Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

General Review Article

A Review of Sliding Mode Control with the Perspective of Utilization in Fault Tolerant Control

Author(s): Umar Riaz, Muhammad Tayyeb and Arslan Ahmed Amin*

Volume 14, Issue 3, 2021

Published on: 20 November, 2020

Page: [312 - 324] Pages: 13

DOI: 10.2174/2352096513999201120091512

Price: $65

Abstract

Dealing with the complexity of modern technological non-linear systems and their disturbances is a very challenging issue. Sliding Mode Control (SMC) can deal perfectly with the non-linear systems and their disturbances because its accuracy and stability are very high. In this paper, a brief review of SMC types, SMC methods, and SMC in the field of Fault Tolerant Control (FTC), are provided. It also gives brief details about the reaching phase, sliding phase, and sliding surface, with their advantages and disadvantages. Further, chattering, which is the main drawback of SMC, is discussed and methods to resolve the chattering are also provided. In the end, various types of FTC are discussed and potential use of SMC in the design of FTC has been described. This paper will give comprehensive state-of-the-art to new researchers about the implementation of SMC in the FTC domain for further research.

Keywords: Sliding mode control, fault tolerant control, sliding surface, reaching surface, chattering, SMC algorithms, control allocation.

Graphical Abstract

[1]
V.I. Utkin, "Sliding modes and their applications in variable structure systems", Mir, 1st edition, January 1, 1978.
[2]
V. Utkin, "Variable structure systems with sliding modes", IEEE Trans. Automat. Contr., vol. 22, no. 2, pp. 212-222, 1977.
[http://dx.doi.org/10.1109/TAC.1977.1101446]
[3]
V.I. Utkin, "Sliding mode control design principles and applications to electric drives", IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, 1993.
[http://dx.doi.org/10.1109/41.184818]
[4]
K.D. Young, V.I. Utkin, and U. Ozguner, "A control engineer’s guide to sliding mode control", IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 328-342, 1999.
[http://dx.doi.org/10.1109/87.761053]
[5]
A. Wang, X. Jia, and S. Dong, "A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor", IEEE Trans. Magn., vol. 49, no. 5, pp. 2409-2412, 2013.
[http://dx.doi.org/10.1109/TMAG.2013.2240666]
[6]
S.K. Spurgeon, "Sliding mode observers: a survey", Int. J. Syst. Sci., vol. 39, no. 8, pp. 751-764, 2008.
[http://dx.doi.org/10.1080/00207720701847638]
[7]
A-R. Merheb, H. Noura, and F. Bateman, "Passive fault tolerant control of quadrotor UAV using regular and cascaded sliding mode control", In: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 2013.
[http://dx.doi.org/10.1109/SysTol.2013.6693910]
[8]
A.T. Azar, and F.E. Serrano, Adaptive sliding mode control of the Furuta pendulumAdvances and applications in sliding mode control systems., Springer: Cham, 2015, pp. 1-42.
[http://dx.doi.org/10.1007/978-3-319-11173-5_1]
[9]
Y.S. Song, and M.R. Arshad, "Sliding mode depth control of a hovering autonomous underwater vehicle", In: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2015.
[10]
A.A. Amin, and K.M. Hasan, "A review of fault tolerant control systems: advancements and applications", Measurement, vol. 143, pp. 58-68, 2019.
[http://dx.doi.org/10.1016/j.measurement.2019.04.083]
[11]
G.K. Singh, and K.E. Holé, "Guaranteed performance in reaching mode of sliding mode-controlled systems", Sadhana, vol. 29, no. 1, pp. 129-141, 2004.
[http://dx.doi.org/10.1007/BF02707005]
[12]
J. Yang, S. Li, and X. Yu, "Sliding-mode control for systems with mismatched uncertainties via a disturbance observer", IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 160-169, 2012.
[http://dx.doi.org/10.1109/TIE.2012.2183841]
[13]
B. Lin, X. Su, and X. Li, "Fuzzy sliding mode control for active suspension system with proportional differential sliding mode observer", Asian J. Control, vol. 21, no. 1, pp. 264-276, 2019.
[http://dx.doi.org/10.1002/asjc.1882]
[14]
R.M. Asl, "Integral non-singular terminal sliding mode controller for nth-order nonlinear systems", IEEE Access, vol. 7, pp. 102792-102802, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2930798]
[15]
M.R. Homaeinezhad, and S. Yaqubi, "Discrete-time sliding-surface based control of parametrically uncertain nonlinear systems with unknown time-delay and inaccessible switching mode detection", Int. J. Control, vol. 94, no. 3, pp. 623-642, 2019.
[http://dx.doi.org/10.1080/00207179.2019.1605205]
[16]
A. Razzaghian, R. Kardehi Moghaddam, and N. Pariz, "Fractional-order nonsingular terminal sliding mode control via a disturbance observer for a class of nonlinear systems with mismatched disturbances", J. Vib. Control, vol. 27, no. 1-2, 2020.
[http://dx.doi.org/10.1177/1077546320925263]
[17]
W. Boukadida, "Metaheuristics-based multi-objective design of global robust optimal sliding mode control of discrete uncertain systems", Int. J. Control. Autom. Syst., vol. 17, no. 6, pp. 1378-1392, 2019.
[http://dx.doi.org/10.1007/s12555-018-0486-y]
[18]
N.K. Sharma, and S. Janardhanan, "Discrete‐time higher‐order sliding mode control of systems with unmatched uncertainty", Int. J. Robust Nonlinear Control, vol. 29, no. 1, pp. 135-152, 2019.
[http://dx.doi.org/10.1002/rnc.4377]
[19]
F.H. Hawker, P.M. Stewart, R.C. Baxter, M. Borkmann, K. Tan, I.D. Caterson, and D.B. McWilliam, "Relationship of somatomedin-C/insulin-like growth factor I levels to conventional nutritional indices in critically ill patients", Crit. Care Med., vol. 15, no. 8, pp. 732-736, 1987.
[http://dx.doi.org/10.1097/00003246-198708000-00004] [PMID: 3608529]
[20]
Y.B. Shtessel, "Nonlinear output tracking in conventional and dynamic sliding manifolds", IEEE Trans. Automat. Contr., vol. 42, no. 9, pp. 1282-1286, 1997.
[http://dx.doi.org/10.1109/9.623093]
[21]
M. Moradi, and H. Malekizade, "Robust adaptive first–second-order sliding mode control to stabilize the uncertain fin-roll dynamic", Ocean Eng., vol. 69, pp. 18-23, 2013.
[http://dx.doi.org/10.1016/j.oceaneng.2013.05.003]
[22]
W. El Fezzani, and A. Ben Amor, "First order sliding mode control of the tubular linear stepping motor", Int. J. Emerg. Sci., vol. 3, pp. 72-83, 2013.
[23]
Giorgio Bartolini, A survey of applications of second-order sliding mode control to mechanical systems., Int. J. Cont, pp. 875-892, 2003.
[http://dx.doi.org/10.1080/0020717031000099010]
[24]
Y.B. Shtessel, I.A. Shkolnikov, and M.D.J. Brown, "An asymptotic second‐order smooth sliding mode control", Asian J. Control, vol. 5, no. 4, pp. 498-504, 2003.
[http://dx.doi.org/10.1111/j.1934-6093.2003.tb00167.x]
[25]
M. Jin, "Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control", IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3593-3601, 2009.
[http://dx.doi.org/10.1109/TIE.2009.2024097]
[26]
Leonid Fridman, Jaime Moreno, and Rafael Iriarte, "Sliding modes after the first decade of the 21st century", Lecture notes in control and information sciences, vol. 412, pp. 113-149, 2011.
[27]
V. Utkin, and J. Shi, "Integral sliding mode in systems operating under uncertainty conditions", In: Proceedings of 35th IEEE conference on decision and control, vol. 4, 1996.
[http://dx.doi.org/10.1109/CDC.1996.577594]
[28]
HAKAN ELMALI, and OLGAC. NEJAT, "Sliding mode control with perturbation estimation (SMCPE): a new approach", Int. J. Control, vol. 56, no. 4, pp. 923-941, 1992.
[http://dx.doi.org/10.1080/00207179208934350]
[29]
H. Elmali, and N. Olgac, "Implementation of sliding mode control with perturbation estimation (SMCPE)", IEEE Trans. Contr. Syst. Technol., vol. 4, no. 1, pp. 79-85, 1996.
[http://dx.doi.org/10.1109/87.481770]
[30]
Arie Levant, and Leonid Fridman, "Robustness issues of 2-sliding mode control", Variable structure systems: from principles to implementation, vol. 66, p. 131, 2004.
[http://dx.doi.org/10.1049/PBCE066E_ch6]
[31]
A. Pisano, "Cascade control of PM DC drives via second-order sliding-mode technique", IEEE Trans. Ind. Electron., vol. 55, no. 11, pp. 3846-3854, 2008.
[http://dx.doi.org/10.1109/TIE.2008.2002715]
[32]
Y. Feng, X. Yu, and Z. Man, "Adaptive fast terminal sliding mode tracking control of robotic manipulator", Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), vol. 4, 2001.
[http://dx.doi.org/10.1109/CDC.2001.980522]
[33]
S. Yu, X. Yu, and Z. Man, "A fuzzy neural network approximator with fast terminal sliding mode and its applications", Fuzzy Sets Syst., vol. 148, no. 3, pp. 469-486, 2004.
[http://dx.doi.org/10.1016/j.fss.2003.12.004]
[34]
Y. Li, and Q. Xu, "Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator", IEEE Trans. Contr. Syst. Technol., vol. 18, no. 4, pp. 798-810, 2009.
[http://dx.doi.org/10.1109/TCST.2009.2028878]
[35]
H. Li, "Observer-based adaptive sliding mode control for nonlinear Markovian jump systems", Automatica, vol. 64, pp. 133-142, 2016.
[http://dx.doi.org/10.1016/j.automatica.2015.11.007]
[36]
B. Jiang, "Observer-based adaptive sliding mode control for nonlinear stochastic Markov jump systems via TS fuzzy modeling: Applications to robot arm model", IEEE Trans. Ind. Electron., 2020.
[http://dx.doi.org/10.1109/TIE.2020.2965501]
[37]
Y. Lou, "Map-matching for low-sampling-rate GPS trajectories", In: Proceedings of the 17th ACM SIGSPATIAL Int. Conference on Advances in Geographic Information Systems, 2009
[38]
Arie Levant, "Principles of 2-sliding mode design", Automatica, pp. 576-286, 2007.
[http://dx.doi.org/10.1016/j.automatica.2006.10.008]
[39]
A. Damiano, "Second-order sliding-mode control of DC drives", IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 364-373, 2004.
[http://dx.doi.org/10.1109/TIE.2004.825268]
[40]
A. Levant, "Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence", IEEE Trans. Automat. Contr., vol. 46, no. 9, pp. 1447-1451, 2001.
[http://dx.doi.org/10.1109/9.948475]
[41]
S. Laghrouche, F. Plestan, and A. Glumineau, "Higher order sliding mode control based on integral sliding mode", Automatica, vol. 43, no. 3, pp. 531-537, 2007.
[http://dx.doi.org/10.1016/j.automatica.2006.09.017]
[42]
Y. Wang, "SMC design for robust stabilization of nonlinear Markovian jump singular systems", IEEE Trans. Automat. Contr., vol. 63, no. 1, pp. 219-224, 2017.
[http://dx.doi.org/10.1109/TAC.2017.2720970]
[43]
H. Alwi, C. Edwards, and C.P. Tan, Fault detection and fault-tolerant control using sliding modes., Springer Science & Business Media, 2011.
[http://dx.doi.org/10.1007/978-0-85729-650-4]
[44]
D.S. Panchal, D.P. Soni, and D.H. Shah, Design of sliding mode control for LNG storage tank systemAdv. Cont. Syst. Infrastructure., Springer: Singapore, 2020, pp. 11-23.
[http://dx.doi.org/10.1007/978-981-15-0226-2_2]
[45]
M.T. Hamayun, C. Edwards, and H. Alwi, An augmentation scheme for Fault Tolerant control using integral sliding modesFault Tolerant Control Schemes Using Integral Sliding Modes., Springer: Cham, 2016, pp. 103-121.
[http://dx.doi.org/10.1007/978-3-319-32238-4_6]
[46]
A.S. Poznyak, "Sliding mode control in stochastic continuos-time systems: μ-zone MS-convergence", IEEE Trans. Automat. Contr., vol. 62, no. 2, pp. 863-868, 2016.
[http://dx.doi.org/10.1109/TAC.2016.2557759]
[47]
J. El Khazane, and E.H. Tissir, "Achievement of MPPT by finite time convergence sliding mode control for photovoltaic pumping system", Sol. Energy, vol. 166, pp. 13-20, 2018.
[http://dx.doi.org/10.1016/j.solener.2018.03.026]
[48]
C. Edwards, H. Alwi, and M.T. Hamayun, Fault tolerant control using integral sliding modesAdv. Variable Struc. Syst. Sliding Mode Cont. Theory Appl., Springer: Cham, 2018, pp. 305-338.
[http://dx.doi.org/10.1007/978-3-319-62896-7_13]
[49]
X. Yi, "Designing the sliding mode controller for the variable structure system of electronically controlled diesel engine", In: 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)., 2017.
[50]
K. Furuta, "Variable Structure System and Its Applications", International Conference on Advanced Engineering Theory and Applications, 2016
[51]
M. Van, M. Mavrovouniotis, and S.S. Ge, "An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators", IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 7, pp. 1448-1458, 2018.
[http://dx.doi.org/10.1109/TSMC.2017.2782246]
[52]
C. Edwards, H. Alwi, and M.T. Hamayun, Fault tolerant control using integral sliding modesAdvances in Variable Structure Systems and Sliding Mode Control—Theory and Applications., Springer: Cham, 2018, pp. 305-338.
[http://dx.doi.org/10.1007/978-3-319-62896-7_13]
[53]
C. Ma, C. Liu, and J. Yao, "Fault tolerant control using integral sliding modes with control allocation along the null-space", Trans. Inst. Meas. Contr., vol. 42, no. 11, 2020.
[http://dx.doi.org/10.1177/0142331220904570]
[54]
E.Z. Taha, G.S. Happawana, and Y. Hurmuzlu, "Quantitative feedback theory (QFT) for chattering reduction and improved tracking in sliding mode control (SMC)", J. Dyn. Syst. Meas. Control, vol. 125, no. 4, pp. 665-669, 2003.
[http://dx.doi.org/10.1115/1.1636780]
[55]
J. Jiang, and X. Yu, "Fault-tolerant control systems: A comparative study between active and passive approaches", Annu. Rev. Contr., vol. 36, no. 1, pp. 60-72, 2012.
[http://dx.doi.org/10.1016/j.arcontrol.2012.03.005]
[56]
M-S. Qian, B. Jiang, and H.H-T. Liu, "Dynamic surface-active fault tolerant control design for the attitude control systems of UAV with actuator fault", Int. J. Control. Autom. Syst., vol. 14, no. 3, pp. 723-732, 2016.
[http://dx.doi.org/10.1007/s12555-015-0020-4]
[57]
J. Jiang, "Fault-tolerant control systems-an introductory overview", Acta Automatica Sinica, vol. 31, no. 1, pp. 161-174, 2005.
[58]
E. Dubrova, Hardware Redundancy.Fault-Tolerant Design., Springer-Verlag: New York, 2013, pp. 47-69.
[http://dx.doi.org/10.1007/978-1-4614-2113-9_4]
[59]
M. Blanke, M. Staroswiecki, and N. Eva Wu, "Concepts and methods in fault-tolerant control", Proceedings of the 2001 American Control Conference. (Cat. No. 01CH37148), vol. 4, 2001.
[http://dx.doi.org/10.1109/ACC.2001.946264]
[60]
Arslan Ahmed Amin, Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model., Measure. Cont, pp. 1179-1194, 2019.
[61]
Y.M. Zhang, and J. Jiang, "Active fault-tolerant control system against partial actuator failures", IEE Proc. Contr. Theory Appl., vol. 149, no. 1, pp. 95-104, 2002.
[http://dx.doi.org/10.1049/ip-cta:20020110]
[62]
M. Mahmoud, J. Jiang, and Y. Zhang, Active fault tolerant control systems: stochastic analysis and synthesis., vol. 287. Springer Science & Business Media, 2003.
[http://dx.doi.org/10.1007/3-540-36283-5]
[63]
H. Niemann, and J. Stoustrup, "Passive fault tolerant control of a double inverted pendulum-a case study", Control Eng. Pract., vol. 13, no. 8, pp. 1047-1059, 2005.
[http://dx.doi.org/10.1016/j.conengprac.2004.11.002]
[64]
M. Benosman, and K-Y. Lum, "Passive actuators’ fault-tolerant control for affine nonlinear systems", IEEE Trans. Contr. Syst. Technol., vol. 18, no. 1, pp. 152-163, 2009.
[http://dx.doi.org/10.1109/TCST.2008.2009641]
[65]
S. J. Gambhire, D. R. Kishore, P. S. Londhe, and S. N. Pawar, "Review of sliding mode based control techniques for control system applications", Int. J. Dyn. Control, 2020.
[http://dx.doi.org/10.1007/s40435-020-00638-7]
[66]
Arslan Ahmed Amin, "Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy", Measurement and Control, pp. 473-492, 2019.
[67]
H. Alwi, C. Edwards, and C.P. Tan, Fault detection and fault-tolerant control using sliding modes., Springer Science & Business Media, 2011.
[http://dx.doi.org/10.1007/978-0-85729-650-4]
[68]
M.E.H. Benbouzid, D. Diallo, and M. Zeraoulia, "Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: From conventional to modern and intelligent control techniques", IEEE Trans. Vehicular Technol., vol. 56, no. 2, pp. 519-528, 2007.
[http://dx.doi.org/10.1109/TVT.2006.889579]
[69]
H. Alwi, C. Edwards, and C.P. Tan, Fault detection and fault-tolerant control using sliding modes., Springer Science & Business Media, 2011.
[http://dx.doi.org/10.1007/978-0-85729-650-4]
[70]
A. Fekih, "Effective fault tolerant control design for nonlinear systems: application to a class of motor control system", IET Control Theory Appl., vol. 2, no. 9, pp. 762-772, 2008.
[http://dx.doi.org/10.1049/iet-cta:20070090]
[71]
Q.F. Teng, "Fault tolerant direct torque control of three-phase permanent magnet synchronous motors", WSEAS Transactions on systems, pp. 465-476, 2012.
[72]
V. Erginer, and M.H. Sarul, "High performance and reliable torque control of permanent magnet synchronous motors in electric vehicle applications", Elektron. Elektrotech., vol. 19, no. 7, pp. 41-46, 2013.
[http://dx.doi.org/10.5755/j01.eee.19.7.2159]
[73]
M. Bicker, "Container with low particulate emission and friction controlled dry sliding surface and methods for producing same", U.S. Patent No. 10,398,626..
[74]
En-Chih Chang, Chun-An Cheng, and Lung-Sheng Yang, "Nonsingular terminal sliding mode control based on binary particle swarm optimization for DC–AC converters", Energies, p. 2099, 2019.
[http://dx.doi.org/10.3390/en12112099]
[75]
M. Benbouzid, B. Beltran, Y. Amirat, G. Yao, J. Han, and H. Mangel, "Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement", ISA Trans., vol. 53, no. 3, pp. 827-833, 2014.
[http://dx.doi.org/10.1016/j.isatra.2014.01.006] [PMID: 24530194]
[76]
M.S. Mahmoud, and S. Azher Hussain, "Adaptive PI secondary control for smart autonomous microgrid systems", Int. J. Adapt. Control Signal Process., vol. 29, no. 11, pp. 1442-1458, 2015.
[http://dx.doi.org/10.1002/acs.2559]
[77]
H.S. Vieira, "Unified backstepping sliding mode framework for airship control design", IEEE Trans. Aerosp. Electron. Syst., 2020.
[http://dx.doi.org/10.1109/TAES.2020.2975525]
[78]
Jazmìn Zenteno Torres, "Issues of fault diagnosis for dynamic systems",
[79]
R.J. Patton, P.M. Frank, R.N. Clark, Eds., Issues of fault diagnosis for dynamic systems., Springer Science & Business Media, 2013.
[80]
R.J. Patton, "Fault-tolerant control: the 1997 situation", IFAC Proceedings, pp. 1029-1051, 1997.
[http://dx.doi.org/10.1016/S1474-6670(17)42536-5]
[81]
Y. Zhang, and J. Jiang, "Bibliographical review on reconfigurable fault-tolerant control systems", Annu. Rev. Contr., vol. 32, no. 2, pp. 229-252, 2008.
[http://dx.doi.org/10.1016/j.arcontrol.2008.03.008]
[82]
S.M. Bennett, R.J. Patton, and S. Daley, "Sensor fault-tolerant control of a rail traction drive", Control Eng. Pract., vol. 7, no. 2, pp. 217-225, 1999.
[http://dx.doi.org/10.1016/S0967-0661(98)00151-8]
[83]
M. Manohar, and S. Das, "Notice of removal: Current sensor fault-tolerant control of induction motor driven electric vehicle using flux-linkage observer", 2020 IEEE Transportation Electrification Conference Expo (ITEC), 2020pp. 884-889
[84]
Colin N, Jones, and J. M. Maciejowski, “Reconfigurable flight control first year report., CORE, 2005.
[85]
A. Abbaspour, S. Mokhtari, A. Sargolzaei, and K.K. Yen, "A survey on active fault-tolerant control systems", Electronics (Basel), vol. 9, no. 9, p. 1513, 2020.
[http://dx.doi.org/10.3390/electronics9091513]
[86]
A.A. Amin, and K. Mahmood-Ul-Hasan, "Advanced fault tolerant air-fuel ratio control of internal combustion gas engine for sensor and actuator faults", IEEE Access, vol. 7, pp. 17634-17643, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2894796]
[87]
B. Xiao, Q. Hu, and Y. Zhang, "Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation", IEEE Trans. Contr. Syst. Technol., vol. 20, no. 6, pp. 1605-1612, 2011.
[http://dx.doi.org/10.1109/TCST.2011.2169796]
[88]
S. Li, Ed., Advances in variable structure systems and sliding mode control-theory and Applications., vol. 115. Springer, 2017.
[89]
V.I. Utkin, Sliding modes in control and optimization., Springer Science & Business Media, 2013.
[90]
R. Sedaghati, and M.R. Shakarami, "A new sliding mode-based power sharing control method for multiple energy sources in the microgrid under different conditions", Int. J. Indust. Electron. Cont. Optimiz., vol. 2, no. 1, pp. 25-38, 2019.
[91]
H.R. Baghaee, "A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources", IEEE Trans. Industr. Inform., 2017.
[http://dx.doi.org/10.1109/TII.2017.2677943]
[92]
J. Song, Y. Niu, and Y. Zou, "Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities", Automatica, vol. 93, pp. 33-41, 2018.
[http://dx.doi.org/10.1016/j.automatica.2018.03.037]
[93]
Y. Zhao, "Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays", Inf. Sci., vol. 473, pp. 227-238, 2019.
[http://dx.doi.org/10.1016/j.ins.2018.09.002]
[94]
H. Zhang, J. Hu, and X. Yu, "Adaptive sliding mode fault-tolerant control for a class of uncertain systems with probabilistic random delays", IEEE Access, vol. 7, pp. 64234-64246, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2917530]
[95]
B-C. Zheng, X. Yu, and Y. Xue, "Quantized feedback sliding-mode control: An event-triggered approach", Automatica, vol. 91, pp. 126-135, 2018.
[http://dx.doi.org/10.1016/j.automatica.2018.01.007]
[96]
M. Li, M. Liu, and Y. Zhang, "Asynchronous adaptive quantized feedback sliding mode control for semi-markovian jump systems: an event-triggered approach", Nonlinear Anal. Hybrid Syst., vol. 36, p. 100853, 2020.
[http://dx.doi.org/10.1016/j.nahs.2019.100853]
[97]
B. Lu, Y. Fang, and N. Sun, "Continuous sliding mode control strategy for a class of nonlinear underactuated systems", IEEE Trans. Automat. Contr., vol. 63, no. 10, pp. 3471-3478, 2018.
[http://dx.doi.org/10.1109/TAC.2018.2794885]
[98]
A. Guezmil, "Experimental investigation of passive fault tolerant control for induction machine using sliding mode approach", Asian J. Control, vol. 21, no. 1, pp. 520-532, 2019.
[http://dx.doi.org/10.1002/asjc.1753]
[99]
A. Guezmil, "Sliding Mode-Based Active Fault-Tolerant Control for Induction Machine", Arab. J. Sci. Eng., vol. 45, no. 3, pp. 1447-1455, 2020.
[http://dx.doi.org/10.1007/s13369-019-03982-9]
[100]
H. Alwi, and C. Edwards, "Sliding mode FTC with on-line control allocation", In: Proceedings of the 45th IEEE Conference on Decision and Control, 2006
[http://dx.doi.org/10.1109/CDC.2006.377219]
[101]
R.R. Nair, H. Karki, A. Shukla, L. Behera, and M. Jamshidi, "Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control", IEEE Syst. J., vol. 13, no. 1, pp. 1006-1017, 2018.
[http://dx.doi.org/10.1109/JSYST.2018.2794418]
[102]
Q. Shen, "Robust control allocation for spacecraft attitude tracking under actuator faults", IEEE Trans. Contr. Syst. Technol., vol. 25, no. 3, pp. 1068-1075, 2016.
[http://dx.doi.org/10.1109/TCST.2016.2574763]
[103]
A. Argha, "Novel frameworks for the design of fault‐tolerant control using optimal sliding‐mode control", Int. J. Robust Nonlinear Control, vol. 28, no. 8, pp. 3015-3032, 2018.
[http://dx.doi.org/10.1002/rnc.4061]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy