic markers and are of great significance in clinical research and diagnostic application of MDD. This result needs a large sample study to further confirm the pathogenesis of MDD.

Keywords: Major depressive disorder, differentially expressed genes, differentially expressed microRNAs, PPI network, pathway analysis, receiver operating characteristic.

Graphical Abstract

[1]
Stapelberg, N.J.C.; Pratt, R.; Neumann, D.L.; Shum, D.H.K.; Brandis, S.; Muthukkumarasamy, V.; Stantic, B.; Blumenstein, M.; Headrick, J.P. From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression. Neurosci. Biobehav. Rev., 2018, 90, 1-15.
[http://dx.doi.org/10.1016/j.neubiorev.2018.03.005] [PMID: 29524456]
[2]
Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. J. Affect. Disord., 2011, 135(1-3), 10-19.
[http://dx.doi.org/10.1016/j.jad.2011.01.011] [PMID: 21300408]
[3]
Peng, G.J.; Tian, J.S.; Gao, X.X.; Zhou, Y.Z.; Qin, X.M. Research on the pathological mechanism and drug treatment mechanism of depression. Curr. Neuropharmacol., 2015, 13(4), 514-523.
[http://dx.doi.org/10.2174/1570159X1304150831120428] [PMID: 26412071]
[4]
Cavanagh, J.T.; Carson, A.J.; Sharpe, M.; Lawrie, S.M. Psychological autopsy studies of suicide: A systematic review. Psychol. Med., 2003, 33(3), 395-405.
[http://dx.doi.org/10.1017/S0033291702006943] [PMID: 12701661]
[5]
Lopez, A.D.; Mathers, C.D. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann. Trop. Med. Parasitol., 2006, 100(5-6), 481-499.
[http://dx.doi.org/10.1179/136485906X97417] [PMID: 16899150]
[6]
Piao, J.; Sun, J.; Yang, Y.; Jin, T.; Chen, L.; Lin, Z. Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis. Gene, 2018, 647, 306-311.
[http://dx.doi.org/10.1016/j.gene.2018.01.003] [PMID: 29305979]
[7]
Xu, G.; Li, K.; Zhang, N.; Zhu, B.; Feng, G. Screening driving transcription factors in the processing of gastric cancer. Gastroenterol. Res. Pract., 2016, 2016
[http://dx.doi.org/10.1155/2016/8431480] [PMID: 27403158]
[8]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[9]
Miyata, S.; Kurachi, M.; Okano, Y.; Sakurai, N.; Kobayashi, A.; Harada, K.; Yamagata, H.; Matsuo, K.; Takahashi, K.; Narita, K.; Fukuda, M.; Ishizaki, Y.; Mikuni, M. Blood transcriptomic markers in patients with late-onset major depressive disorder. PLoS One, 2016, 11(2)e0150262
[http://dx.doi.org/10.1371/journal.pone.0150262] [PMID: 26926397]
[10]
Spijker, S.; Van Zanten, J.S.; De Jong, S.; Penninx, B.W.; van Dyck, R.; Zitman, F.G.; Smit, J.H.; Ylstra, B.; Smit, A.B.; Hoogendijk, W.J. Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol. Psychiatry, 2010, 68(2), 179-186.
[http://dx.doi.org/10.1016/j.biopsych.2010.03.017] [PMID: 20471630]
[11]
Savitz, J.; Frank, M.B.; Victor, T.; Bebak, M.; Marino, J.H.; Bellgowan, P.S.; McKinney, B.A.; Bodurka, J.; Kent Teague, T.; Drevets, W.C. Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav. Immun., 2013, 31, 161-171.
[http://dx.doi.org/10.1016/j.bbi.2012.10.007] [PMID: 23064081]
[12]
Gururajan, A.; Naughton, M.E.; Scott, K.A.; O’Connor, R.M.; Moloney, G.; Clarke, G.; Dowling, J.; Walsh, A.; Ismail, F.; Shorten, G.; Scott, L.; McLoughlin, D.M.; Cryan, J.F.; Dinan, T.G. MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl. Psychiatry, 2016, 6(8)e862
[http://dx.doi.org/10.1038/tp.2016.131] [PMID: 27483380]
[13]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[14]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[15]
Lopes, C.T.; Franz, M.; Kazi, F.; Donaldson, S.L.; Morris, Q.; Bader, G.D. Cytoscape Web: an interactive web-based network browser. Bioinformatics, 2010, 26(18), 2347-2348.
[http://dx.doi.org/10.1093/bioinformatics/btq430] [PMID: 20656902]
[16]
de Jong, H.; Geiselmann, J.; Hernandez, C.; Page, M. Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics, 2003, 19(3), 336-344.
[http://dx.doi.org/10.1093/bioinformatics/btf851] [PMID: 12584118]
[17]
Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res., 2018, 46(W1), W486-W494.
[http://dx.doi.org/10.1093/nar/gky310] [PMID: 29762782]
[18]
Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res., 2009, 37(Database issue), D105-D110.
[http://dx.doi.org/10.1093/nar/gkn851] [PMID: 18996891]
[19]
Cotto, K.C.; Wagner, A.H.; Feng, Y.Y.; Kiwala, S.; Coffman, A.C.; Spies, G.; Wollam, A.; Spies, N.C.; Griffith, O.L.; Griffith, M. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res., 2018, 46(D1), D1068-D1073.
[http://dx.doi.org/10.1093/nar/gkx1143] [PMID: 29156001]
[20]
Ogłodek, E.A.; Szota, A.; Just, M.J.; Moś, D.; Araszkiewicz, A. Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression. Pharmacol. Rep., 2014, 66(5), 920-926.
[http://dx.doi.org/10.1016/j.pharep.2014.06.001] [PMID: 25150002]
[21]
Wang, T.; Zeng, Z.; Hu, Z.; Zheng, L.; Li, T.; Li, Y.; Liu, J.; Li, J.; Feng, G.; He, L.; Shi, Y. FGFR2 is associated with bipolar disorder: a large-scale case-control study of three psychiatric disorders in the Chinese Han population. World J. Biol. Psychiatry, 2012, 13(8), 599-604.
[http://dx.doi.org/10.3109/15622975.2011.650203] [PMID: 22404656]
[22]
Kopczak, A.; Stalla, G.K.; Uhr, M.; Lucae, S.; Hennings, J.; Ising, M.; Holsboer, F.; Kloiber, S. IGF-I in major depression and antidepressant treatment response. Eur. Neuropsychopharmacol., 2015, 25(6), 864-872.
[http://dx.doi.org/10.1016/j.euroneuro.2014.12.013] [PMID: 25836355]
[23]
Dutar, P.; Vaillend, C.; Viollet, C.; Billard, J.M.; Potier, B.; Carlo, A.S.; Ungerer, A.; Epelbaum, J. Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience, 2002, 112(2), 455-466.
[http://dx.doi.org/10.1016/S0306-4522(02)00074-X] [PMID: 12044463]
[24]
Cunha, M.P.; Budni, J.; Ludka, F.K.; Pazini, F.L.; Rosa, J.M.; Oliveira, Á.; Lopes, M.W.; Tasca, C.I.; Leal, R.B.; Rodrigues, A.L.S. Involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. Mol. Neurobiol., 2016, 53(5), 2954-2968.
[http://dx.doi.org/10.1007/s12035-015-9192-4] [PMID: 25943184]
[25]
Zou, W.; Feng, R.; Yang, Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naïve patients with major depression. PLoS One, 2018, 13(6)
[http://dx.doi.org/10.1371/journal.pone.0197267] [PMID: 29856741]
[26]
McGregor, G.; Irving, A.J.; Harvey, J. Canonical JAK-STAT signaling is pivotal for long-term depression at adult hippocampal temporoammonic-CA1 synapses. FASEB J., 2017, 31(8), 3449-3466.
[http://dx.doi.org/10.1096/fj.201601293RR] [PMID: 28461339]
[27]
Chang, S.H.; Jung, I.S.; Han, G.Y.; Kim, N.H.; Kim, H.J.; Kim, C.W. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2013, 430(2), 670-675.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.093] [PMID: 23211594]
[28]
Nie, L.; Wei, G.; Peng, S.; Qu, Z.; Yang, Y.; Yang, Q.; Huang, X.; Liu, J.; Zhuang, Z.; Yang, X. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer’s disease. Biofactors, 2017, 43(4), 593-611.
[http://dx.doi.org/10.1002/biof.1369] [PMID: 28608594]
[29]
Głombik, K.; Stachowicz, A.; Trojan, E.; Ślusarczyk, J.; Suski, M.; Chamera, K.; Kotarska, K.; Olszanecki, R.; Basta-Kaim, A. Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol. Rep., 2018, 70(2), 322-330.
[http://dx.doi.org/10.1016/j.pharep.2017.11.016] [PMID: 29477041]
[30]
Le Maître, E.; Vilpoux, C.; Costentin, J.; Leroux-Nicollet, I. Opioid receptor-like 1 (NOP) receptors in the rat dorsal raphe nucleus: evidence for localization on serotoninergic neurons and functional adaptation after 5,7-dihydroxytryptamine lesion. J. Neurosci. Res., 2005, 81(4), 488-496.
[http://dx.doi.org/10.1002/jnr.20571] [PMID: 15948180]
[31]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[32]
Buran, İ.; Etem, E.O.; Tektemur, A.; Elyas, H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci. Lett., 2017, 656, 51-57.
[http://dx.doi.org/10.1016/j.neulet.2017.07.017] [PMID: 28716528]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy