Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Antibody Immobilization Techniques in Mass Sensitive Immunosensor: Enhanced Sensitivity through Limited Mass Load

Author(s): Kübra Kırali, Nura Brimo and Dilek Çökeliler Serdaroğlu*

Volume 18, Issue 5, 2022

Published on: 20 November, 2020

Page: [529 - 545] Pages: 17

DOI: 10.2174/1573411016999201120090551

Price: $65

Abstract

Background: Biosensors are analytical devices that include a sample-delivery approach between a biological recognition element and a transducer required to convert the physicochemical change produced from the interaction of biological molecule-receptor interaction into a signal. The immunosensor is a special type of biosensor that includes an antibody as a biorecognition element to detect analytes as antigens. In mass sensitive sensors, antigen-antibody interactions can be specified by measuring the frequency change and the most commonly knowns are the surface acoustic wave, bulk acoustic wave, quartz crystal microbalance and microcantilevers.

Methods: Different methods for antibody immobilization, including functionalization of the transducer surface with specific groups, have been reported for antibody immobilization. This stage affects the limit of detection and overall performance. In this review, perspectives on immobilization strategies of mass sensitive immunosensors according to transducer types will be presented. The choice of immobilization methods and their impact on performance in terms of capture molecule loading, orientation and signal improvement will also be discussed.

Results: One of the most critical points during the configuration of the biorecognition layer is to improve the sensitivity. Therefore, we initially focused on comparisons of the antibody immobilization strategies in the biorecognition layer in terms of mass load level and high sensitivity.

Conclusion: The lack of significant data on the mass accumulations up to the functionalization and antibody immobilization steps, which are the basis of immusensor production, has been identified. However, mass sensitive immunosensors have the potential to become more common and effective analytical devices for many application areas.

Keywords: Immunosensors, antibodies, mass sensitive transducers, immobilization techniques, sensitivity, limit of detection

Graphical Abstract

[1]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[2]
Jiang, L.; Hou, X. Learning from nature: Building bio-inspired smart nanochannels. ACS Nano, 2009, 3(11), 3339-3342.
[3]
Hou, X.; Guo, W.; Xia, F.; Nie, F.Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y.; Xue, J.; Song, Y.; Wang, Y.; Liu, D.; Jiang, L. A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc., 2009, 131(22), 7800-7805.
[http://dx.doi.org/10.1021/ja901574c] [PMID: 19435350]
[4]
Handbook of Chemical and Biological Sensors - 1st Edition - R.F Taylo,. https://www.routledge.com/Handbook-of-Chemical-and-Biological-Sensors/Taylor-Schultz/p/book/9780750303231
[5]
Wang, H.; Shen, G.; Yu, R. Aspects of recent development of immunosensors. Electrochemical Sensors, Biosensors and their Biomedical Applications; Elsevier Inc.: The Netherland, 2008, pp. 237-260.
[http://dx.doi.org/10.1016/B978-012373738-0.50011-8]
[6]
Lim, S.A.; Ahmed, M.U. Chapter 1: Introduction to immunosensors. RSC Detection Science; Royal Society of Chemistry, 2019, pp. 1-20.
[7]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and dna sensors and their applications. Materials, 2018, 11(3), 448.
[8]
Makaraviciute, A.; Ramanaviciene, A. Site-directed antibody immobilization techniques for immunosensors. Biosens. Bioelectron., 2013, 50, 460-471.
[http://dx.doi.org/10.1016/j.bios.2013.06.060] [PMID: 23911661]
[9]
Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron., 2008, 24(3), 339-348.
[http://dx.doi.org/10.1016/j.bios.2008.06.045] [PMID: 18675543]
[10]
Gopinath, S.C.B.; Tang, T.H.; Citartan, M.; Chen, Y.; Lakshmipriya, T. Current aspects in immunosensors. Biosens. Bioelectron., 2014, 57, 292-302.
[http://dx.doi.org/10.1016/j.bios.2014.02.029] [PMID: 24607580]
[11]
Cristea, C.; Florea, A.; Tertis, M.; Sandulescu, R. Immunosensors. Biosensors - Micro and Nanoscale Applications; InTech: London, 2015.
[12]
Mujahid, A.; Dickert, F.L. Surface acoustic wave (saw) for chemical sensing applications of recognition layers. Sensors, (Basel),, 2017, 17(12), 2716.
[http://dx.doi.org/10.3390/s17122716] [PMID: 29186771]
[13]
White, R.M.; Voltmer, F.W. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett., 1965, 7(12), 314-316.
[http://dx.doi.org/10.1063/1.1754276]
[14]
DeMiguel-Ramos, M.; Díaz-Durán, B.; Escolano, J.M.; Barba, M.; Mirea, T.; Olivares, J.; Clement, M.; Iborra, E. Gravimetric biosensor based on a 1.3 ghz aln shear-mode solidly mounted resonator. Sens. Actuators B Chem., 2017, 239(239), 1282-1288.
[http://dx.doi.org/10.1016/j.snb.2016.09.079]
[15]
Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Zhang, D.; Zhang, H.; Pang, W.; Duan, X. Detection of volatile organic compounds by self-assembled monolayer coated sensor array with concentration-independent fingerprints. Sci. Rep., 2016, 6(1), 23970.
[http://dx.doi.org/10.1038/srep23970] [PMID: 27045012]
[16]
Bian, X.; Jin, H.; Wang, X.; Dong, S.; Chen, G.; Luo, J.K.; Deen, M.J.; Qi, B. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure. Sci. Rep., 2015, 5(1), 9123.
[http://dx.doi.org/10.1038/srep09123] [PMID: 25773146]
[17]
Zhang, M.; Du, L.; Fang, Z.; Zhao, Z. Micro through-hole array in top electrode of film bulk acoustic resonator for sensitivity improving as humidity sensor. Procedia Engineering; Elsevier Ltd: The Netherlands, 2015, Vol. 120, pp. 663-666.
[http://dx.doi.org/10.1016/j.proeng.2015.08.703]
[18]
Vashist, S.K.; Vashist, P. Recent advances in quartz crystal microbalance-based sensors. J. Sens., 2011, 2011Article ID 571405
[http://dx.doi.org/10.1155/2011/571405]
[19]
Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and antibody-derived analytical biosensors. Essays Biochem., 2016, 60(1), 9-18.
[http://dx.doi.org/10.1042/EBC20150002] [PMID: 27365031]
[20]
Etayash, H.; Thundat, T. Microcantilever chemical and biological sensors. Encyclopedia of Nanotechnology; Springer: The Netherlands, 2015, pp. 1-9.
[http://dx.doi.org/10.1007/978-94-007-6178-0_187-2]
[21]
Nakanishi, K.; Masao, A.; Sako, Y.; Ishida, Y.; Muguruma, H.; Karube, I. Detection of the red tide-causing plankton alexandrium affine by a piezoelectric immunosensor using a novel method of immobilizing antibodies. Anal. Lett., 1996, 29(8), 1247-1258.
[http://dx.doi.org/10.1080/00032719608001478]
[22]
Villa-Arango, S.; Betancur Sánchez, D.; Torres, R.; Kyriacou, P.; Lucklum, R. Differential phononic crystal sensor: Towards a temperature compensation mechanism for field applications development. Sensors (Basel), 2017, 17(9), 1960.
[http://dx.doi.org/10.3390/s17091960] [PMID: 28841146]
[23]
Drikic, M.; Olsen, S.; De Buck, J. Detecting total immunoglobulins in diverse animal species with a novel split enzymatic assay. BMC Vet. Res., 2019, 15(1), 374.
[http://dx.doi.org/10.1186/s12917-019-2126-z] [PMID: 31660970]
[24]
Buttry, D.A.; Ward, M.D. Measurement of interfaclal processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev., 1992, 92(6), 1355-1379.
[http://dx.doi.org/10.1021/cr00014a006]
[25]
Arnau, A. A review of interface electronic systems for at-cut quartz crystal microbalance applications in liquids. Sensors, 2008, 8(1), 370-411.
[26]
Skládal, P. Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. J. Brazilian Chem. Soc., 2003, 14, 491-502.
[http://dx.doi.org/10.1590/S0103-50532003000400002]
[27]
Marx, K.A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules, 2003, 4(5), 1099-1120.
[http://dx.doi.org/10.1021/bm020116i] [PMID: 12959572]
[28]
Mecea, V.M. From quartz crystal microbalance to fundamental principles of mass measurements. Anal. Lett., 2005, 38, 753-767.
[http://dx.doi.org/10.1081/AL-200056171]
[29]
He, H.; Zhou, L.; Wang, Y.; Li, C.; Yao, J.; Zhang, W.; Zhang, Q.; Li, M.; Li, H.; Dong, W.F. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs. Talanta, 2015, 131, 8-13.
[http://dx.doi.org/10.1016/j.talanta.2014.07.071] [PMID: 25281066]
[30]
Rodahl, M.; Höök, F.; Fredriksson, C.; Keller, C.A.; Krozer, A.; Brzezinski, P.; Voinova, M.; Kasemo, B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss., 1997, 107(107), 229-246.
[http://dx.doi.org/10.1039/a703137h] [PMID: 9569776]
[31]
Sauerbrey, G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Phys., 1959, 155(2), 206-222.
[http://dx.doi.org/10.1007/BF01337937]
[32]
Uludağ, Y.; Piletsky, S.A.; Turner, A.P.F.; Cooper, M.A. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. FEBS J., 2007, 274(21), 5471-5480.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06079.x] [PMID: 17937771]
[33]
Lin, T.Y.; Hu, C.H.; Chou, T.C. Determination of albumin concentration by MIP-QCM sensor. Biosens. Bioelectron., 2004, 20(1), 75-81.
[http://dx.doi.org/10.1016/j.bios.2004.01.028] [PMID: 15142579]
[34]
Mujahid, A.; Afzal, A.; Dickert, F.L. An overview of high frequency acoustic sensors-qcms, saws and fbars-chemical and biochemical applications. Sensors (Switzerland), 2019, 19(20), 4395.
[35]
Martin, S.J.; Schwartz, S.S.; Gunshor, R.L.; Pierret, R.F. Surface acoustic wave resonators on a zno-on-si layered medium. J. Appl. Phys., 1983, 54(2), 561-569.
[http://dx.doi.org/10.1063/1.332060]
[36]
Lieberzeit, P.; Greibl, W.; Jenik, M.; Dickert, F.L.; Fischerauer, G.; Bulst, W.E. Cavities generated by self-organised monolayers as sensitive coatings for surface acoustic wave resonators. Anal. Bioanal. Chem., 2007, 387(2), 561-566.
[http://dx.doi.org/10.1007/s00216-006-0978-0] [PMID: 17124573]
[37]
Afzal, A.; Iqbal, N.; Mujahid, A.; Schirhagl, R. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Anal. Chim. Acta, 2013, 787, 36-49.
[http://dx.doi.org/10.1016/j.aca.2013.05.005] [PMID: 23830419]
[38]
Mahon, S.; Mahon, S.; Aigner, R. Bulk acoustic wave devices – why, how, and where they are going. In: CS MANTECH Conf.2007,2007; 15-18.
[39]
Alvarez, M.; Zinoviev, K.; Moreno, M.; Lechuga, L.M. Cantilever biosensors. Opt. Biosens., 2008, 2008, 419-452.
[40]
Wang, C.; Wang, D.; Mao, Y.; Hu, X. Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope. Anal. Biochem., 2007, 363(1), 1-11.
[http://dx.doi.org/10.1016/j.ab.2006.12.010] [PMID: 17276384]
[41]
Vashist, S.K.; Luong, J.H.T. Microcantilever-based sensors; Elsevier Inc: The Netherlands, 2018.
[http://dx.doi.org/10.1016/B978-0-12-811762-0.00012-8]
[42]
Biswal, S.L.; Raorane, D.; Chaiken, A.; Majumdar, A. Using a microcantilever array for detecting phase transitions and stability of DNA. Clin. Lab. Med., 2007, 27(1), 163-171.
[http://dx.doi.org/10.1016/j.cll.2006.12.005] [PMID: 17416309]
[43]
Thundat, T. Explosive vapor detection using microcantilever sensors; Elsevier B.V.: The Netherlands, 2006.
[http://dx.doi.org/10.1002/9780470085202.ch12]
[44]
Debéda, H.; Dufour, I. Resonant microcantilever devices for gas sensing. Adv. Nanomater. Inexpensive Gas Microsens, 2020, 2020, 161-188.
[45]
Zhang, H.Y.; Pan, H.Q.; Zhang, B.L.; Tang, J.L. Microcantilever sensors for chemical and biological applications in liquid. Fenxi Huaxue. Chin. J. Anal. Chem., 2012, 40(5), 801-808.
[http://dx.doi.org/10.1016/S1872-2040(11)60549-5]
[46]
Zhang, J. X. J.; Hoshino, K. Mechanical Transducers: Cantilevers, acoustic wave sensors, and thermal sensors. 2019,, 2019, 311-412.
[http://dx.doi.org/10.1016/B978-0-12-814862-4.00006-5]
[47]
Battiston, F.M.; Ramseyer, J.P.; Lang, H.P.; Baller, M.K.; Gerber, C.; Gimzewski, J.K.; Meyer, E.; Güntherodt, H.J. A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens. Actuators B Chem., 2001, 77(1-2), 122-131.
[http://dx.doi.org/10.1016/S0925-4005(01)00683-9]
[48]
Barnes, J.R.; Stephenson, R.J.; Woodburn, C.N.; O’Shea, S.J.; Welland, M.E.; Rayment, T.; Gimzewski, J.K.; Gerber, C. A femtojoule calorimeter using micromechanical sensors. Rev. Sci. Instrum., 1994, 65(12), 3793-3798.
[http://dx.doi.org/10.1063/1.1144509]
[49]
Tamayo, J.; Humphris, A.D.L.; Malloy, A.M.; Miles, M.J. Chemical sensors and biosensors in liquid environment based. Ultramicroscopy, 2001, 86, 167-173.
[50]
Dukic, M.; Adams, J.D.; Fantner, G.E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci. Rep., 2015, 5(September), 16393.
[http://dx.doi.org/10.1038/srep16393] [PMID: 26574164]
[51]
Yang, M.; Zhang, X.; Vafai, K.; Ozkan, C.S. High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J. Micromech. Microeng., 2003, 13(6), 864-872.
[http://dx.doi.org/10.1088/0960-1317/13/6/309]
[52]
Springer Series on Chemical Sensors and Biosensors. Available from:. https://www.springer.com/series/5346
[53]
Holmes, C.; Tabrizian, M. Surface functionalization of biomaterials; Elsevier Inc.: The Netherlands, 2015.
[http://dx.doi.org/10.1016/B978-0-12-397157-9.00016-3]
[54]
Tsugimura, K.; Ohnuki, H.; Wu, H.; Endo, H.; Tsuya, D.; Izumi, M. Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors. J. Physics, 2017, 924012015
[http://dx.doi.org/10.1088/1742-6596/924/1/012015]
[55]
Rudra, J.S.; Kelly, S.H.; Collier, J.H. Self-assembling biomaterials. Compr. Biomater. II, 2016, 2017(2), 67-89.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.10210-3]
[56]
Fowler, J.M.; Wong, D.K.Y.; Brian Halsall, H.; Heineman, W.R. Recent developments in electrochemical immunoassays and immunosensors. Electrochemical Sensors, Biosensors and their Biomedical Applications; Elsevier Inc.: The Netherlands, 2008, pp. 115-143.
[http://dx.doi.org/10.1016/B978-012373738-0.50007-6]
[57]
Pohanka, M. Immunoassay of interferon gamma by quartz crystal microbalance biosensor. Talanta, 2020, 218(March)121167
[http://dx.doi.org/10.1016/j.talanta.2020.121167] [PMID: 32797920]
[58]
Pohanka, M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta, 2018, 178(178), 970-973.
[http://dx.doi.org/10.1016/j.talanta.2017.10.031] [PMID: 29136925]
[59]
Masdor, N.A.; Altintas, Z.; Tothill, I.E. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens. Bioelectron., 2016, 78, 328-336.
[http://dx.doi.org/10.1016/j.bios.2015.11.033] [PMID: 26649490]
[60]
Makhneva, E.; Manakhov, A.; Skládal, P.; Zajíčková, L. Development of effective qcm biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf. Coa. Technol, 2016, 290, 116-123.
[http://dx.doi.org/10.1016/j.surfcoat.2015.09.035]
[61]
Manakhov, A.; Makhneva, E.; Skládal, P.; Nečas, D.; Čechal, J.; Kalina, L.; Eliáš, M.; Zajíčková, L. The robust bio-immobilization based on pulsed plasma polymerization of cyclopropylamine and glutaraldehyde coupling chemistry. Appl. Surf. Sci., 2016, 360, 28-36.
[http://dx.doi.org/10.1016/j.apsusc.2015.10.178]
[62]
March, C.; García, J.V.; Sánchez, Á.; Arnau, A.; Jiménez, Y.; García, P.; Manclús, J.J.; Montoya, Á. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosens. Bioelectron., 2015, 65, 1-8.
[http://dx.doi.org/10.1016/j.bios.2014.10.001] [PMID: 25461131]
[63]
Cervera-Chiner, L.; Jiménez, Y.; Montoya, Á.; Juan-Borrás, M.; Pascual, N.; Arnau, A.; Escriche, I. High fundamental frequency quartz crystal microbalance (hff-qcmd) immunosensor for detection of sulfathiazole in honey. Food Control, 2020, 115, 1-6.
[http://dx.doi.org/10.1016/j.foodcont.2020.107296]
[64]
Fernández-Benavides, D.A.; Cervera-Chiner, L.; Jiménez, Y.; de Fuentes, O.A.; Montoya, A.; Muñoz-Saldaña, J. A novel bismuth-based lead-free piezoelectric transducer immunosensor for carbaryl quantification. Sens. Actuators B Chem., 2018, 2019(285), 423-430.
[http://dx.doi.org/10.1016/j.snb.2019.01.081]
[65]
Zhang, P.; Guo, X.; Wang, H.; Sun, Y.; Kang, Q.; Shen, D. An Electrode-separated piezoelectric immunosensor array with signal enhancement based on enzyme catalytic deposition of palladium nanoparticles and electroless deposition nickel-phosphorus. Sens. Actuat B Chem., 2017, 248, 551-559.
[66]
Karaseva, N.A.; Ermolaeva, T.N. A piezoelectric immunosensor for chloramphenicol detection in food. Talanta, 2012, 93, 44-48.
[http://dx.doi.org/10.1016/j.talanta.2011.12.047] [PMID: 22483874]
[67]
Guo, X.; Lin, C.S.; Chen, S.H.; Ye, R.; Wu, V.C.H. A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosens. Bioelectron., 2012, 38(1), 177-183.
[http://dx.doi.org/10.1016/j.bios.2012.05.024] [PMID: 22683250]
[68]
Sadhasivam, S.; Chen, J.; Savitha, S.; Lin, F.; Yang, Y.; Lee, C. A real time detection of the ovarian tumor associated antigen 1 (ovta 1) in human serum by quartz crystal microbalance immobilized with anti-ovta 1 polyclonal chicken igy antibodies. Mater. Sci. Eng. C, 2012, 32(7), 2073-2078.
[http://dx.doi.org/10.1016/j.msec.2012.05.043]
[69]
Nhiem, T.; Park, S.; Joon, S. Chemical detection Of Hiv-1 antigen by quartz crystal microbalance using gold nanoparticles. Sens. Actuators B Chem., 2016, 237, 452-458.
[http://dx.doi.org/10.1016/j.snb.2016.06.112]
[70]
Uludağ, Y.; Tothill, I.E. Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta, 2010, 82(1), 277-282.
[http://dx.doi.org/10.1016/j.talanta.2010.04.034] [PMID: 20685467]
[71]
Oliver, M.J.; Hernando-García, J.; Pobedinskas, P.; Haenen, K.; Ríos, A.; Sánchez-Rojas, J.L. Reusable chromium-coated quartz crystal microbalance for immunosensing. Colloids Surf. B Biointerfaces, 2011, 88(1), 191-195.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.030] [PMID: 21782397]
[72]
Jun, Y.; Rahman, M.; Lee, J. Sensors and actuators b : chemical ultrasensitive and label-free detection of annexin a3 based on quartz crystal microbalance. Sens. Actuators B Chem., 2013, 177, 172-177.
[http://dx.doi.org/10.1016/j.snb.2012.10.117]
[73]
Toma, K.; Oishi, K.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Mitsubayashi, K. Repeated immunosensing by a dithiobis(succinimidyl propionate)-modified SAW device. Talanta, 2019, 203(April), 274-279.
[http://dx.doi.org/10.1016/j.talanta.2019.05.080] [PMID: 31202338]
[74]
Jandas, P.J.; Luo, J.; Quan, A.; Qiu, C.; Cao, W.; Fu, C.; Fu, Y.Q. Highly selective and label-free love-mode surface acoustic wave biosensor for carcinoembryonic antigen detection using a self-assembled monolayer bioreceptor. Appl. Surf. Sci., 2020, 518(March)146061
[http://dx.doi.org/10.1016/j.apsusc.2020.146061]
[75]
Toma, K.; Horibe, M.; Kishikawa, C.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Shimomura, H.; Mitsubayashi, K. Rapid and repetitive immunoassay with a surface acoustic wave device for monitoring of dust mite allergens. Sens. Actuators B Chem., 2017, 248, 924-929.
[http://dx.doi.org/10.1016/j.snb.2017.01.183]
[76]
Toma, K.; Miki, D.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Mitsubayashi, K. A gold nanoparticle-assisted sensitive saw (surface acoustic wave) immunosensor with a regeneratable surface for monitoring of dust mite allergens. Sens. Actuators B Chem., 2017, 249, 685-690.
[http://dx.doi.org/10.1016/j.snb.2017.04.073]
[77]
Lee, J.; Lee, Y.; Park, J.Y.; Seo, H.; Lee, T.; Lee, W.; Kim, S.K.; Hahn, Y.K.; Jung, J.Y.; Kim, S.; Choi, Y.S.; Lee, S.S. Sensitive and reproducible detection of cardiac troponin i in human plasma using a surface acoustic wave immunosensor. Sens. Actuators B Chem., 2013, 178, 19-25.
[http://dx.doi.org/10.1016/j.snb.2012.11.082]
[78]
Tseng, Y.C.; Chang, J.S.; Lin, S.; Chao, S.D.; Liu, C.H. 3,4-Methylenedioxymethylamphetamine detection using a microcantilever-based biosensor. Sens. Actuators A Phys., 2012, 182, 163-167.
[http://dx.doi.org/10.1016/j.sna.2012.05.036]
[79]
Nieradka, K.; Kapczyńska, K.; Rybka, J.; Lipiński, T.; Grabiec, P.; Skowicki, M.; Gotszalk, T. Microcantilever array biosensors for detection and recognition of gram-negative bacterial endotoxins. Sens. Actuators B Chem., 2014, 198, 114-124.
[http://dx.doi.org/10.1016/j.snb.2014.03.023]
[80]
Grogan, C.; Raiteri, R.; O’Connor, G.M.; Glynn, T.J.; Cunningham, V.; Kane, M.; Charlton, M.; Leech, D. Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. Biosens. Bioelectron., 2002, 17(3), 201-207.
[http://dx.doi.org/10.1016/S0956-5663(01)00276-7] [PMID: 11839473]
[81]
Wu, G.; Datar, R.H.; Hansen, K.M.; Thundat, T.; Cote, R.J.; Majumdar, A. Bioassay of prostate-specific antigen (psa) using microcantilevers. Nat. Biotechnol., 2001, 19(9), 856-860.
[82]
Fariña Santana, D.; Álvarez, M.; Márquez, S.; Domínguez, C.; Lechuga, L.M. Out-of-plane single-mode photonic microcantilevers for integrated nanomechanical sensing platform. Sens. Actuators B Chem., 2016, 232, 60-67.
[http://dx.doi.org/10.1016/j.snb.2016.03.041]
[83]
Zhou, X.; Wu, S.; Liu, H.; Wu, X.; Zhang, Q. Nanomechanical label-free detection of aflatoxin b1 using a microcantilever. Sens. Actuators B Chem., 2016, 226, 24-29.
[http://dx.doi.org/10.1016/j.snb.2015.11.092]
[84]
Ricciardi, C.; Castagna, R.; Ferrante, I.; Frascella, F.; Marasso, S.L.; Ricci, A.; Canavese, G.; Lorè, A.; Prelle, A.; Gullino, M.L.; Spadaro, D. Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens. Bioelectron., 2013, 40(1), 233-239.
[http://dx.doi.org/10.1016/j.bios.2012.07.029] [PMID: 22878081]
[85]
Xue, C.; Zhao, H.; Liu, H.; Chen, Y.; Wang, B.; Zhang, Q.; Wu, X. Development of sulfhydrylated antibody functionalized microcantilever immunosensor for taxol. Sens. Actuators B Chem., 2011, 156(2), 863-866.
[http://dx.doi.org/10.1016/j.snb.2011.02.055]
[86]
Dai, Y.; Wang, T.; Hu, X.; Liu, S.; Zhang, M.; Wang, C. Highly sensitive microcantilever-based immunosensor for the detection of carbofuran in soil and vegetable samples. Food Chem., 2017, 229, 432-438.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.093] [PMID: 28372196]
[87]
Trau, D.; Renneberg, R. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: Immobilization and biosensor applications. Biosens. Bioelectron., 2003, 18(12), 1491-1499.
[http://dx.doi.org/10.1016/S0956-5663(03)00119-2] [PMID: 12941565]
[88]
Campàs, M.; O’Sullivan, C. Layer-by-layer biomolecular assemblies for enzyme sensors, immunosensing, and nanoarchitectures. Anal. Lett., 2003, 36(12), 2551-2569.
[http://dx.doi.org/10.1081/AL-120024632]
[89]
Zhanvnerko, G.; Yi, S.J.; Kweon, S.M.; Ha, K.S. Layer-by-Layer method for immobilization of protein molecules on biochip surface.,
[90]
Yan, Z.; Yang, M.; Wang, Z.; Zhang, F.; Xia, J.; Shi, G.; Xia, L.; Li, Y.; Xia, Y.; Xia, L. A label-free immunosensor for detecting common acute lymphoblastic leukemia antigen (cd10) based on gold nanoparticles by quartz crystal microbalance. Sens. Actuators B Chem., 2015, 210, 248-253.
[http://dx.doi.org/10.1016/j.snb.2014.12.104]
[91]
Caroselli, R.; García Castelló, J.; Escorihuela, J.; Bañuls, M.J.; Maquieira, Á.; García-Rupérez, J. Experimental study of the oriented immobilization of antibodies on photonic sensing structures by using protein a as an intermediate layer. Sensors (Basel),, 2018, 18(4)E1012
[http://dx.doi.org/10.3390/s18041012] [PMID: 29597326]
[92]
Shen, M.; Rusling, J.; Dixit, C.K. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods, 2017, 116, 95-111.
[http://dx.doi.org/10.1016/j.ymeth.2016.11.010] [PMID: 27876681]
[93]
de Juan-Franco, E.; Caruz, A.; Pedrajas, J.R.; Lechuga, L.M. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing. Analyst (Lond.), 2013, 138(7), 2023-2031.
[http://dx.doi.org/10.1039/c3an36498d] [PMID: 23400028]
[94]
Yang, L.; Huang, X.; Sun, L.; Xu, L. A piezoelectric immunosensor for the rapid detection of p16ink4a expression in liquid-based cervical cytology specimens. Sens. Actuators B Chem., 2016, 224, 863-867.
[http://dx.doi.org/10.1016/j.snb.2015.11.002]
[95]
Akter, R.; Rhee, C.K.; Rahman, M.A. A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy. Biosens. Bioelectron., 2015, 66, 539-546.
[http://dx.doi.org/10.1016/j.bios.2014.12.007] [PMID: 25506902]
[96]
Ben, M.; Salmain, M.; Boujday, S. Chemical gold colloid-nanostructured surfaces for enhanced piezoelectric immunosensing of staphylococcal enterotoxin a. Sens. Actuators B Chem., 2018, 255, 1604-1613.
[http://dx.doi.org/10.1016/j.snb.2017.08.180]
[97]
Chen, J.; Sadhasivam, S.; Lin, F. Label free gravimetric detection of epidermal growth factor receptor by antibody immobilization on quartz crystal microbalance. Process Biochem., 2011, 46(2), 543-550.
[http://dx.doi.org/10.1016/j.procbio.2010.10.006]
[98]
Zou, L.; Tian, Y.; Zhang, X.; Fang, J.; Hu, N.; Wang, P. A competitive love wave immunosensor for detection of okadaic acid based on immunogold staining method. Sens. Actuators B Chem., 2017, 238, 1173-1180.
[http://dx.doi.org/10.1016/j.snb.2016.05.030]
[99]
Makhneva, E.; Farka, Z.; Skládal, P.; Zajíčková, L. Cyclopropylamine plasma polymer surfaces for label-free spr and qcm immunosensing of salmonella. Sens. Actuators B Chem., 2017, 2018(276), 447-455.
[http://dx.doi.org/10.1016/j.snb.2018.08.055]
[100]
Wieland, F.; Bruch, R.; Bergmann, M.; Partel, S.; Urban, G.A.; Dincer, C. Enhanced protein immobilization on polymers-a plasma surface activation study. Polymers (Basel),, 2020, 12(1), 1-12.
[http://dx.doi.org/10.3390/polym12010104] [PMID: 31947987]
[101]
Li, S.; Wan, Y.; Su, Y.; Fan, C.; Bhethanabotla, V.R. Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens. Biosens. Bioelectron., 2017, 95(March), 48-54.
[http://dx.doi.org/10.1016/j.bios.2017.04.012] [PMID: 28412660]
[102]
Funari, R.; Della Ventura, B.; Schiavo, L.; Esposito, R.; Altucci, C.; Velotta, R. Detection of parathion pesticide by quartz crystal microbalance functionalized with UV-activated antibodies. Anal. Chem., 2013, 85(13), 6392-6397.
[http://dx.doi.org/10.1021/ac400852c] [PMID: 23721081]
[103]
Della Ventura, B.; Schiavo, L.; Altucci, C.; Esposito, R.; Velotta, R. Light assisted antibody immobilization for bio-sensing. Biomed. Opt. Express, 2011, 2(11), 3223-3231.
[http://dx.doi.org/10.1364/BOE.2.003223] [PMID: 22076280]
[104]
Funari, R.; Della Ventura, B.; Carrieri, R.; Morra, L.; Lahoz, E.; Gesuele, F.; Altucci, C.; Velotta, R. Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosens. Bioelectron., 2015, 67, 224-229.
[http://dx.doi.org/10.1016/j.bios.2014.08.020] [PMID: 25190088]
[105]
Della Ventura, B.; Sakač, N.; Funari, R.; Velotta, R. Flexible immunosensor for the detection of salivary α-amylase in body fluids. Talanta, 2017, 174(March), 52-58.
[http://dx.doi.org/10.1016/j.talanta.2017.05.075] [PMID: 28738617]
[106]
Okazaki, S. Microelectronic engineering high resolution optical lithography or high throughput electron beam lithography : the technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng., 2015, 133, 23-35.
[http://dx.doi.org/10.1016/j.mee.2014.11.015]
[107]
Erdmann, A.; Fühner, T.; Evanschitzky, P.; Agudelo, V.; Freund, C.; Michalak, P.; Xu, D. Microelectronic engineering optical and EUV projection lithography : A computational view. Microelectron. Eng., 2015, 132, 21-34.
[http://dx.doi.org/10.1016/j.mee.2014.09.011]
[108]
Lai, F.; Huang, H. M. Fabrication of high frequency and low-cost surface-acoustic wave filters using near field phase shift photolithography., 2006, 83, 1407-1409.
[http://dx.doi.org/10.1016/j.mee.2006.01.106]
[109]
Yih, C.; Achath, A.; Saha, T.; Nagasundara, R.; Parthiban, R.; Ramakrishnan, N. Microelectronic engineering microfabrication of surface acoustic wave device using UV LED photolithography technique. Microelectron. Eng., 2014, 122, 9-12.
[http://dx.doi.org/10.1016/j.mee.2014.03.011]
[110]
Zhang, X.; Zou, Y.; An, C.; Ying, K.; Chen, X.; Wang, P. Sensitive detection of carcinoembryonic antigen in exhaled breath condensate using surface acoustic wave immunosensor. Sens. Actuators B Chem., 2015, 217, 100-106.
[http://dx.doi.org/10.1016/j.snb.2014.10.139]
[111]
Liu, J.; Chen, D.; Wang, P.; Song, G.; Zhang, X.; Li, Z.; Wang, Y.; Wang, J.; Yang, J. A microfabricated thickness shear mode electroacoustic resonator for the label-free detection of cardiac troponin in serum. Talanta, 2020, 215(March)120890
[http://dx.doi.org/10.1016/j.talanta.2020.120890] [PMID: 32312434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy