Abstract
Background: Agro-waste derived solvent media act as a greener process for the peptide bond formation using Nα-Fmoc-amino acid chloride and amino acid ester salt with in situ neutralization and coupling under biphasic condition. The Fmoc-amino acid chlorides are prepared by the reported procedure of freshly distilled SOCl2 with dry CH2Cl2. The protocol found many added advantages such as neutralization of amino acid ester salt and not required additional base for the neutralization, and directly coupling take place with Fmoc-amino acid chloride gave final product dipeptide ester in good to excellent yields. The protocol occurs with complete stereo chemical integrity of the configuration of substrates. Here, we revisited Schotten-Baumann condition, instead of using inorganic base.
Objective: To develop green protocol for the synthesis of peptide bond using Fmoc-amino acid chloride with amino acid esters salt.
Methods: The final product isolated is analyzed in several spectroscopic and analytical techniques such as FT-IR, 1H-, 13C-NMR, Mass spectrometry and RP-HPLC to check stereo integrity and purity of the product.
Conclusion: The present method developed greener using natural agro-waste (lemon fruit shell ash) derived solvent medium for the reaction and not required chemical entity.
Keywords: Agro-waste, peptide, green chemistry, racemization free, Fmoc-amino acid chloride, neutralization.
Graphical Abstract
[http://dx.doi.org/10.1039/C6GC02157C]
[http://dx.doi.org/10.1039/b712156n]
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
[http://dx.doi.org/10.1039/B703488C]
[http://dx.doi.org/10.1039/C8GC01276H]
[http://dx.doi.org/10.1002/9781118995303.ch2]
[http://dx.doi.org/10.4155/fmc.09.23] [PMID: 21425973]
[http://dx.doi.org/10.3390/molecules18044373] [PMID: 23584057]
b) Kent, S.; Sohma, Y.; Liu, S.; Bang, D.; Pentelute, B.; Mandal, K. Through the looking glass--a new world of proteins enabled by chemical synthesis. J. Pept. Sci., 2012, 18(7), 428-436.
[http://dx.doi.org/10.1002/psc.2421] [PMID: 22674813]
c) Girish, P.; Basavaprabhu, N.N.; Vishwanatha, T.M.; Vommina, V.S. Amino acid chlorides: a journey from instability and racemization toward broader utility in organic synthesis including peptides and their mimetics. Tetrahedron, 2015, 71, 2785-2832.
[http://dx.doi.org/10.1016/j.tet.2015.03.026]
[http://dx.doi.org/10.1021/ol5004725] [PMID: 24617568]
b) Miura, T.; Hori-i, A.; Takeuchi, H. Metal-dependent α-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett., 1996, 396(2-3), 248-252.
[http://dx.doi.org/10.1016/0014-5793(96)01104-0] [PMID: 8914996]
[http://dx.doi.org/10.1002/psc.2585] [PMID: 24357151]
b) Hibino, H.; Miki, Y.; Nishiuchi, Y. Evaluation of acid-labile S-protecting groups to prevent Cys racemization in Fmoc solid-phase peptide synthesis. J. Pept. Sci., 2014, 20(1), 30-35.
c) Armida, D.F.; Mariella, T.; Claudia, G.; Paolo, R. Racemization studies of Fmoc-Ser(t-Bu)-OH during stepwise continuous-flow solid phase peptide synthesis. Tet. Let., 1998, 39(46), 8529-8532.
d) Riester, D.; Wiesmüller, K.H.; Stoll, D.; Kuhn, R. Racemization of amino acids in solid-phase peptide synthesis investigated by capillary electrophoresis. Anal. Chem., 1996, 68(14), 2361-2365.
[http://dx.doi.org/10.1021/ac9511511] [PMID: 8686928]
[http://dx.doi.org/10.1111/j.1399-3011.1991.tb00765.x] [PMID: 1917305]
b) Bacsa, B.; Desai, B.; Dibó, G.; Kappe, C.O. Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J. Pept. Sci., 2006, 12(10), 633-638.
[http://dx.doi.org/10.1002/psc.771] [PMID: 16789045]
c) Louis, A.C.; Shahnaz, G.; Dumitru, I.; Mohamed, I.; Dean, S-A.; George, A.T.; Mansour, E.M.E.; Gary, A.S.; John, S.E.; Barry, M. Rapid, continuous solution-phase peptide synthesis: application to peptides of pharmaceutical interest. Org. Process Res. Dev., 2003, 7, 28-37.
[http://dx.doi.org/10.1021/op0202179]
b) Gregg, B.F. Introduction to peptide synthesis. Curr. Protoc. Protein Sci., 2001, 18(1), 1-8.
c) Katritzky, A.R.; Todadze, E.; Angrish, P.; Draghici, B. Efficient peptide coupling involving sterically hindered amino acids. J. Org. Chem., 2007, 72(15), 5794-5801.
[http://dx.doi.org/10.1021/jo0704255] [PMID: 17580899]
[http://dx.doi.org/10.1021/jo00369a042]
b) Holger, W.; Michael, B.; Eberhard, K.; Michael, B.; Riidiger, W.; Michael, S.; Louis, A.C.; Michael, B. Fmoc amino acid fluorides: convenient reagents for the solid-phase assembly of peptides incorporating sterically hindered residues. J. Org. Chem., 1994, 59, 3275-3280.
[http://dx.doi.org/10.1021/jo00091a011]
[http://dx.doi.org/10.2174/0929866053587093] [PMID: 15777279]
b) Yun, W.; Jie-Cheng, X. Synthesis of chiral peptide nucleic acid using Fmoc-chemistry. Tetrahedron, 2001, 57, 8107-8113.
[http://dx.doi.org/10.1016/S0040-4020(01)00789-X]
[PMID: 24991269]
b) Paradís-Bas, M.; Tulla-Puche, J.; Albericio, F. The road to the synthesis of “difficult peptides”. Chem. Soc. Rev., 2016, 45(3), 631-654.
[PMID: 26612670]
c) Louis, A.C.; Michael, B.; Holger, W.; Michael, B. Peptide synthesis via amino acid halides. Acc. Chem. Res., 1996, 29, 268-274.
[http://dx.doi.org/10.1021/ar950023w]
[http://dx.doi.org/10.1016/j.mib.2015.09.003] [PMID: 26458180]
[http://dx.doi.org/10.1039/C5SC04392A] [PMID: 28660018]
b) Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. (Camb.), 2016, 7(2), 842-854.
[http://dx.doi.org/10.1039/C5SC03892H] [PMID: 28791117]
c) Wawrzyn, G.T.; Quin, M.B.; Choudhary, S.; López-Gallego, F.; Schmidt-Dannert, C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem. Biol., 2012, 19(6), 772-783.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.012] [PMID: 22726691]
[http://dx.doi.org/10.1016/0040-4039(94)88054-9]
b) Tantry, S.; Rao, R.V.R.; Babu, V.V.S. Rapid and efficient synthesis of the pentapeptide of elastin protein and peptides containing highly hindered α,α-dialkyl amino acids employing Fmoc-amino acid chlorides under microwave irradiation in the solution phase. ARKIVOC, 2006, 1, 21-30.
[http://dx.doi.org/10.1111/j.1399-3011.1994.tb00400.x] [PMID: 7960401]
[http://dx.doi.org/10.1002/jps.2600580242]
[http://dx.doi.org/10.1016/j.jscs.2010.12.006]
b) Falb, E.; Yechezkel, T.; Salitra, Y.; Gilon, C. In situ generation of Fmoc-amino acid chlorides using bis-(trichloromethyl) carbonate and its utilization for difficult couplings in solid-phase peptide synthesis. J. Pept. Res., 1999, 53(5), 507-517.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00049.x] [PMID: 10424345]
[http://dx.doi.org/10.1016/0040-4020(67)80037-1] [PMID: 6044194]
[http://dx.doi.org/10.1016/S0040-4039(98)02169-8]
b) Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 20, 140-177.
[http://dx.doi.org/10.1021/op500305s]
[http://dx.doi.org/10.1021/cr800323s] [PMID: 19364121]
b) Prabhu, G.; Narendra, N.; Basavaprabhu, ; Pandurangaa, V.; Sureshbabua, V.V Amino acid fluorides: viable tools for synthesis of peptides, peptidomimetics and enantiopure heterocycles. RSC Advances, 2015, 5, 48331-48362.
[http://dx.doi.org/10.1039/C4RA16142D]
[http://dx.doi.org/10.1021/cc0001093] [PMID: 11790135]
[http://dx.doi.org/10.1002/0471142735.im0901s47]
[http://dx.doi.org/10.1016/S0040-4039(99)00967-3]
[http://dx.doi.org/10.1039/C5RA24527C]
[http://dx.doi.org/10.1039/b103282h]
[http://dx.doi.org/10.1098/rsos.171988] [PMID: 29515897]
[http://dx.doi.org/10.1002/psc.2859] [PMID: 26856693]
b) Fenza, D.A.; Tancredi, M.; Galoppini, C.; Rovero, P. Racemization studies of Fmoc-Ser(t-Bu)-OH during stepwise continuous-flow solid-phase peptide synthesis. Tet. Lett., 1998, 39, 8529-8532.
[http://dx.doi.org/10.1016/S0040-4039(98)01891-7]
[http://dx.doi.org/10.1021/jo8013897] [PMID: 18729524]
b) Han, S-Y.; Kim, Y-A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60, 2447-2467.
[http://dx.doi.org/10.1016/j.tet.2004.01.020]
[http://dx.doi.org/10.1080/00397910802219536]
[http://dx.doi.org/10.1039/C9RA10917J]
b) Kriechbaum, M.; List, M.; Himmelsbach, M.; Redhammer, G.J.; Monkowius, U. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)- phosphane. Inorg. Chem., 2014, 53(19), 10602-10610.
[http://dx.doi.org/10.1021/ic5017142] [PMID: 25203269]
[http://dx.doi.org/10.1002/slct.201903896]
b) Wang, S.S.; Tam, J.P.; Wang, B.S.H.; Merrifield, R.B. Enhancement of peptide coupling reactions by 4-dimethylaminopyridine. Int. J. Pept. Protein Res., 1981, 18(5), 459-467.
[http://dx.doi.org/10.1111/j.1399-3011.1981.tb03007.x] [PMID: 7341528]
[http://dx.doi.org/10.1039/B701677H] [PMID: 19169468]
[http://dx.doi.org/10.1021/jo9802269]
[http://dx.doi.org/10.1021/acs.oprd.8b00159]
[http://dx.doi.org/10.1023/A:1008982020303]
[http://dx.doi.org/10.1007/BF02538388]
[http://dx.doi.org/10.1002/psc.2836] [PMID: 26785684]
[http://dx.doi.org/10.3390/molecules21111542] [PMID: 27854291]
[http://dx.doi.org/10.1039/c19650000398]
[http://dx.doi.org/10.1039/C5OB02129D] [PMID: 26586516]
[http://dx.doi.org/10.1021/jo701371k] [PMID: 17999520]
[http://dx.doi.org/10.3390/molecules25010218] [PMID: 31948062]
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[http://dx.doi.org/10.1002/cbic.200700204] [PMID: 17570722]
[http://dx.doi.org/10.1002/ijch.196800074]