Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Using Serum Biomarkers for Identifying Unstable Carotid Plaque: Update of Current Evidence

Author(s): Areti Sofogianni*, Konstantinos Tziomalos, Triantafyllia Koletsa, Apostolos G. Pitoulias, Lemonia Skoura and Georgios A. Pitoulias

Volume 27, Issue 16, 2021

Published on: 12 November, 2020

Page: [1899 - 1903] Pages: 5

DOI: 10.2174/1381612826666201112094734

Price: $65

Abstract

Carotid atherosclerosis is responsible for a great proportion of ischemic strokes. Early identification of unstable or vulnerable carotid plaques, and therefore, of patients at high risk for stroke, is of significant medical and socioeconomical value. We reviewed the current literature and discussed the potential role of the most important serum biomarkers in identifying patients with carotid atherosclerosis who are at high risk for atheroembolic stroke.

Keywords: Carotid, atherosclerosis, plaque, stroke, biomarkers, inflammation.

[1]
Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45(12): 3754-832.
[http://dx.doi.org/10.1161/STR.0000000000000046] [PMID: 25355838]
[2]
Schillinger M, Exner M, Mlekusch W, et al. Inflammation and Carotid Artery-Risk for Atherosclerosis Study (ICARAS). Circulation 2005; 111(17): 2203-9.
[http://dx.doi.org/10.1161/01.CIR.0000163569.97918.C0] [PMID: 15851593]
[3]
Markin AM, Sobenin IA, Grechko AV, Zhang D, Orekhov AN. Cellular Mechanisms of Human Atherogenesis: Focus on Chronification of Inflammation and Mitochondrial Mutations. Front Pharmacol 2020; 11: 642.
[http://dx.doi.org/10.3389/fphar.2020.00642] [PMID: 32528276]
[4]
Poznyak AV, Wu WK, Melnichenko AA, et al. Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells 2020; 9(3): 584.
[http://dx.doi.org/10.3390/cells9030584] [PMID: 32121535]
[5]
Pitoulias GA, Tachtsi MD, Tsiaousis PZ, Papadimitriou DK. Hyperhomocysteinemia and hypercoagulable state in carotid plaque evolution. Novel risk factors or coincidental risk predictors? Int Angiol 2007; 26(3): 270-8.
[PMID: 17622211]
[6]
Halvorsen B, Otterdal K, Dahl TB, et al. Atherosclerotic plaque stability-what determines the fate of a plaque? Prog Cardiovasc Dis 2008; 51(3): 183-94.
[http://dx.doi.org/10.1016/j.pcad.2008.09.001] [PMID: 19026853]
[7]
Cho KY, Miyoshi H, Kuroda S, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 2013; 22(7): 910-8.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.11.020] [PMID: 23273713]
[8]
Ramnarine KV, Garrard JW, Kanber B, Nduwayo S, Hartshorne TC, Robinson TG. Shear wave elastography imaging of carotid plaques: feasible, reproducible and of clinical potential. Cardiovasc Ultrasound 2014; 12: 49.
[http://dx.doi.org/10.1186/1476-7120-12-49] [PMID: 25487290]
[9]
Salem MK, Sayers RD, Bown MJ, et al. Features of unstable carotid plaque during and after the hyperacute period following TIA/stroke. Eur J Vasc Endovasc Surg 2013; 45(2): 114-20.
[http://dx.doi.org/10.1016/j.ejvs.2012.11.023] [PMID: 23270859]
[10]
Huibers A, de Borst GJ, Wan S, et al. Non-invasive Carotid Artery Imaging to Identify the Vulnerable Plaque: Current Status and Future Goals. Eur J Vasc Endovasc Surg 2015; 50(5): 563-72.
[http://dx.doi.org/10.1016/j.ejvs.2015.06.113] [PMID: 26298222]
[11]
Salem MK, Bown MJ, Sayers RD, et al. Identification of patients with a histologically unstable carotid plaque using ultrasonic plaque image analysis. Eur J Vasc Endovasc Surg 2014; 48(2): 118-25.
[http://dx.doi.org/10.1016/j.ejvs.2014.05.015] [PMID: 24947079]
[12]
Rafailidis V, Pitoulias G, Kouskouras K, Rafailidis D. Contrast-enhanced ultrasonography of the carotids. Ultrasonography 2015; 34(4): 312-23.
[http://dx.doi.org/10.14366/usg.15005] [PMID: 25868732]
[13]
Profumo E, Buttari B, Tosti ME, et al. Association of intracellular pro- and anti-inflammatory cytokines in peripheral blood with the clinical or ultrasound indications for carotid endarterectomy in patients with carotid atherosclerosis. Clin Exp Immunol 2008; 152(1): 120-6.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03604.x] [PMID: 18307518]
[14]
Alvarez Garcia B, Ruiz C, Chacon P, Sabin JA, Matas M. High-sensitivity C-reactive protein in high-grade carotid stenosis: risk marker for unstable carotid plaque. J Vasc Surg 2003; 38(5): 1018-24.
[http://dx.doi.org/10.1016/S0741-5214(03)00709-2] [PMID: 14603210]
[15]
Yamagami H, Kitagawa K, Nagai Y, et al. Higher levels of interleukin-6 are associated with lower echogenicity of carotid artery plaques. Stroke 2004; 35(3): 677-81.
[http://dx.doi.org/10.1161/01.STR.0000116876.96334.82] [PMID: 14752126]
[16]
Shindo A, Tanemura H, Yata K, et al. Inflammatory biomarkers in atherosclerosis: pentraxin 3 can become a novel marker of plaque vulnerability. PLoS One 2014; 9(6): e100045.
[http://dx.doi.org/10.1371/journal.pone.0100045] [PMID: 24936646]
[17]
Montecucco F, Lenglet S, Gayet-Ageron A, et al. Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 2010; 41(7): 1394-404.
[http://dx.doi.org/10.1161/STROKEAHA.110.578369] [PMID: 20538699]
[18]
Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 2001; 104(14): 1598-603.
[http://dx.doi.org/10.1161/hc3901.096721] [PMID: 11581135]
[19]
Biscetti F, Straface G, Bertoletti G, et al. Identification of a potential proinflammatory genetic profile influencing carotid plaque vulnerability. J Vasc Surg 2015; 61(2): 374-81.
[http://dx.doi.org/10.1016/j.jvs.2014.08.113] [PMID: 25441669]
[20]
Brea D, Sobrino T, Blanco M, et al. Usefulness of haptoglobin and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation. Atherosclerosis 2009; 205(2): 561-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.12.028] [PMID: 19171342]
[21]
Kadoglou NP, Fotiadis G, Lambadiari V, Maratou E, Dimitriadis G, Liapis CD. Serum levels of novel adipokines in patients with acute ischemic stroke: potential contribution to diagnosis and prognosis. Peptides 2014; 57: 12-6.
[http://dx.doi.org/10.1016/j.peptides.2014.04.008] [PMID: 24768795]
[22]
Auguet T, Aragonès G, Guiu-Jurado E, et al. Adipo/cytokines in atherosclerotic secretomes: increased visfatin levels in unstable carotid plaque. BMC Cardiovasc Disord 2016; 16(1): 149.
[http://dx.doi.org/10.1186/s12872-016-0320-5] [PMID: 27391230]
[23]
Kadoglou NP, Sailer N, Moumtzouoglou A, et al. Adipokines: a novel link between adiposity and carotid plaque vulnerability. Eur J Clin Invest 2012; 42(12): 1278-86.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02728.x] [PMID: 23033969]
[24]
Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 2007; 115(8): 972-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.665893] [PMID: 17283255]
[25]
Pitoulias MG, Skoura L, Pitoulias AG, et al. The role of Visfatin in atherosclerotic peripheral arterial obstructive disease. Cytokine 2017; 91: 140-4.
[http://dx.doi.org/10.1016/j.cyto.2016.12.027] [PMID: 28073026]
[26]
Kadoglou NP, Lambadiari V, Gastounioti A, et al. The relationship of novel adipokines, RBP4 and omentin-1, with carotid atherosclerosis severity and vulnerability. Atherosclerosis 2014; 235(2): 606-12.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.957] [PMID: 24956535]
[27]
Gasbarrino K, Zheng H, Hafiane A, Veinot JP, Lai C, Daskalopoulou SS. Decreased Adiponectin-Mediated Signaling Through the AdipoR2 Pathway Is Associated With Carotid Plaque Instability. Stroke 2017; 48(4): 915-24.
[http://dx.doi.org/10.1161/STROKEAHA.116.015145] [PMID: 28258256]
[28]
Gasbarrino K, Mantzoros C, Gorgui J, Veinot JP, Lai C, Daskalopoulou SS. Circulating Chemerin Is Associated With Carotid Plaque Instability, Whereas Resistin Is Related to Cerebrovascular Symptomatology. Arterioscler Thromb Vasc Biol 2016; 36(8): 1670-8.
[http://dx.doi.org/10.1161/ATVBAHA.115.306741] [PMID: 27312219]
[29]
Han Y, Mao X, Wang L, et al. Increased Levels of Soluble Cluster of Differentiation 40 Ligand, Matrix Metalloproteinase 9, and Matrix Metalloproteinase 2 Are Associated with Carotid Plaque Vulnerability in Patients with Ischemic Cerebrovascular Disease. World Neurosurg 2017; 105: 709-13.
[http://dx.doi.org/10.1016/j.wneu.2017.06.074] [PMID: 28642174]
[30]
Blake GJ, Ostfeld RJ, Yucel EK, et al. Soluble CD40 ligand levels indicate lipid accumulation in carotid atheroma: an in vivo study with high-resolution MRI. Arterioscler Thromb Vasc Biol 2003; 23(1): e11-4.
[http://dx.doi.org/10.1161/01.ATV.0000050143.22910.62] [PMID: 12524242]
[31]
Loftus IM, Naylor AR, Goodall S, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 2000; 31(1): 40-7.
[http://dx.doi.org/10.1161/01.STR.31.1.40] [PMID: 10625713]
[32]
Loftus IM, Naylor AR, Bell PRF, Thompson MM. Plasma MMP-9 - a marker of carotid plaque instability. Eur J Vasc Endovasc Surg 2001; 21(1): 17-21.
[http://dx.doi.org/10.1053/ejvs.2000.1278] [PMID: 11170872]
[33]
Heider P, Pfäffle N, Pelisek J, et al. Is serum pregnancy-associated plasma protein A really a potential marker of atherosclerotic carotid plaque stability? Eur J Vasc Endovasc Surg 2010; 39(6): 668-75.
[http://dx.doi.org/10.1016/j.ejvs.2010.03.012] [PMID: 20399126]
[34]
Beaudeux JL, Burc L, Imbert-Bismut F, et al. Serum plasma pregnancy-associated protein A: a potential marker of echogenic carotid atherosclerotic plaques in asymptomatic hyperlipidemic subjects at high cardiovascular risk. Arterioscler Thromb Vasc Biol 2003; 23(1): e7-e10.
[http://dx.doi.org/10.1161/01.ATV.0000047448.76485.B8] [PMID: 12524241]
[35]
Morgan AR, Rerkasem K, Gallagher PJ, et al. Differences in matrix metalloproteinase-1 and matrix metalloproteinase-12 transcript levels among carotid atherosclerotic plaques with different histopathological characteristics. Stroke 2004; 35(6): 1310-5.
[http://dx.doi.org/10.1161/01.STR.0000126822.01756.99] [PMID: 15073384]
[36]
Sangiorgi G, Mauriello A, Bonanno E, et al. Pregnancy-associated plasma protein-a is markedly expressed by monocyte-macrophage cells in vulnerable and ruptured carotid atherosclerotic plaques: a link between inflammation and cerebrovascular events. J Am Coll Cardiol 2006; 47(11): 2201-11.
[http://dx.doi.org/10.1016/j.jacc.2005.11.086] [PMID: 16750685]
[37]
Alvarez B, Ruiz C, Chacón P, Alvarez-Sabin J, Matas M. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg 2004; 40(3): 469-75.
[http://dx.doi.org/10.1016/j.jvs.2004.06.023] [PMID: 15337875]
[38]
de Nooijer R, Bot I, von der Thüsen JH, et al. Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29(2): 188-94.
[http://dx.doi.org/10.1161/ATVBAHA.108.181578] [PMID: 19095996]
[39]
Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998; 102(3): 576-83.
[http://dx.doi.org/10.1172/JCI181] [PMID: 9691094]
[40]
Wen Y, Xia D, Wang Y, et al. Cystatin C is Associated With Plaque Phenotype and Plaque Burden. Kidney Blood Press Res 2016; 41(2): 197-207.
[http://dx.doi.org/10.1159/000443422] [PMID: 27010456]
[41]
Liu J, Ma L, Yang J, et al. Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis 2006; 186(2): 411-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.001] [PMID: 16140306]
[42]
Lutgens E, Lutgens SPM, Faber BCG, et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 2006; 113(1): 98-107.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.561449] [PMID: 16365196]
[43]
Platt MO, Ankeny RF, Shi GP, et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol 2007; 292(3): H1479-86.
[http://dx.doi.org/10.1152/ajpheart.00954.2006] [PMID: 17098827]
[44]
Jaffer FA, Kim DE, Quinti L, et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007; 115(17): 2292-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.660340] [PMID: 17420353]
[45]
Li W, Kornmark L, Jonasson L, Forssell C, Yuan XM. Cathepsin L is significantly associated with apoptosis and plaque destabilization in human atherosclerosis. Atherosclerosis 2009; 202(1): 92-102.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.027] [PMID: 18495127]
[46]
Nishi K, Itabe H, Uno M, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 2002; 22(10): 1649-54.
[http://dx.doi.org/10.1161/01.ATV.0000033829.14012.18] [PMID: 12377744]
[47]
Suzue A, Uno M, Kitazato KT, et al. Comparison between early and late carotid endarterectomy for symptomatic carotid stenosis in relation to oxidized low-density lipoprotein and plaque vulnerability. J Vasc Surg 2007; 46(5): 870-5.
[http://dx.doi.org/10.1016/j.jvs.2007.06.039] [PMID: 17980272]
[48]
Mannheim D, Herrmann J, Versari D, et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke 2008; 39(5): 1448-55.
[http://dx.doi.org/10.1161/STROKEAHA.107.503193] [PMID: 18356547]
[49]
Iwamoto T, Fukuda S, Shimizu S, Takasaki M. Long-term effects of lipoprotein(a) on carotid atherosclerosis in elderly Japanese. J Gerontol A Biol Sci Med Sci 2004; 59(1): 62-7.
[http://dx.doi.org/10.1093/gerona/59.1.M62] [PMID: 14718487]
[50]
Klein JH, Hegele RA, Hackam DG, Koschinsky ML, Huff MW, Spence JD. Lipoprotein(a) is associated differentially with carotid stenosis, occlusion, and total plaque area. Arterioscler Thromb Vasc Biol 2008; 28(10): 1851-6.
[http://dx.doi.org/10.1161/ATVBAHA.108.169292] [PMID: 18599799]
[51]
Ohira T, Schreiner PJ, Morrisett JD, Chambless LE, Rosamond WD, Folsom AR. Lipoprotein(a) and incident ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2006; 37(6): 1407-12.
[http://dx.doi.org/10.1161/01.STR.0000222666.21482.b6] [PMID: 16675734]
[52]
Mathiesen EB, Bønaa KH, Joakimsen O. Low levels of high-density lipoprotein cholesterol are associated with echolucent carotid artery plaques: the tromsø study. Stroke 2001; 32(9): 1960-5.
[http://dx.doi.org/10.1161/hs0901.095639] [PMID: 11546881]
[53]
Wekesa AL, Cross KS, O’Donovan O, et al. Predicting carotid artery disease and plaque instability from cell-derived microparticles. Eur J Vasc Endovasc Surg 2014; 48(5): 489-95.
[http://dx.doi.org/10.1016/j.ejvs.2014.08.007] [PMID: 25218652]
[54]
Sarlon-Bartoli G, Bennis Y, Lacroix R, et al. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol 2013; 62(16): 1436-41.
[http://dx.doi.org/10.1016/j.jacc.2013.03.078] [PMID: 23707318]
[55]
Handberg A, Skjelland M, Michelsen AE, et al. Soluble CD36 in plasma is increased in patients with symptomatic atherosclerotic carotid plaques and is related to plaque instability. Stroke 2008; 39(11): 3092-5.
[http://dx.doi.org/10.1161/STROKEAHA.108.517128] [PMID: 18723424]
[56]
Li Q, Zhou Y, Dong K, et al. The Association between Serum Uric Acid Levels and the Prevalence of Vulnerable Atherosclerotic Carotid Plaque: A Cross-sectional Study. Sci Rep 2015; 5: 10003.
[http://dx.doi.org/10.1038/srep10003] [PMID: 25961501]
[57]
Liu T, Liu H, Feng L, Xiao B. Kinin B1 receptor as a novel, prognostic progression biomarker for carotid atherosclerotic plaques. Mol Med Rep 2017; 16(6): 8930-6.
[http://dx.doi.org/10.3892/mmr.2017.7694] [PMID: 28990089]
[58]
Kadoglou NP, Gerasimidis T, Golemati S, Kapelouzou A, Karayannacos PE, Liapis CD. The relationship between serum levels of vascular calcification inhibitors and carotid plaque vulnerability. J Vasc Surg 2008; 47(1): 55-62.
[http://dx.doi.org/10.1016/j.jvs.2007.09.058] [PMID: 18178454]
[59]
Di Gregoli K, Jenkins N, Salter R, White S, Newby AC, Johnson JL. MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34(9): 1990-2000.
[http://dx.doi.org/10.1161/ATVBAHA.114.304088] [PMID: 24990232]
[60]
Maitrias P, Metzinger-Le Meuth V, Nader J, Reix T, Caus T, Metzinger L. The Involvement of miRNA in Carotid-Related Stroke. Arterioscler Thromb Vasc Biol 2017; 37(9): 1608-17.
[http://dx.doi.org/10.1161/ATVBAHA.117.309233] [PMID: 28775076]
[61]
Sluimer JC, Gasc JM, van Wanroij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008; 51(13): 1258-65.
[http://dx.doi.org/10.1016/j.jacc.2007.12.025] [PMID: 18371555]
[62]
Mofidi R, Crotty TB, McCarthy P, Sheehan SJ, Mehigan D, Keaveny TV. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg 2001; 88(7): 945-50.
[http://dx.doi.org/10.1046/j.0007-1323.2001.01823.x] [PMID: 11442525]
[63]
Lam MK, Al-Ansari S, van Dam GM, et al. Single-chain VEGF/Cy5.5 targeting vegf receptors to indicate atherosclerotic plaque instability. Mol Imaging Biol 2013; 15(3): 250-61.
[http://dx.doi.org/10.1007/s11307-012-0594-7] [PMID: 23054554]
[64]
Russell DA, Abbott CR, Gough MJ. Vascular endothelial growth factor is associated with histological instability of carotid plaques. Br J Surg 2008; 95(5): 576-81.
[http://dx.doi.org/10.1002/bjs.6100] [PMID: 18344184]
[65]
Holm PW, Slart RH, Zeebregts CJ, Hillebrands JL, Tio RA. Atherosclerotic plaque development and instability: a dual role for VEGF. Ann Med 2009; 41(4): 257-64.
[http://dx.doi.org/10.1080/07853890802516507] [PMID: 19089693]
[66]
Khurana R, Moons L, Shafi S, et al. Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 2005; 111(21): 2828-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.495887] [PMID: 15911697]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy