Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Eco-Friendly Synthesis of Peptides Using Fmoc-Amino Acid Chlorides as Coupling Agent Under Biphasic Condition

Author(s): Santosh Y. Khatavi and Kamanna Kantharaju*

Volume 28, Issue 6, 2021

Published on: 19 November, 2020

Page: [699 - 707] Pages: 9

DOI: 10.2174/0929866527666201119161116

Price: $65

Abstract

Background: Agro-waste derived solvent media act as a greener process for the peptide bond formation using Nα-Fmoc-amino acid chloride and amino acid ester salt with in situ neutralization and coupling under biphasic condition. The Fmoc-amino acid chlorides are prepared by the reported procedure of freshly distilled SOCl2 with dry CH2Cl2. The protocol found many added advantages such as neutralization of amino acid ester salt and not required additional base for the neutralization, and directly coupling take place with Fmoc-amino acid chloride gave final product dipeptide ester in good to excellent yields. The protocol occurs with complete stereo chemical integrity of the configuration of substrates. Here, we revisited Schotten-Baumann condition, instead of using inorganic base.

Objective: To develop green protocol for the synthesis of peptide bond using Fmoc-amino acid chloride with amino acid esters salt.

Methods: The final product isolated is analyzed in several spectroscopic and analytical techniques such as FT-IR, 1H-, 13C-NMR, Mass spectrometry and RP-HPLC to check stereo integrity and purity of the product.

Conclusion: The present method developed greener using natural agro-waste (lemon fruit shell ash) derived solvent medium for the reaction and not required chemical entity.

Keywords: Agro-waste, peptide, green chemistry, racemization free, Fmoc-amino acid chloride, neutralization.

Graphical Abstract

[1]
An official website of the United States government. The clean air act – highlights of the 1990 amendments Sections, 1990, 13101-13109. Available from: https://www.epa.gov/ clean-air-act- overview/ clean-air-act-highlights
[2]
Sheldon, R.A. The e factor 25 years on: the rise of green chemistry and sustainability. Green Chem., 2017, 19, 18-43.
[http://dx.doi.org/10.1039/C6GC02157C]
[3]
Leitner, W. Green solvents for processes. Green Chem., 2007, 9, 923-923.
[http://dx.doi.org/10.1039/b712156n]
[4]
Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
[5]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
[6]
Zimmerman, J.B.; Anastas, P.T. When Is a Waste not a Waste? In: Sustainability science and engineering: Defining Principles; Abraham, M.A., Ed.; Elsevier Science, 2006; pp. 201-221.
[7]
Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH Weinheim: Germany, 2010.
[8]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.J.L.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; Zaks, A.; Zhang, T.Y. Key green chemistry research areas a perspective from pharmaceutical manufacturers. Green Chem., 2007, 9, 411-420.
[http://dx.doi.org/10.1039/B703488C]
[9]
Bryan, M.C.; Dunn, P.J.; Entwistle, D.; Gallou, F.; Koenig, S.G.; Hayler, J.D.; Hickey, M.R.; Hughes, S.; Kopach, M.E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F.J. Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem., 2018, 20, 5082-5103.
[http://dx.doi.org/10.1039/C8GC01276H]
[10]
Tulla-Puche, J.; El-Faham, A.; Galanis, A.S.; de Oliveira, E.; Zompra, A.A.; Albericio, F. Methods for the peptide synthesis and analysis. John Wiley & Sons, Inc, 2015; pp. 11-73.
[http://dx.doi.org/10.1002/9781118995303.ch2]
[11]
Zompra, A.A.; Galanis, A.S.; Werbitzky, O.; Albericio, F. Manufacturing peptides as active pharmaceutical ingredients. Future Med. Chem., 2009, 1(2), 361-377.
[http://dx.doi.org/10.4155/fmc.09.23] [PMID: 21425973]
[12]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: green solvent selection guides Sustainable Chem. Processes, 2016, 4, 7-1.
[13]
a) Chandrudu, S.; Simerska, P.; Toth, I. Chemical methods for peptide and protein production. Molecules, 2013, 18(4), 4373-4388.
[http://dx.doi.org/10.3390/molecules18044373] [PMID: 23584057]
b) Kent, S.; Sohma, Y.; Liu, S.; Bang, D.; Pentelute, B.; Mandal, K. Through the looking glass--a new world of proteins enabled by chemical synthesis. J. Pept. Sci., 2012, 18(7), 428-436.
[http://dx.doi.org/10.1002/psc.2421] [PMID: 22674813]
c) Girish, P.; Basavaprabhu, N.N.; Vishwanatha, T.M.; Vommina, V.S. Amino acid chlorides: a journey from instability and racemization toward broader utility in organic synthesis including peptides and their mimetics. Tetrahedron, 2015, 71, 2785-2832.
[http://dx.doi.org/10.1016/j.tet.2015.03.026]
[14]
a) Postma, T.M.; Albericio, F. Cysteine pseudoprolines for thiol protection and peptide macrocyclization enhancement in Fmoc-based solid-phase peptide synthesis. Org. Lett., 2014, 16(6), 1772-1775.
[http://dx.doi.org/10.1021/ol5004725] [PMID: 24617568]
b) Miura, T.; Hori-i, A.; Takeuchi, H. Metal-dependent α-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett., 1996, 396(2-3), 248-252.
[http://dx.doi.org/10.1016/0014-5793(96)01104-0] [PMID: 8914996]
[15]
a) Madeleine, M.J.; Kenneth, M.L. Evolution of amide bond formation. ARKIVOC, 2010, 8, 189-250.
[http://dx.doi.org/10.1002/psc.2585] [PMID: 24357151]
b) Hibino, H.; Miki, Y.; Nishiuchi, Y. Evaluation of acid-labile S-protecting groups to prevent Cys racemization in Fmoc solid-phase peptide synthesis. J. Pept. Sci., 2014, 20(1), 30-35.
c) Armida, D.F.; Mariella, T.; Claudia, G.; Paolo, R. Racemization studies of Fmoc-Ser(t-Bu)-OH during stepwise continuous-flow solid phase peptide synthesis. Tet. Let., 1998, 39(46), 8529-8532.
d) Riester, D.; Wiesmüller, K.H.; Stoll, D.; Kuhn, R. Racemization of amino acids in solid-phase peptide synthesis investigated by capillary electrophoresis. Anal. Chem., 1996, 68(14), 2361-2365.
[http://dx.doi.org/10.1021/ac9511511] [PMID: 8686928]
[16]
a) Furka, A.; Sebestyén, F.; Asgedom, M.; Dibó, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res., 1991, 37(6), 487-493.
[http://dx.doi.org/10.1111/j.1399-3011.1991.tb00765.x] [PMID: 1917305]
b) Bacsa, B.; Desai, B.; Dibó, G.; Kappe, C.O. Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J. Pept. Sci., 2006, 12(10), 633-638.
[http://dx.doi.org/10.1002/psc.771] [PMID: 16789045]
c) Louis, A.C.; Shahnaz, G.; Dumitru, I.; Mohamed, I.; Dean, S-A.; George, A.T.; Mansour, E.M.E.; Gary, A.S.; John, S.E.; Barry, M. Rapid, continuous solution-phase peptide synthesis: application to peptides of pharmaceutical interest. Org. Process Res. Dev., 2003, 7, 28-37.
[http://dx.doi.org/10.1021/op0202179]
[17]
a) Vommina, V.S.; Naremaddepalli, S.S.; Chenna-Krishna, G. HOBt·DCHA-mediated synthesis of sterically hindered peptides employing fmoc-amino acid chlorides in both solution-phase and solid phase methods. Int. J. for Rapid Commun. Synth. Org. Chem., 2008, 38(15), 2625-2637.
b) Gregg, B.F. Introduction to peptide synthesis. Curr. Protoc. Protein Sci., 2001, 18(1), 1-8.
c) Katritzky, A.R.; Todadze, E.; Angrish, P.; Draghici, B. Efficient peptide coupling involving sterically hindered amino acids. J. Org. Chem., 2007, 72(15), 5794-5801.
[http://dx.doi.org/10.1021/jo0704255] [PMID: 17580899]
[18]
Akia, O.; Yasunari, Y.; Toshiro, H. (Fluoren-9-ylmethoxy) carbonyl (Fmoc) amino acid chlorides. Synthesis, characterization, and application to the rapid synthesis of short peptide segments. J. Org. Chem., 1986, 51, 3732-3734.
[http://dx.doi.org/10.1021/jo00369a042]
[19]
a) Jean-Noel, B.; Albert, L.; Catherine, P.; Florence, R.; Gerard, S. Amino-acid fluorides; their preparation and use in peptide synthesis. Tet.Let., 1991, 32(10), 1303-1306.
b) Holger, W.; Michael, B.; Eberhard, K.; Michael, B.; Riidiger, W.; Michael, S.; Louis, A.C.; Michael, B. Fmoc amino acid fluorides: convenient reagents for the solid-phase assembly of peptides incorporating sterically hindered residues. J. Org. Chem., 1994, 59, 3275-3280.
[http://dx.doi.org/10.1021/jo00091a011]
[20]
Carpino, L.A.; El-Faham, A.; Albericio, F. Racemization studies during solid-phase synthesis using azabenzotriazole based coupling reagent. Tet. Let., 1994, 35(15), 2279-2282.
[21]
Brunel, J.M. Efficient method for the synthesis of an important precursor of constrained peptides. Protein Pept. Lett., 2005, 12(3), 281-282.
[http://dx.doi.org/10.2174/0929866053587093] [PMID: 15777279]
[22]
a) Ruediger, P.; Klaus, B.; Manfred, W.; Waldemar, W.; Hans-Hermann, S.; Mario, K.; Wolfhard, S.; Dorde, K.A. Peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics–the SPPS. Int. J. Med. Sci., 2014, 11, 698-706.
b) Yun, W.; Jie-Cheng, X. Synthesis of chiral peptide nucleic acid using Fmoc-chemistry. Tetrahedron, 2001, 57, 8107-8113.
[http://dx.doi.org/10.1016/S0040-4020(01)00789-X]
[23]
a) Mäde, V.; Els-Heindl, S.; Beck-Sickinger, A.G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem., 2014, 10, 1197-1212.
[PMID: 24991269]
b) Paradís-Bas, M.; Tulla-Puche, J.; Albericio, F. The road to the synthesis of “difficult peptides”. Chem. Soc. Rev., 2016, 45(3), 631-654.
[PMID: 26612670]
c) Louis, A.C.; Michael, B.; Holger, W.; Michael, B. Peptide synthesis via amino acid halides. Acc. Chem. Res., 1996, 29, 268-274.
[http://dx.doi.org/10.1021/ar950023w]
[24]
Staker, B.L.; Buchko, G.W.; Myler, P.J. Recent contributions of structure-based drug design to the development of antibacterial compounds. Curr. Opin. Microbiol., 2015, 27, 133-138.
[http://dx.doi.org/10.1016/j.mib.2015.09.003] [PMID: 26458180]
[25]
a) Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. (Camb.), 2016, 7(4), 2492-2500.
[http://dx.doi.org/10.1039/C5SC04392A] [PMID: 28660018]
b) Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. (Camb.), 2016, 7(2), 842-854.
[http://dx.doi.org/10.1039/C5SC03892H] [PMID: 28791117]
c) Wawrzyn, G.T.; Quin, M.B.; Choudhary, S.; López-Gallego, F.; Schmidt-Dannert, C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem. Biol., 2012, 19(6), 772-783.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.012] [PMID: 22726691]
[26]
Yvonne, M.A.; Carlos, G-E.; Daniel, H.R. Comparative studies of the coupling of n-methylated, sterically hindered amino acids during solid-phase peptide synthesis. Tet. Lett., 1994, 35(33), 5981-5984.
[http://dx.doi.org/10.1016/0040-4039(94)88054-9]
[27]
a) Sivanandaiah, K.M.; Babu, V.V.; Shankaramma, S.C. Synthesis of peptides mediated by KOBt. Int. J. Pept. Protein Res., 1994, 44(1), 24-30.
b) Tantry, S.; Rao, R.V.R.; Babu, V.V.S. Rapid and efficient synthesis of the pentapeptide of elastin protein and peptides containing highly hindered α,α-dialkyl amino acids employing Fmoc-amino acid chlorides under microwave irradiation in the solution phase. ARKIVOC, 2006, 1, 21-30.
[http://dx.doi.org/10.1111/j.1399-3011.1994.tb00400.x] [PMID: 7960401]
[28]
Kapoor, A.; Gerencser, L.W.; Koutnik, W.R. Peptides synthesis: coupling of pentachlorophenyl-active ester hydrochlorides of di and tripeptides with n-carbobenzoxy amino acids through mixed anhydride method. Pharm. Sci., 1969, 58, 281-282.
[http://dx.doi.org/10.1002/jps.2600580242]
[29]
a) Tarfah, I.Al-W.; Hassan, M.A.; Al-Hazimi, A. El-F. Recent development in peptide coupling reagents. J. Saudi Chem. Soc., 2012, 16, 97-116.
[http://dx.doi.org/10.1016/j.jscs.2010.12.006]
b) Falb, E.; Yechezkel, T.; Salitra, Y.; Gilon, C. In situ generation of Fmoc-amino acid chlorides using bis-(trichloromethyl) carbonate and its utilization for difficult couplings in solid-phase peptide synthesis. J. Pept. Res., 1999, 53(5), 507-517.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00049.x] [PMID: 10424345]
[30]
Goodman, M.; McGahren, W.J. Mechanistic studies of peptide oxazolone racemization. Tetrahedron, 1967, 23(5), 2031-2050.
[http://dx.doi.org/10.1016/0040-4020(67)80037-1] [PMID: 6044194]
[31]
a) Hosahudya, N.G.; Suresh Babu, V.V. Synthesis of peptides employing Fmoc-amino acid chlorides and commercial zinc dust. Tetrahedron Lett., 1998, 39, 9769-9772.
[http://dx.doi.org/10.1016/S0040-4039(98)02169-8]
b) Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 20, 140-177.
[http://dx.doi.org/10.1021/op500305s]
[32]
a) Isidro-Llobet, A.; Alvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev., 2009, 109(6), 2455-2504.
[http://dx.doi.org/10.1021/cr800323s] [PMID: 19364121]
b) Prabhu, G.; Narendra, N.; Basavaprabhu, ; Pandurangaa, V.; Sureshbabua, V.V Amino acid fluorides: viable tools for synthesis of peptides, peptidomimetics and enantiopure heterocycles. RSC Advances, 2015, 5, 48331-48362.
[http://dx.doi.org/10.1039/C4RA16142D]
[33]
Orain, D.; Ellard, J.; Bradley, M. Protecting groups in solid-phase organic synthesis. J. Comb. Chem., 2002, 4(1), 1-16.
[http://dx.doi.org/10.1021/cc0001093] [PMID: 11790135]
[34]
Fields, G.B. Introduction to peptide synthesis. Curr. Protoc. Protein Sci., 2002, 47(1), 9.1.1-9.1.9.
[http://dx.doi.org/10.1002/0471142735.im0901s47]
[35]
Jang, D.O.; Park, D.J.; Kim, J. A mild and efficient procedure for the preparation of acid chlorides from carboxylic acids. Tet. Lett., 1999, 40, 5323-5326.
[http://dx.doi.org/10.1016/S0040-4039(99)00967-3]
[36]
Leggio, A.; Belsito, E.L.; Luca, G.D.; Gioia, M.L.D.; Leotta, V.; Romio, E.; Sicilianoa, C.; Liguori, A. One-pot synthesis of amides from carboxylic acids activated using thionyl chloride. RSC Advances, 2016, 6, 34468.
[http://dx.doi.org/10.1039/C5RA24527C]
[37]
Jarowicki, K.; Kocienski, P. Protecting groups. J. Chem. Soc., Perkin Trans., 2001, 1, 2109-2135.
[http://dx.doi.org/10.1039/b103282h]
[38]
Jia, M.; Jiang, L.; Niu, F.; Zhang, Y.; Sun, X. A novel and highly efficient esterification process using triphenylphosphine oxide with oxalyl chloride. R. Soc. Open Sci., 2018, 5(2), 171988.
[http://dx.doi.org/10.1098/rsos.171988] [PMID: 29515897]
[39]
a) Mitachi, K.; Kurosu, Y.E.; Hazlett, B.T.; Kurosu, M. Oxyma-based phosphates for racemization-free peptide segment couplings. J. Pept. Sci., 2016, 22(3), 186-191.
[http://dx.doi.org/10.1002/psc.2859] [PMID: 26856693]
b) Fenza, D.A.; Tancredi, M.; Galoppini, C.; Rovero, P. Racemization studies of Fmoc-Ser(t-Bu)-OH during stepwise continuous-flow solid-phase peptide synthesis. Tet. Lett., 1998, 39, 8529-8532.
[http://dx.doi.org/10.1016/S0040-4039(98)01891-7]
[40]
a) Bacsa, B.; Horváti, K.; Bõsze, S.; Andreae, F.; Kappe, C.O. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies. J. Org. Chem., 2008, 73(19), 7532-7542.
[http://dx.doi.org/10.1021/jo8013897] [PMID: 18729524]
b) Han, S-Y.; Kim, Y-A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60, 2447-2467.
[http://dx.doi.org/10.1016/j.tet.2004.01.020]
[41]
Sureshbabu, V.V.; Sudarshan, N.S.; Chenna Krishna, G. HOBt.DCHA-Mediated synthesis of sterically hindered peptides employing fmoc-amino acid chlorides in both solution-phase and solid phase methods. Synth. Commun., 2008, 38, 2625-2637.
[http://dx.doi.org/10.1080/00397910802219536]
[42]
a) Arribat, M.; Cavelier, F.; Remond, E. Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–S or P–N bond: from synthesis to applications. RSC Advances, 2020, 10, 6678.
[http://dx.doi.org/10.1039/C9RA10917J]
b) Kriechbaum, M.; List, M.; Himmelsbach, M.; Redhammer, G.J.; Monkowius, U. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)- phosphane. Inorg. Chem., 2014, 53(19), 10602-10610.
[http://dx.doi.org/10.1021/ic5017142] [PMID: 25203269]
[43]
a) Roy, S.; Dutta, M.M.; Sarma, M.J.; Phukan, P. Accelerating effect of DMAP on CuI catalyzed buchwald hartwig c-n coupling: mechanistic insight to the reaction pathway. Chem. Select, 2019, 4, 13094-13098.
[http://dx.doi.org/10.1002/slct.201903896]
b) Wang, S.S.; Tam, J.P.; Wang, B.S.H.; Merrifield, R.B. Enhancement of peptide coupling reactions by 4-dimethylaminopyridine. Int. J. Pept. Protein Res., 1981, 18(5), 459-467.
[http://dx.doi.org/10.1111/j.1399-3011.1981.tb03007.x] [PMID: 7341528]
[44]
Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 38(2), 606-631.
[http://dx.doi.org/10.1039/B701677H] [PMID: 19169468]
[45]
Adams, J.H.; Cook, R.M.; Hudson, D.; Jammalamadaka, V.; Lyttle, M.H.; Songster, M.F. A reinvestigation of the preparation, properties, and applications of aminomethyl and 4-methylbenzhydrylamine polystyrene resins. J. Org. Chem., 1998, 63, 3706-3716.
[http://dx.doi.org/10.1021/jo9802269]
[46]
Albericio, F.; El-Faham, A. Choosing the right coupling reagent for peptides: a twenty-five-year journey. Org. Process Res. Dev., 2018, 22, 760-772.
[http://dx.doi.org/10.1021/acs.oprd.8b00159]
[47]
Sureshbhabu, V.V.; Anand, K. Synthesis of peptide employing Fmoc-/Boc-/Z-aminoacid fluorides and activated commercial zinc dust. Lett. Pept. Sci., 2000, 7, 41-46.
[http://dx.doi.org/10.1023/A:1008982020303]
[48]
Tantry, S.J.; Mathad, R.I.; Sureshbabu, V.V. Synthesis of β-casomorphin employing Fmoc-aminoacid chlorides and tirbutyldimethylsilyoxy benzotriazole (TBDMS-OBt). Indian J. Chem., 2003, 42B, 2104-2108.
[49]
Kantharaju, K.; Patil, B.S.; Sureshbabu, V.V. Synthesis of Fmoc-amino acid chlorides assisted by ultra-sonication, a rapid approach. Lett. Pept. Sci., 2002, 9, 227-229.
[http://dx.doi.org/10.1007/BF02538388]
[50]
Steve, M. Preparation of methyl ester derivatives of amino acids bearing hydrolysable N-Protection. Synth. Commun., 2002, 32, 1275-1278.
[51]
Carping, L.A.; Han, G.Y. 9-Fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem., 1972, 37, 1972.
[52]
Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci., 2016, 22(1), 4-27.
[http://dx.doi.org/10.1002/psc.2836] [PMID: 26785684]
[53]
Luna, O.F.; Gomez, J.; Cárdenas, C.; Albericio, F.; Marshall, S.H.; Guzmán, F. Deprotection reagents in Fmoc solid phase peptide synthesis: moving away from piperidine? Molecules, 2016, 21(11), 1542.
[http://dx.doi.org/10.3390/molecules21111542] [PMID: 27854291]
[54]
Antonovics, I.; Young, G.T. The mechanism of racemization during the coupling of acylpeptides. Chem. Commun., 1965, 17, 398-399.
[http://dx.doi.org/10.1039/c19650000398]
[55]
Due-Hansen, M.E.; Pandey, S.K.; Christiansen, E.; Andersen, R.; Hansen, S.V.F.; Ulven, T. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates. Org. Biomol. Chem., 2016, 14(2), 430-433.
[http://dx.doi.org/10.1039/C5OB02129D] [PMID: 26586516]
[56]
Sudarshan, N.S.; Narendra, N.; Hemantha, H.P.; Sureshbabu, V.V. An efficient conversion of the carboxylic group of N-Fmoc alpha-amino acids/peptide acids into N-formamides employing isocyanates as key intermediates. J. Org. Chem., 2007, 72(25), 9804-9807.
[http://dx.doi.org/10.1021/jo701371k] [PMID: 17999520]
[57]
Mourtas, S.; Katakalou, C.; Gatos, D.; Barlos, K. Convergent synthesis of thioether containing. Molecules, 2020, 25(1), 218.
[http://dx.doi.org/10.3390/molecules25010218] [PMID: 31948062]
[58]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[59]
Borissow, C.N.; Graham, C.L.; Syvitski, R.T.; Reid, T.R.; Blay, J.; Jakeman, D.L. Stereochemical integrity of oxazolone ring-containing jadomycins. ChemBioChem, 2007, 8(10), 1198-1203.
[http://dx.doi.org/10.1002/cbic.200700204] [PMID: 17570722]
[60]
Ben-Ishai, D.; Babad, E.; Bernstein, Z. Acylation of nitrogen heterocycles under the conditions of the schotten-baumann reaction I: Benzimidazoles. Isr. J. Chem., 1968, 6, 551-567.
[http://dx.doi.org/10.1002/ijch.196800074]
[61]
Kantharaju, K.; Khatavi, S.Y. Microwave accelerated synthesis of 2-Amino-4H-chromenes catalyzed by WELFSA: A green protocol. Chem. Select., 2018, 3, 5016-5024.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy