Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in the Discovery of Potent Proteases Inhibitors Targeting the SARS Coronaviruses

Author(s): Arti Sharma, Kajal Kaliya and Sushil K. Maurya*

Volume 21, Issue 4, 2021

Published on: 11 November, 2020

Page: [307 - 328] Pages: 22

DOI: 10.2174/1568026620999201111160035

Price: $65

Abstract

Across the globe, countries are being challenged by the SARS-CoV-2 (COVID-19) pandemic in ways they have never been before. The global outbreak of SARS-CoV-2 with an uncertain fatality rate has imposed extreme challenges on global health. The World Health Organization (WHO) has officially declared the outbreak of COVID-19 a pandemic, after the disease caused by the new coronavirus spread to more than 100 countries. To date, various therapeutic approaches have been proposed and are being implemented to combat this pandemic, but unfortunately, no sovereign remedy has been established yet. Protease enzymes are important targets to develop therapies for the treatment of infections caused by SARS coronaviruses. In this review, an overview is given on recent advances in the discovery of potent protease inhibitors targeting the SARS coronaviruses. Different classes of natural product inhibitors targeting protease enzymes of SARS coronaviruses have been studied in detail along with their structure-activity relationship analysis. This study emphasized important covalent and non-covalent small molecule inhibitors, which effectively inhibited chymotrypsin- like cysteine protease (3CLpro) and papain-like protease (PLpro) of two SARS coronaviruses, i.e., SARS-CoV-1 and SARS-CoV-2. Repurposing of drugs has also been outlined in this study to understand their roles as quick-to-be-identified therapy to combat these zoonotic coronaviruses.

Keywords: Proteases, SARS, Coronaviruses, 3CLpro, PLpro, Orthocoronavirinae, MERS.

Graphical Abstract

[1]
Parry, J. WHO investigates China’s fall in SARS cases. BMJ, 2003, 326(7402), 1285.
[http://dx.doi.org/10.1136/bmj.326.7402.1285-c] [PMID: 12805143]
[2]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[3]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[4]
King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. Family - coronaviridae.Virus Taxonomy; Elsevier: San Diego, 2012, pp. 806-828.
[http://dx.doi.org/10.1016/B978-0-12-384684-6.00068-9]
[5]
Zhou, P.; Fan, H.; Lan, T.; Yang, X-L.; Shi, W-F.; Zhang, W.; Zhu, Y.; Zhang, Y-W.; Xie, Q-M.; Mani, S.; Zheng, X-S.; Li, B.; Li, J-M.; Guo, H.; Pei, G-Q.; An, X-P.; Chen, J-W.; Zhou, L.; Mai, K-J.; Wu, Z-X.; Li, D.; Anderson, D.E.; Zhang, L-B.; Li, S-Y.; Mi, Z-Q.; He, T-T.; Cong, F.; Guo, P-J.; Huang, R.; Luo, Y.; Liu, X-L.; Chen, J.; Huang, Y.; Sun, Q.; Zhang, X-L-L.; Wang, Y-Y.; Xing, S-Z.; Chen, Y-S.; Sun, Y.; Li, J.; Daszak, P.; Wang, L-F.; Shi, Z-L.; Tong, Y-G.; Ma, J-Y. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556(7700), 255-258.
[http://dx.doi.org/10.1038/s41586-018-0010-9] [PMID: 29618817]
[6]
Woo, P.C.; Lau, S.K.; Li, K.S.; Poon, R.W.; Wong, B.H.; Tsoi, H.W.; Yip, B.C.; Huang, Y.; Chan, K.H.; Yuen, K.Y. Molecular diversity of coronaviruses in bats. Virology, 2006, 351(1), 180-187.
[http://dx.doi.org/10.1016/j.virol.2006.02.041] [PMID: 16647731]
[7]
Menachery, V.D.; Yount, B.L., Jr; Debbink, K.; Agnihothram, S.; Gralinski, L.E.; Plante, J.A.; Graham, R.L.; Scobey, T.; Ge, X-Y.; Donaldson, E.F.; Randell, S.H.; Lanzavecchia, A.; Marasco, W.A.; Shi, Z-L.; Baric, R.S. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med., 2015, 21(12), 1508-1513.
[http://dx.doi.org/10.1038/nm.3985] [PMID: 26552008]
[8]
Menachery, V.D.; Yount, B.L., Jr; Sims, A.C.; Debbink, K.; Agnihothram, S.S.; Gralinski, L.E.; Graham, R.L.; Scobey, T.; Plante, J.A.; Royal, S.R.; Swanstrom, J.; Sheahan, T.P.; Pickles, R.J.; Corti, D.; Randell, S.H.; Lanzavecchia, A.; Marasco, W.A.; Baric, R.S. SARS-like WIV1-CoV poised for human emergence. Proc. Natl. Acad. Sci. USA, 2016, 113(11), 3048-3053.
[http://dx.doi.org/10.1073/pnas.1517719113] [PMID: 26976607]
[9]
Li, H.; Mendelsohn, E.; Zong, C.; Zhang, W.; Hagan, E.; Wang, N.; Li, S.; Yan, H.; Huang, H.; Zhu, G.; Ross, N.; Chmura, A.; Terry, P.; Fielder, M.; Miller, M.; Shi, Z.; Daszak, P. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosaf Health, 2019, 1(2), 84-90.
[http://dx.doi.org/10.1016/j.bsheal.2019.10.004] [PMID: 32501444]
[10]
Ye, Z-W.; Yuan, S.; Yuen, K-S.; Fung, S-Y.; Chan, C-P.; Jin, D-Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci., 2020, 16(10), 1686-1697.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[11]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem. Phys. Lett., 2020, 750137489
[http://dx.doi.org/10.1016/j.cplett.2020.137489] [PMID: 32313296]
[12]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[13]
Parves, M.R.; Riza, Y.M.; Mahmud, S.; Islam, R.; Ahmed, S.; Evy, B.A.; Hasanuzzaman, M.; Halim, M.A. Analysis of Ten Microsecond simulation data of SARS-CoV-2 dimeric main protease. bioRxiv, 2020. In press
[14]
Clemente, V.; D’Arcy, P.; Bazzaro, M. Deubiquitinating enzymes in coronaviruses and possible therapeutic opportunities for covid-19. Int. J. Mol. Sci., 2020, 21(10), 3492.
[http://dx.doi.org/10.3390/ijms21103492] [PMID: 32429099]
[15]
Freitas, B.T.; Durie, I.A.; Murray, J.; Longo, J.E.; Miller, H.C.; Crich, D.; Hogan, R.J.; Tripp, R.A.; Pegan, S.D. Characterization and noncovalent inhibition of the deubiquitinase and deisgylase activity of sars-cov-2 papain-like protease. ACS Infect. Dis., 2020. In press
[16]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[17]
Chou, C-Y.; Chien, C-H.; Han, Y-S.; Prebanda, M.T.; Hsieh, H-P.; Turk, B.; Chang, G-G.; Chen, X. Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biochem. Pharmacol., 2008, 75(8), 1601-1609.
[http://dx.doi.org/10.1016/j.bcp.2008.01.005] [PMID: 18313035]
[18]
Ghosh, A.K.; Takayama, J.; Rao, K.V.; Ratia, K.; Chaudhuri, R.; Mulhearn, D.C.; Lee, H.; Nichols, D.B.; Baliji, S.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein-ligand X-ray structure and biological evaluation. J. Med. Chem., 2010, 53(13), 4968-4979.
[http://dx.doi.org/10.1021/jm1004489] [PMID: 20527968]
[19]
Báez-Santos, Y.M.; Barraza, S.J.; Wilson, M.W.; Agius, M.P.; Mielech, A.M.; Davis, N.M.; Baker, S.C.; Larsen, S.D.; Mesecar, A.D. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J. Med. Chem., 2014, 57(6), 2393-2412.
[http://dx.doi.org/10.1021/jm401712t] [PMID: 24568342]
[20]
Park, J-Y.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, S-J.; Kim, D.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull., 2012, 35(11), 2036-2042.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[21]
Park, J-Y.; Ko, J-A.; Kim, D.W.; Kim, Y.M.; Kwon, H-J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[22]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J-W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[23]
Park, J-Y.; Kim, J.H.; Kwon, J.M.; Kwon, H-J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem., 2013, 21(13), 3730-3737.
[http://dx.doi.org/10.1016/j.bmc.2013.04.026] [PMID: 23647823]
[24]
Song, Y.H.; Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Zhuang, N.; Lee, K.H.; Jeon, K.S.; Park, K.H. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol. Pharm. Bull., 2014, 37(6), 1021-1028.
[http://dx.doi.org/10.1248/bpb.b14-00026] [PMID: 24882413]
[25]
Park, J-Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H-J.; Park, S-J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[26]
Park, J-Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[27]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J-Y.; Kim, D.; Nguyen, T.T.; Park, S-J.; Chang, J.S.; Park, K.H.; Rho, M-C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[28]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[29]
Nguyen, T.T.H.; Woo, H-J.; Kang, H-K.; Nguyen, V.D.; Kim, Y-M.; Kim, D-W.; Ahn, S-A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[30]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[31]
Bhardwaj, V.K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit, R.; Kumar, S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors J. Biomol. Struct. Dyn, 2020. (ePub ahead of print)
[http://dx.doi.org//10.1080/07391102.2020.1766572] [PMID: 32397940]
[32]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of sars-cov-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[33]
Ul Qamar, M.T.; Alqahtani, S.M.; Alamri, M.A.; Chen, L-L. Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020. in press
[http://dx.doi.org//10.1016/j.jpha.2020.03.009]
[34]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[35]
Markgren, P.O.; Hämäläinen, M.; Danielson, U.H. Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology. Anal. Biochem., 1998, 265(2), 340-350.
[http://dx.doi.org/10.1006/abio.1998.2927] [PMID: 9882412]
[36]
Kuo, C-J.; Liu, H-G.; Lo, Y-K.; Seong, C-M.; Lee, K-I.; Jung, Y-S.; Liang, P-H. Individual and common inhibitors of coronavirus and picornavirus main proteases. FEBS Lett., 2009, 583(3), 549-555.
[http://dx.doi.org/10.1016/j.febslet.2008.12.059] [PMID: 19166843]
[37]
Kumar, V.; Chang, C-K.; Tan, K-P.; Jung, Y-S.; Chen, S-H.; Cheng, Y-S.E.; Liang, P-H. Identification, synthesis, and evaluation of new neuraminidase inhibitors. Org. Lett., 2014, 16(19), 5060-5063.
[http://dx.doi.org/10.1021/ol502410x] [PMID: 25229881]
[38]
Kumar, V.; Tan, K-P.; Wang, Y-M.; Lin, S-W.; Liang, P-H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2016, 24(13), 3035-3042.
[http://dx.doi.org/10.1016/j.bmc.2016.05.013] [PMID: 27240464]
[39]
Jacobs, J.; Grum-Tokars, V.; Zhou, Y.; Turlington, M.; Saldanha, S.A.; Chase, P.; Eggler, A.; Dawson, E.S.; Baez-Santos, Y.M.; Tomar, S.; Mielech, A.M.; Baker, S.C.; Lindsley, C.W.; Hodder, P.; Mesecar, A.; Stauffer, S.R. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem., 2013, 56(2), 534-546.
[http://dx.doi.org/10.1021/jm301580n] [PMID: 23231439]
[40]
Konno, S.; Thanigaimalai, P.; Yamamoto, T.; Nakada, K.; Kakiuchi, R.; Takayama, K.; Yamazaki, Y.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S-E.; Freire, E.; Hayashi, Y. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem., 2013, 21(2), 412-424.
[http://dx.doi.org/10.1016/j.bmc.2012.11.017] [PMID: 23245752]
[41]
Thanigaimalai, P.; Konno, S.; Yamamoto, T.; Koiwai, Y.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S-E.; Naser-Tavakolian, A.; Schön, A.; Freire, E.; Hayashi, Y. Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: structure-activity relationship study. Eur. J. Med. Chem., 2013, 65, 436-447.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.005] [PMID: 23747811]
[42]
Akaji, K.; Konno, H.; Mitsui, H.; Teruya, K.; Shimamoto, Y.; Hattori, Y.; Ozaki, T.; Kusunoki, M.; Sanjoh, A. Structure-based design, synthesis, and evaluation of peptide-mimetic SARS 3CL protease inhibitors. J. Med. Chem., 2011, 54(23), 7962-7973.
[http://dx.doi.org/10.1021/jm200870n] [PMID: 22014094]
[43]
Akaji, K.; Konno, H.; Onozuka, M.; Makino, A.; Saito, H.; Nosaka, K. Evaluation of peptide-aldehyde inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant. Bioorg. Med. Chem., 2008, 16(21), 9400-9408.
[http://dx.doi.org/10.1016/j.bmc.2008.09.057] [PMID: 18845442]
[44]
Shimamoto, Y.; Hattori, Y.; Kobayashi, K.; Teruya, K.; Sanjoh, A.; Nakagawa, A.; Yamashita, E.; Akaji, K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg. Med. Chem., 2015, 23(4), 876-890.
[http://dx.doi.org/10.1016/j.bmc.2014.12.028] [PMID: 25614110]
[45]
Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J.S.; Dawson, E.; Saldanha, A.; Chase, P.; Baez-Santos, Y.M.; Lindsley, C.W.; Hodder, P.; Mesecar, A.D.; Stauffer, S.R. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 2013, 23(22), 6172-6177.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.112] [PMID: 24080461]
[46]
Dai, W.; Zhang, B.; Jiang, X-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L-K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[47]
Wu, R-J.; Zhou, K-X.; Yang, H.; Song, G-Q.; Li, Y-H.; Fu, J-X.; Zhang, X.; Yu, S-J.; Wang, L-Z.; Xiong, L-X.; Niu, C-W.; Song, F-H.; Yang, H.; Wang, J-G. Chemical synthesis, crystal structure, versatile evaluation of their biological activities and molecular simulations of novel pyrithiobac derivatives. Eur. J. Med. Chem., 2019, 167, 472-484.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.002] [PMID: 30784880]
[48]
Liu, W.; Zhu, H-M.; Niu, G-J.; Shi, E-Z.; Chen, J.; Sun, B.; Chen, W-Q.; Zhou, H-G.; Yang, C. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2014, 22(1), 292-302.
[http://dx.doi.org/10.1016/j.bmc.2013.11.028] [PMID: 24316352]
[49]
Ahn, T-Y.; Kuo, C-J.; Liu, H-G.; Ha, D-C.; Liang, P-H.; Jung, Y-S. Synthesis and evaluation of benzoquinolinone derivatives as sars-cov 3cl protease inhibitors. Bull. Korean Chem. Soc., 2010, 31(1), 87.
[http://dx.doi.org//10.5012/bkcs.2010.31.01.087]
[50]
Konno, H.; Onuma, T.; Nitanai, I.; Wakabayashi, M.; Yano, S.; Teruya, K.; Akaji, K. Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor. Bioorg. Med. Chem. Lett., 2017, 27(12), 2746-2751.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.056] [PMID: 28454669]
[51]
Konno, H.; Wakabayashi, M.; Takanuma, D.; Saito, Y.; Akaji, K. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease. Bioorg. Med. Chem., 2016, 24(6), 1241-1254.
[http://dx.doi.org/10.1016/j.bmc.2016.01.052] [PMID: 26879854]
[52]
Sun, Y.; Zhang, N.; Wang, J.; Guo, Y.; Sun, B.; Liu, W.; Zhou, H.; Yang, C. Synthesis and Biological Evaluation of Quinolinone Compounds as SARS CoV 3CLpro Inhibitors. Chin. J. Chem., 2013, 31(9), 1199-1206.
[PMID: 32313409]
[53]
Wang, L.; Bao, B-B.; Song, G-Q.; Chen, C.; Zhang, X-M.; Lu, W.; Wang, Z.; Cai, Y.; Li, S.; Fu, S.; Song, F-H.; Yang, H.; Wang, J-G. Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. Eur. J. Med. Chem., 2017, 137, 450-461.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.045] [PMID: 28624700]
[54]
Ramajayam, R.; Tan, K-P.; Liu, H-G.; Liang, P-H. Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease. Bioorg. Med. Chem. Lett., 2010, 20(12), 3569-3572.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.118] [PMID: 20494577]
[55]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[56]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[57]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv, 2020. (In press)
[58]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[59]
Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; Hilgenfeld, R.; Yuen, K.Y.; Wong, L.; Gao, G.; Chen, S.; Chen, Z.; Ma, D.; Bartlam, M.; Rao, Z. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol., 2005, 3(10)e324
[http://dx.doi.org/10.1371/journal.pbio.0030324] [PMID: 16128623]
[60]
Ren, Z.; Yan, L.; Zhang, N.; Guo, Y.; Yang, C.; Lou, Z.; Rao, Z. The newly emerged SARS-like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell, 2013, 4(4), 248-250.
[http://dx.doi.org/10.1007/s13238-013-2841-3] [PMID: 23549610]
[61]
Lin, M-H.; Moses, D.C.; Hsieh, C-H.; Cheng, S-C.; Chen, Y-H.; Sun, C-Y.; Chou, C-Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res., 2018, 150, 155-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[62]
Xu, L.; Tong, J.; Wu, Y.; Zhao, S.; Lin, B.-L. Targeted oxidation strategy (TOS) for potential inhibition of coronaviruses by disulfiram— a 70-year old anti-alcoholism drug Preprint, 2020. (ePub ahead of Print)
[63]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (sars-cov) 3cl protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[64]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. HKU/UCH SARS Study Group. Role of lopinavir/ ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org//10.1136/thorax.2003.012658] [PMID: 14985565]
[65]
Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials, 2018, 19(1), 1-13.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29298706]
[66]
Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N.C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? atomistic insights into the inhibitory mechanisms. Biochemistry, 2020, 59(18), 1769-1779.
[http://dx.doi.org/10.1021/acs.biochem.0c00160] [PMID: 32293875]
[67]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[68]
Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol., 2020, 38(4), 379-381.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[69]
Xu, L.; Liu, H.; Murray, B.P.; Callebaut, C.; Lee, M.S.; Hong, A.; Strickley, R.G.; Tsai, L.K.; Stray, K.M.; Wang, Y.; Rhodes, G.R.; Desai, M.C. Cobicistat (GS-9350): a potent and selective inhibitor of human CYP3A as a novel pharmacoenhancer. ACS Med. Chem. Lett., 2010, 1(5), 209-213.
[http://dx.doi.org/10.1021/ml1000257] [PMID: 24900196]
[70]
De Meyer, S.; Bojkova, D.; Cinati, J.; Van Damme, E.; Buyck, C.; Van Loock, M.; Woodfall, B.; Ciesek, S. Lack of antiviral activity of darunavir against sars-cov-2. In: medRxiv; , 2020. In press
[71]
Mina, F.; Rahman, M.; Das, S.; Karmakar, S.; Billah, M. Potential drug candidates underway several registered clinical trials for battling covid-19. In: Preprint; , 2020. (In press)
[72]
Fragkou, P.C.; Belhadi, D.; Peiffer-Smadja, N.; Moschopoulos, C.D.; Lescure, F.X.; Janocha, H.; Karofylakis, E.; Yazdanpanah, Y.; Mentré, F.; Skevaki, C.; Laouénan, C.; Tsiodras, S. ESCMID Study Group for Respiratory Viruses. Review of trials currently testing treatment and prevention of COVID-19. Clin. Microbiol. Infect., 2020, 26(8), 988-998.
[http://dx.doi.org/10.1016/j.cmi.2020.05.019] [PMID: 32454187]
[73]
Lopinavir/ ritonavir. ribavirin and ifn-beta combination for ncov treatment, 2020.Available from: https://clinicaltrials.gov/ct2/show/NCT04276688
[74]
A randomized, controlled open-label trial to evaluate the efficacy and safety of lopinavir-ritonavir in hospitalized patients with novel coronavirus pneumonia (COVID-19). 2020.Available from: http://www.chictr.org.cn/showprojen.aspx?proj=48684
[75]
The efficacy of lopinavir plus ritonavir and arbidol against novel coronavirus infection (ELACOI). 2020.Available from: https://clinicaltrials.gov/ct2/show/NCT04252885
[76]
Efficacy and Safety of Darunavir and Cobicistat for Treatment of COVID-19 (DC-COVID-19) 2020.Available from: https://clinicaltrials.gov/ct2/show/NCT04252274
[77]
Randomized, open, controlled trial for darunavir/cobicistat or Lopinavir/ ritonavir combined with thymosin a1 in the treatment of novel coronavirus pneumonia (COVID-19) 2020.Available from: http://www.chictr.org.cn/showprojen.aspx?proj=48992
[78]
A., Randomized open, controlled clinical study to evaluate the efficacy of asc09f and ritonavir for 2019-ncov pneumonia. 2019.Available from: https://clinicaltrials.gov/ct2/show/NCT04261270
[79]
Evaluation of ganovo danoprevir combined with ritonavir in the treatment of sars-cov-2 infection, 2020.Available from: https://clinicaltrials.gov/ct2/show/NCT04291729
[80]
Disulfiram for Covid-19 (DISCO) Trial (DISCO) 2020.Available from: https://clinicaltrials.gov/ct2/show/NCT04485130
[81]
Kim, Y.; Lovell, S.; Tiew, K-C.; Mandadapu, S.R.; Alliston, K.R.; Battaile, K.P.; Groutas, W.C.; Chang, K-O. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. J. Virol., 2012, 86(21), 11754-11762.
[http://dx.doi.org/10.1128/JVI.01348-12] [PMID: 22915796]
[82]
Galasiti Kankanamalage, A.C.; Kim, Y.; Damalanka, V.C.; Rathnayake, A.D.; Fehr, A.R.; Mehzabeen, N.; Battaile, K.P.; Lovell, S.; Lushington, G.H.; Perlman, S.; Chang, K.O.; Groutas, W.C. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur. J. Med. Chem., 2018, 150, 334-346.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.004] [PMID: 29544147]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy