Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The PentaFOLD 3.0 Algorithm for the Selection of Stable Elements of Secondary Structure to be Included in Vaccine Peptides

Author(s): Vladislav V. Khrustalev*

Volume 28, Issue 5, 2021

Published on: 10 November, 2020

Page: [573 - 588] Pages: 16

DOI: 10.2174/0929866527666201110123851

Price: $65

Abstract

Aims: The aim of this study was to create a new version of the PentaFOLD algorithm and to test its performance experimentally in several proteins and peptides.

Background: Synthetic vaccines can cause production of neutralizing antibodies only in case if short peptides form the same secondary structure as fragments of full-length proteins. The Penta- FOLD 3.0 algorithm was designed to check stability of alpha helices, beta strands, and random coils using several propensity scales obtained during analysis of 1730 3D structures of proteins.

Objective: The algorithm has been tested in the three peptides known to keep the secondary structure of the corresponding fragments of full-length proteins: the NY25 peptide from the Influenza H1N1 hemagglutinin, the SF23 peptide from the diphtheria toxin, the NQ21 peptide from the HIV1 gp120; as well as in the CC36 peptide from the human major prion protein.

Methods: Affine chromatography for antibodies against peptides accompanied by circular dichroism and fluorescence spectroscopy were used to check the predictions of the algorithm.

Results: Immunological experiments showed that all abovementioned peptides are more or less immunogenic in rabbits. The fact that antibodies against the NY25, the SF23, and the NQ21 form stable complexes with corresponding full-length proteins has been confirmed by affine chromatography. The surface of SARS CoV-2 spike receptor-binding domain interacting with hACE2 has been shown to be unstable according to the results of the PentaFOLD 3.0.

Conclusion: The PentaFOLD 3.0 algorithm (http://chemres.bsmu.by/PentaFOLD30.htm) can be used with the aim to design vaccine peptides with stable secondary structure elements.

Keywords: Synthetic vaccine, secondary structure of proteins, hemagglutinin, diphtheria toxin, HIV1 gp120, human prion protein, SARS CoV-2.

Graphical Abstract

[1]
Li, W.; Joshi, M.D.; Singhania, S.; Ramsey, K.H.; Murthy, A.K. Peptide vaccine: progress and challenges. Vaccines (Basel), 2014, 2(3), 515-536.
[http://dx.doi.org/10.3390/vaccines2030515] [PMID: 26344743]
[2]
Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. (Camb.), 2016, 7(2), 842-854.
[http://dx.doi.org/10.1039/C5SC03892H] [PMID: 28791117]
[3]
Clem, A.S. Fundamentals of vaccine immunology. J. Glob. Infect. Dis., 2011, 3(1), 73-78.
[http://dx.doi.org/10.4103/0974-777X.77299] [PMID: 21572612]
[4]
Hotez, P.J.; Corry, D.B.; Bottazzi, M.E. COVID-19 vaccine design: the Janus face of immune enhancement. Nat. Rev. Immunol., 2020, 20(6), 347-348.
[http://dx.doi.org/10.1038/s41577-020-0323-4] [PMID: 32346094]
[5]
von Poblotzki, A.; Gigler, A.; Lang, B.; Wolf, H.; Modrow, S. Antibodies to parvovirus B19 NS-1 protein in infected individuals. J. Gen. Virol., 1995, 76(Pt 3), 519-527.
[http://dx.doi.org/10.1099/0022-1317-76-3-519] [PMID: 7534811]
[6]
Heegaard, E.D.; Rasksen, C.J.; Christensen, J. Detection of parvovirus B19 NS1-specific antibodies by ELISA and western blotting employing recombinant NS1 protein as antigen. J. Med. Virol., 2002, 67(3), 375-383.
[http://dx.doi.org/10.1002/jmv.10079] [PMID: 12116031]
[7]
Saunders, R.; Deane, C.M. Protein structure prediction begins well but ends badly. Proteins, 2010, 78(5), 1282-1290.
[http://dx.doi.org/10.1002/prot.22646] [PMID: 20014025]
[8]
Saunders, R.; Mann, M.; Deane, C.M. Signatures of co-translational folding. Biotechnol. J., 2011, 6(6), 742-751.
[http://dx.doi.org/10.1002/biot.201000330] [PMID: 21509938]
[9]
Khrustalev, V.V.; Khrustaleva, T.A.; Poboinev, V.V. Amino acid content of beta strands and alpha helices depends on their flanking secondary structure elements. Biosystems, 2018, 168, 45-54.
[http://dx.doi.org/10.1016/j.biosystems.2018.04.002] [PMID: 29742459]
[10]
Khrustalev, V.V. Random coils of proteins situated between a beta strand and an alpha helix demonstrate decreased solvent accessibility. Protein J., 2020, 39(4), 308-317.
[PMID: 32627111]
[11]
Khrustalev, V.V.; Khrustaleva, T.A.; Kordyukova, L.V. Selection and structural analysis of the NY25 peptide - A vaccine candidate from hemagglutinin of swine-origin Influenza H1N1. Microb. Pathog., 2018, 125, 72-83.
[http://dx.doi.org/10.1016/j.micpath.2018.09.004] [PMID: 30201593]
[12]
Khrustaleva, T.A.; Khrustalev, V.V.; Barkovsky, E.V.; Kolodkina, V.L.; Astapov, A.A. Structural and antigenic features of the synthetic Sf23 peptide corresponding to the receptor binding fragment of diphtheria toxin. Mol. Immunol., 2015, 63(2), 235-244.
[http://dx.doi.org/10.1016/j.molimm.2014.07.008] [PMID: 25062832]
[13]
Khrustalev, V.V.; Khrustaleva, T.A.; Kahanouskaya, E.Y.; Rudnichenko, Y.A.; Bandarenka, H.V.; Arutyunyan, A.M.; Girel, K.V.; Khinevich, N.V.; Ksenofontov, A.L.; Kordyukova, L.V. The alpha helix 1 from the first conserved region of HIV1 gp120 is reconstructed in the short NQ21 peptide. Arch. Biochem. Biophys., 2018, 638, 66-75.
[http://dx.doi.org/10.1016/j.abb.2017.12.004] [PMID: 29273432]
[14]
Khrustalev, V.V.; Khrustaleva, T.A.; Szpotkowski, K.; Poboinev, V.V.; Kakhanouskaya, K.Y. The part of a long beta hairpin from the scrapie form of the human prion protein is reconstructed in the synthetic CC36 protein. Proteins, 2016, 84(10), 1462-1479.
[http://dx.doi.org/10.1002/prot.25090] [PMID: 27317933]
[15]
Adrover, M.; Pauwels, K.; Prigent, S.; de Chiara, C.; Xu, Z.; Chapuis, C.; Pastore, A.; Rezaei, H. Prion fibrillization is mediated by a native structural element that comprises helices H2 and H3. J. Biol. Chem., 2010, 285(27), 21004-21012.
[http://dx.doi.org/10.1074/jbc.M110.111815] [PMID: 20375014]
[16]
Pollara, J.; Easterhoff, D.; Fouda, G.G. Lessons learned from human HIV vaccine trials. Curr. Opin. HIV AIDS, 2017, 12(3), 216-221.
[http://dx.doi.org/10.1097/COH.0000000000000362] [PMID: 28230655]
[17]
Yano, A.; Ito, K.; Miwa, Y.; Kanazawa, Y.; Chiba, A.; Iigo, Y.; Kashimoto, Y.; Kanda, A.; Murata, S.; Makino, M. The peptide vaccine combined with prior immunization of a conventional diphtheria-tetanus toxoid vaccine induced amyloid β binding antibodies on cynomolgus monkeys and guinea pigs. J. Immunol. Res., 2015, 2015, 786501.
[http://dx.doi.org/10.1155/2015/786501] [PMID: 26539559]
[18]
Klein, N.P.; Fireman, B.; Goddard, K.; Zerbo, O.; Asher, J.; Zhou, J.; King, J.; Lewis, N. Vaccine effectiveness of cell-culture relative to egg-based inactivated influenza vaccine during the 2017-18 influenza season. PLoS One, 2020, 15(2), e0229279.
[http://dx.doi.org/10.1371/journal.pone.0229279] [PMID: 32101582]
[19]
Panatto, D.; Lai, P.L.; Mosca, S.; Lecini, E.; Orsi, A.; Signori, A.; Castaldi, S.; Pariani, E.; Pellegrinelli, L.; Galli, C.; Anselmi, G.; Icardi, G. Ciri-It Team. Influenza vaccination in Italian healthcare workers (2018–2019 season): strengths and weaknesses. results of a cohort study in two large Italian hospitals. Vaccines (Basel), 2020, 8(1), 119.
[http://dx.doi.org/10.3390/vaccines8010119] [PMID: 32150801]
[20]
Weinberger, B. Adult vaccination against tetanus and diphtheria: the European perspective. Clin. Exp. Immunol., 2017, 187(1), 93-99.
[http://dx.doi.org/10.1111/cei.12822] [PMID: 27279025]
[21]
Esteve, M.; Carreras, R.; Casas, I.; Peña, P.; Guixeras, A.; Torrecillas, S.; Bretau, F.; Subirats, P.; Alonso, A.; Soldevila, N.; Costa, J.; Domínguez, A. Xarxa Catalana d’Hospitals Promotors de la Salut (XCHPS). The immune status against tetanus and diphtheria in healthcare workers in Catalonia. Vaccine, 2020, 38(12), 2646-2650.
[http://dx.doi.org/10.1016/j.vaccine.2020.01.076] [PMID: 32063435]
[22]
Lohia, N.; Baranwal, M. An immunoinformatics approach in design of synthetic peptide vaccine against influenza virus. Methods Mol. Biol., 2020, 2131, 229-243.
[http://dx.doi.org/10.1007/978-1-0716-0389-5_11] [PMID: 32162257]
[23]
Wang, Z.B.; Xu, J. Better adjuvants for better vaccines: progress in adjuvant delivery systems, modifications, and adjuvant-antigen codelivery. Vaccines (Basel), 2020, 8(1), E128.
[http://dx.doi.org/10.3390/vaccines8010128] [PMID: 32183209]
[24]
Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; Aaseth, J.; Bjørklund, G. Sulfhydryl groups as targets of mercury toxicity. Coord. Chem. Rev., 2020, 417, 213343.
[http://dx.doi.org/10.1016/j.ccr.2020.213343] [PMID: 32905350]
[25]
Kurzbaum, E.; Iliasafov, L.; Kolik, L.; Starosvetsky, J.; Bilanovic, D.; Butnariu, M.; Armon, R. From the Titanic and other shipwrecks to biofilm prevention: the interesting role of polyphenol-protein complexes in biofilm inhibition. Sci. Total Environ., 2019, 658, 1098-1105.
[http://dx.doi.org/10.1016/j.scitotenv.2018.12.197] [PMID: 30677974]
[26]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014, 42(Web Server issue), W252-258.
[http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[27]
Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theory Comput., 2014, 10(10), 4745-4758.
[http://dx.doi.org/10.1021/ct500592m] [PMID: 26588162]
[28]
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22(12), 2577-2637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[29]
Wiedemann, C.; Bellstedt, P.; Görlach, M. CAPITO-a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics, 2013, 29(14), 1750-1757.
[http://dx.doi.org/10.1093/bioinformatics/btt278] [PMID: 23681122]
[30]
Lakowicz, J.R. Principles of fluorescence spectroscopy; Springer, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[31]
Hermanson, G.T.; Krishna, M.A.; Smith, P.K. Immobilized affinity ligand techniques; Academic Press, 1992.
[32]
Kozlowski, L.P. IPC - Isoelectric Point Calculator. Biol. Direct, 2016, 11(1), 55.
[http://dx.doi.org/10.1186/s13062-016-0159-9] [PMID: 27769290]
[33]
Howard, P.L. Principles of antibody elution. Transfusion, 1981, 21(5), 477-482.
[http://dx.doi.org/10.1046/j.1537-2995.1981.21582040807.x] [PMID: 7027542]
[34]
Chou, P.Y.; Fasman, G.D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol., 1978, 47, 45-148.
[PMID: 364941]
[35]
Wenzel, E.V.; Bosnak, M.; Tierney, R.; Schubert, M.; Brown, J.; Dübel, S.; Efstratiou, A.; Sesardic, D.; Stickings, P.; Hust, M. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci. Rep., 2020, 10(1), 571.
[http://dx.doi.org/10.1038/s41598-019-57103-5] [PMID: 31953428]
[36]
Mullarkey, C.E.; Bailey, M.J.; Golubeva, D.A.; Tan, G.S.; Nachbagauer, R.; He, W.; Novakowski, K.E.; Bowdish, D.M.; Miller, M.S.; Palese, P. Broadly neutralizing hemagglutinin stalk-specific antibodies induce potent phagocytosis of immune complexes by neutrophils in an Fc-dependent manner. MBio, 2016, 7(5), e01624-e16.
[http://dx.doi.org/10.1128/mBio.01624-16] [PMID: 27703076]
[37]
Yan, L.; Wang, H.; Sun, L.; Liu, Y.; Sun, J.; Zhao, X.; Li, Y.; Xie, X.; Hu, J. An epitope on the stem region of hemagglutinin of H1N1 influenza A virus recognized by neutralizing monoclonal antibody. Biochem. Biophys. Res. Commun., 2019, 518(2), 319-324.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.055] [PMID: 31421820]
[38]
He, W.; Tan, G.S.; Mullarkey, C.E.; Lee, A.J.; Lam, M.M.W.; Krammer, F.; Henry, C.; Wilson, P.C.; Ashkar, A.A.; Palese, P.; Miller, M.S. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc. Natl. Acad. Sci. USA, 2016, 113(42), 11931-11936.
[http://dx.doi.org/10.1073/pnas.1609316113] [PMID: 27698132]
[39]
Gao, R.; Sheng, Z.; Sreenivasan, C.C.; Wang, D.; Li, F. Influenza A virus antibodies with antibody-dependent cellular cytotoxicity function. Viruses, 2020, 12(3), 276.
[http://dx.doi.org/10.3390/v12030276] [PMID: 32121563]
[40]
Louie, G.V.; Yang, W.; Bowman, M.E.; Choe, S. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol. Cell, 1997, 1(1), 67-78.
[http://dx.doi.org/10.1016/S1097-2765(00)80008-8] [PMID: 9659904]
[41]
Bell, C.E.; Eisenberg, D. Crystal structure of nucleotide-free diphtheria toxin. Biochemistry, 1997, 36(3), 481-488.
[http://dx.doi.org/10.1021/bi962214s] [PMID: 9012663]
[42]
Khrustalev, V.V.; Barkovsky, E.V.; Khrustaleva, T.A. The influence of flanking secondary structures on amino Acid content and typical lengths of 3/10 helices. Int. J. Proteomics, 2014, 2014, 360230.
[http://dx.doi.org/10.1155/2014/360230] [PMID: 25371821]
[43]
Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006, 1(6), 2876-2890.
[http://dx.doi.org/10.1038/nprot.2006.202] [PMID: 17406547]
[44]
Kamps, J.J.A.G.; Hopkinson, R.J.; Schofield, C.J.; Claridge, T.D.W. How formaldehyde reacts with amino acids. Communications Chemistry, 2019, 2, 126.
[45]
Flemming, J.; Wiesen, L.; Herschhorn, A. Conformation-dependent interactions between HIV-1 envelope glycoproteins and broadly neutralizing antibodies. AIDS Res. Hum. Retroviruses, 2018, 34(9), 794-803.
[http://dx.doi.org/10.1089/aid.2018.0102] [PMID: 29905080]
[46]
Tolbert, W.D.; Sherburn, R.T.; Van, V.; Pazgier, M. Structural basis for epitopes in the gp120 cluster A region that invokes potent effector cell activity. Viruses, 2019, 11(1), 69.
[http://dx.doi.org/10.3390/v11010069] [PMID: 30654465]
[47]
Gohain, N.; Tolbert, W.D.; Acharya, P.; Yu, L.; Liu, T.; Zhao, P.; Orlandi, C.; Visciano, M.L.; Kamin-Lewis, R.; Sajadi, M.M.; Martin, L.; Robinson, J.E.; Kwong, P.D.; DeVico, A.L.; Ray, K.; Lewis, G.K.; Pazgier, M. Cocrystal structures of antibody N60-i3 and antibody JR4 in complex with gp120 define more cluster A epitopes involved in effective antibody-dependent effector function against HIV-1. J. Virol., 2015, 89(17), 8840-8854.
[http://dx.doi.org/10.1128/JVI.01232-15] [PMID: 26085162]
[48]
Mayr, L.; Su, B.; Moog, C. Role of nonneutralizing antibodies in vaccines and/or HIV infected individuals. Curr. Opin. HIV AIDS, 2017, 12(3), 209-215.
[http://dx.doi.org/10.1097/COH.0000000000000357] [PMID: 28422785]
[49]
Tolbert, W.D.; Gohain, N.; Veillette, M.; Chapleau, J-P.; Orlandi, C.; Visciano, M.L.; Ebadi, M.; DeVico, A.L.; Fouts, T.R.; Finzi, A.; Lewis, G.K.; Pazgier, M. Pairing down HIV env: design and crystal structure of a stabilized inner domain of HIV-1 gp120 displaying a major ADCC target of the A32 region. Structure, 2016, 24(5), 697-709.
[http://dx.doi.org/10.1016/j.str.2016.03.005] [PMID: 27041594]
[50]
Santini, S.; Derreumaux, P. Helix H1 of the prion protein is rather stable against environmental perturbations: molecular dynamics of mutation and deletion variants of PrP(90-231). Cell. Mol. Life Sci., 2004, 61(7-8), 951-960.
[http://dx.doi.org/10.1007/s00018-003-3455-3] [PMID: 15095015]
[51]
Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci., 2016, 22(1), 4-27.
[http://dx.doi.org/10.1002/psc.2836] [PMID: 26785684]
[52]
Sachsamanoglou, M.; Paspaltsis, I.; Petrakis, S.; Verghese-Nikolakaki, S.; Panagiotidis, C.H.; Voigtlander, T.; Budka, H.; Langeveld, J.P.M.; Sklaviadis, T. Antigenic profile of human recombinant PrP: generation and characterization of a versatile polyclonal antiserum. J. Neuroimmunol., 2004, 146(1-2), 22-32.
[http://dx.doi.org/10.1016/j.jneuroim.2003.09.018] [PMID: 14698843]
[53]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy