Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Green Miniaturized Extraction and Microextraction of Polycyclic Aromatic Hydrocarbons from Foods and Beverages

Author(s): Natalia Manousi* and George A. Zachariadis*

Volume 17, Issue 4, 2021

Published on: 10 November, 2020

Page: [461 - 477] Pages: 17

DOI: 10.2174/1573411016999201110095115

Price: $65

Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants consisting of two or more fused benzene rings. PAHs can be introduced into foodstuffs through different ways, such as smoking, roasting and grilling for meat and fish, absorption from the environment for edible oils, chemical treatment of crops for plant-based products, or contamination through packaging during storage. Due to the low concentrations of PAHs in foodstuffs, a clean-up and preconcentration sample preparation technique is of high importance. Until recently, solid-phase and liquid-liquid extraction were the most popular sample preparation techniques for the extraction of PAHs from food matrices. However, due to the fundamental drawbacks of those extraction procedures, a plethora of novel methods, including micro-extraction techniques and miniaturized extraction techniques, have been developed. Moreover, a wide variety of novel adsorbent materials (e.g., metal-organic frameworks, carbon-based materials, etc.) have been synthesized and applied for PAHs’ extraction.

Objective: This review aims to discuss recent advances in the extraction techniques of PAHs from food samples, utilizing novel sample preparation approaches and adsorbents.

Conclusion: Compared with the traditional sample preparation techniques, the herein discussed green miniaturized extraction and microextraction techniques offer multiple benefits, including simplicity, reduced sample preparation time, as well as reduced consumption of organic solvents.

Keywords: PAHs, sample preparation, microextraction, miniaturized extraction, food samples, beverages.

Graphical Abstract

[1]
Cai, Y.; Yan, Z.H.; Wang, N.Y.; Cai, Q.Y.; Yao, S.Z. Preparation of naphthyl functionalized magnetic nanoparticles for extraction of polycyclic aromatic hydrocarbons from river waters. RSC Advances, 2015, 5, 56189-56197.
[http://dx.doi.org/10.1039/C5RA10054B]
[2]
Ji, W.; Zhang, M.; Duan, W.; Wang, X.; Zhao, H.; Guo, L. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils. Food Chem., 2017, 235, 104-110.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.054] [PMID: 28554613]
[3]
Zhang, X.; Xie, S.; Paau, M.C.; Zheng, B.; Yuan, H.; Xiao, D.; Choi, M.M.F. Ultrahigh performance liquid chromatographic analysis and magnetic preconcentration of polycyclic aromatic hydrocarbons by Feé Oé-doped polymeric nanoparticles. J. Chromatogr. A, 2012, 1247, 1-9.
[http://dx.doi.org/10.1016/j.chroma.2012.05.047] [PMID: 22695693]
[4]
Pérez, R.A.; Albero, B.; Tadeo, J.L.; Fraile, M.V.; Sánchez-Brunete, C. Determination of PAHs in soil leachates by magnetic solid-phase extraction using nanoparticles and gas chromatography-tandem mass spectrometry. Anal. Methods, 2014, 6(6), 1941.
[http://dx.doi.org/10.1039/c3ay41919c]
[5]
Boffetta, P.; Jourenkova, N.; Gustavsson, P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control, 1997, 8(3), 444-472.
[http://dx.doi.org/10.1023/A:1018465507029] [PMID: 9498904]
[6]
Honda, M.; Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health, 2020, 17(4), 1363.
[http://dx.doi.org/10.3390/ijerph17041363] [PMID: 32093224]
[7]
Viñas, P.; Campillo, N.; Aguinaga, N.; Pérez-Cánovas, E.; Hernández-Córdoba, M. Use of headspace solid-phase microextraction coupled to liquid chromatography for the analysis of polycyclic aromatic hydrocarbons in tea infusions. J. Chromatogr. A, 2007, 1164(1-2), 10-17.
[http://dx.doi.org/10.1016/j.chroma.2007.06.056] [PMID: 17628570]
[8]
Moazzen, M.; Ahmadkhaniha, R.; Gorji, M.E.H.; Yunesian, M.; Rastkari, N. Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in grilled meat samples. Talanta, 2013, 115, 957-965.
[http://dx.doi.org/10.1016/j.talanta.2013.07.005] [PMID: 24054688]
[9]
Slámová, T.; Sadowska-Rociek, A.; Fraňková, A. Surma, Banout, J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J. Food Compos. Anal., 2020, 87103420
[http://dx.doi.org/10.1016/j.jfca.2020.103420]
[10]
Zhou, R.Z.; Jiang, J.; Mao, T.; Zhao, Y.S.; Lu, Y. Multiresidue analysis of environmental pollutants in edible vegetable oils by gas chromatography-tandem mass spectrometry. Food Chem., 2016, 207, 43-50.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.071] [PMID: 27080878]
[11]
Manousi, N.; Zachariadis, G.A. Recent advances in the extraction of polycyclic aromatic hydrocarbons from environmental samples. Molecules, 2020, 25(9), 1-31.
[http://dx.doi.org/10.3390/molecules25092182] [PMID: 32392764]
[12]
Purcaro, G.; Morrison, P.; Moret, S.; Conte, L.S.; Marriott, P.J. Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2007, 1161(1-2), 284-291.
[http://dx.doi.org/10.1016/j.chroma.2007.05.105] [PMID: 17597138]
[13]
Murahashi, T. Comprehensive two-dimensional high-performance liquid chromatography for the separation of polycyclic aromatic hydrocarbons. Analyst (Lond.), 2003, 128(6), 611-615.
[http://dx.doi.org/10.1039/b212643e] [PMID: 12866876]
[14]
Augusto, F.; Carasek, E.; Silva, R.G.C.; Rivellino, S.R.; Batista, A.D.; Martendal, E. New sorbents for extraction and microextraction techniques. J. Chromatogr. A, 2010, 1217(16), 2533-2542.
[http://dx.doi.org/10.1016/j.chroma.2009.12.033] [PMID: 20035942]
[15]
Zhang, Y.; Wu, D.; Yan, X.; Guan, Y. Rapid solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples by a coated through-pore sintered titanium disk. Talanta, 2016, 154, 400-408.
[http://dx.doi.org/10.1016/j.talanta.2016.03.094] [PMID: 27154692]
[16]
Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62(19), 2145-2148.
[http://dx.doi.org/10.1021/ac00218a019]
[17]
Liu, H.; Dasgupta, P.K. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem., 1996, 68(11), 1817-1821.
[http://dx.doi.org/10.1021/ac960145h] [PMID: 21619093]
[18]
Arnnok, P.; Patdhanagul, N.; Burakham, R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta, 2017, 164, 651-661.
[http://dx.doi.org/10.1016/j.talanta.2016.11.003] [PMID: 28107986]
[19]
Vasconcelos, I.; Fernandes, C. Magnetic solid phase extraction for determination of drugs in biological matrices. TrAC - Trends Analyt. Chem., 2017, 89, 41-52.
[http://dx.doi.org/10.1016/j.trac.2016.11.011]
[20]
Alampanos, V.; Kabir, A.; Furton, K.G.; Samanidou, V.; Papadoyannis, I. Fabric phase sorptive extraction for simultaneous observation of four penicillin antibiotics from human blood serum prior to high performance liquid chromatography and photo-diode array detection. Microchem. J., 2019, 149103964
[http://dx.doi.org/10.1016/j.microc.2019.103964]
[21]
Samanidou, V.; Georgiadis, D.E.; Kabir, A.; Furton, K.G. Capsule phase microextraction: The total and ultimate sample preparation approach. J. Chromatogr. Sep. Tech., 2018, 9(1), 1.
[22]
David, F.; Sandra, P. Stir bar sorptive extraction for trace analysis. J. Chromatogr. A, 2007, 1152(1-2), 54-69.
[http://dx.doi.org/10.1016/j.chroma.2007.01.032] [PMID: 17239895]
[23]
Luo, Y.B.; Chen, X.J.; Zhang, H.F.; Jiang, X.Y.; Li, X.; Li, X.Y.; Zhu, F.P.; Pang, Y.Q.; Hou, H.W. Simultaneous determination of polycyclic aromatic hydrocarbons and tobacco-specific N-nitrosamines in mainstream cigarette smoke using in-pipette-tip solid-phase extraction and on-line gel permeation chromatography-gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2016, 1460, 16-23.
[http://dx.doi.org/10.1016/j.chroma.2016.07.018] [PMID: 27435688]
[24]
Armenta, S.; Garrigues, S.; de la Guardia, M. The role of green extraction techniques in green analytical chemistry. TrAC- Trends Analyt. Chem., 2015, 71, 2-8.
[http://dx.doi.org/10.1016/j.trac.2014.12.011]
[25]
Filippou, O.; Deliyanni, E.A.; Samanidou, V.F. Fabrication and evaluation of magnetic activated carbon as adsorbent for ultrasonic assisted magnetic solid phase dispersive extraction of bisphenol A from milk prior to high performance liquid chromatographic analysis with ultraviolet detection. J. Chromatogr. A, 2017, 1479, 20-31.
[http://dx.doi.org/10.1016/j.chroma.2016.12.002] [PMID: 27939021]
[26]
Ibrahim, W.A.W.; Nodeh, H.R.; Sanagi, M.M. Graphene-Based materials as solid phase extraction sorbent for trace metal ions, organic compounds, and biological sample preparation. Crit. Rev. Anal. Chem., 2016, 46(4), 267-283.
[http://dx.doi.org/10.1080/10408347.2015.1034354] [PMID: 26186420]
[27]
Sun, J.; Liang, Q.; Han, Q.; Zhang, X.; Ding, M. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta, 2015, 132, 557-563.
[http://dx.doi.org/10.1016/j.talanta.2014.09.043] [PMID: 25476344]
[28]
Zhou, Q.; Ding, Y.; Xiao, J. Simultaneous determination of cyanazine, chlorotoluron and chlorbenzuron in environmental water samples with SPE multiwalled carbon nanotubes and LC. Chromatographia, 2007, 65, 25-30.
[http://dx.doi.org/10.1365/s10337-006-0111-8]
[29]
Martin, P.; Wilson, I.D.; Jones, G.R. Optimisation of procedures for the extraction of structural analogues of propranolol with molecular imprinted polymers for sample preparation. J. Chromatogr. A, 2000, 889(1-2), 143-147.
[http://dx.doi.org/10.1016/S0021-9673(00)00570-7] [PMID: 10985546]
[30]
Villar-Navarro, M.; Martín-Valero, M.J.; Fernández-Torres, R.M.; Callejón-Mochón, M.; Bello-López, M.A. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1044-1045, 63-69.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.009] [PMID: 28086202]
[31]
Benedetti, B.; Di Carro, M.; Magi, E. Multivariate optimization of an extraction procedure based on magnetic molecular imprinted polymer for the determination of polycyclic aromatic hydrocarbons in sea water. Microchem. J., 2019, 145, 1199-1206.
[http://dx.doi.org/10.1016/j.microc.2018.12.048]
[32]
Cormack, P.A.G.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterisation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 804(1), 173-182.
[http://dx.doi.org/10.1016/j.jchromb.2004.02.013] [PMID: 15093171]
[33]
Şarkaya, K.; Bakhshpour, M.; Denizli, A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions. Sep. Sci. Technol., 2019, 54(18), 2993-3004.
[http://dx.doi.org/10.1080/01496395.2018.1556300]
[34]
Maya, F.; Palomino Cabello, C.; Frizzarin, R.M.; Estela, J.M.; Turnes Palomino, G.; Cerdà, V. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC -. Trends Analyt. Chem., 2017, 90, 142-152.
[http://dx.doi.org/10.1016/j.trac.2017.03.004]
[35]
Chen, L.; Wu, Q.; Gao, J.; Li, H.; Dong, S.; Shi, X.; Zhao, L. Applications of covalent organic frameworks in analytical chemistry. TrAC -. Trends Analyt. Chem., 2019, 113, 182-193.
[http://dx.doi.org/10.1016/j.trac.2019.01.016]
[36]
Locatelli, M.; Forcucci, L.; Sciascia, F.; Cifelli, R.; Ferrone, V.; Carlucci, G. Extraction and detection techniques for PAHs determination in Beverages: A review. Curr. Chromatogr., 2014, 1(2), 122-138.
[http://dx.doi.org/10.2174/2213240601666140415223545]
[37]
Moret, S.; Conte, L.S. Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J. Chromatogr. A, 2000, 882(1-2), 245-253.
[http://dx.doi.org/10.1016/S0021-9673(00)00079-0] [PMID: 10895949]
[38]
Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A, 2010, 1217(41), 6303-6326.
[http://dx.doi.org/10.1016/j.chroma.2010.07.079] [PMID: 20828703]
[39]
Wang, W.; Meng, B.; Lu, X.; Liu, Y.; Tao, S. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal. Chim. Acta, 2007, 602(2), 211-222.
[http://dx.doi.org/10.1016/j.aca.2007.09.023] [PMID: 17933606]
[40]
Purcaro, G.; Moret, S.; Conte, L.S. Rapid validated method for the analysis of benzo[a]pyrene in vegetable oils by using solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A, 2007, 1176(1-2), 231-235.
[http://dx.doi.org/10.1016/j.chroma.2007.10.070] [PMID: 18005976]
[41]
Zacs, D.; Rozentale, I.; Reinholds, I.; Bartkevics, V. Multi-Walled carbon nanotubes as effective sorbents for rapid analysis of polycyclic aromatic hydrocarbons in edible oils using dispersive solid-phase extraction (d-SPE) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Food Anal. Methods, 2018, 11, 2508-2517.
[http://dx.doi.org/10.1007/s12161-018-1240-z]
[42]
Zhao, Q.; Wei, F.; Luo, Y.B.; Ding, J.; Xiao, N.; Feng, Y.Q. Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. J. Agric. Food Chem., 2011, 59(24), 12794-12800.
[http://dx.doi.org/10.1021/jf203973s] [PMID: 22103676]
[43]
Wang, Q.; Lian, J.; Hua, Z.; Yang, Y.; Li, Y.; Hao, X.; Cao, Y.; Zeng, X. Hybrid nanomaterial based on magnetic multiwalled carbon nanotube-octadecylphosphonic acid modified zirconia for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from edible oils. Anal. Methods, 2018, 10, 5516-5523.
[http://dx.doi.org/10.1039/C8AY01902A]
[44]
Zhang, Y.; Zhou, H.; Zhang, Z.H.; Wu, X.L.; Chen, W.G.; Zhu, Y.; Fang, C.F.; Zhao, Y.G. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils. J. Chromatogr. A, 2017, 1489, 29-38.
[http://dx.doi.org/10.1016/j.chroma.2017.02.010] [PMID: 28193466]
[45]
Zheng, H.B.; Ding, J.; Zheng, S.J.; Zhu, G.T.; Yuan, B.F.; Feng, Y.Q. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta, 2016, 148, 46-53.
[http://dx.doi.org/10.1016/j.talanta.2015.10.059] [PMID: 26653422]
[46]
Lu, J.; Lu, S.; Yao, D.; Huang, X.; Lai, H.; Yin, X. Preparation of ionic liquid-modified magnetic nanoparticles based on thiol-ene click chemistry for the analysis of polycyclic aromatic hydrocarbons in water and smoked meat samples. J. Chin. Chem. Soc. (Taipei), 2019, 66(7), 748-755.
[http://dx.doi.org/10.1002/jccs.201800377]
[47]
Kamankesh, M.; Mohammadi, A.; Hosseini, H.; Modarres Tehrani, Z. Rapid determination of polycyclic aromatic hydrocarbons in grilled meat using microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry. Meat Sci., 2015, 103, 61-67.
[http://dx.doi.org/10.1016/j.meatsci.2015.01.001] [PMID: 25618021]
[48]
Vichapong, J.; Santaladchaiyakit, Y.; Burakham, R.; Srijaranai, S. Magnetic stirring assisted demulsification dispersive liquid-liquid microextraction for preconcentration of polycyclic aromatic hydrocarbons in grilled pork samples. Toxics, 2019, 7(1)E8
[http://dx.doi.org/10.3390/toxics7010008] [PMID: 30781846]
[49]
Surma, M.; Sadowska-Rociek, A.; Cieślik, E. The application of d-SPE in the QuEChERS method for the determination of PAHs in food of animal origin with GC-MS detection. Eur. Food Res. Technol., 2014, 238, 1029-1036.
[http://dx.doi.org/10.1007/s00217-014-2181-4]
[50]
Ghasemzadeh-Mohammadi, V.; Mohammadi, A.; Hashemi, M.; Khaksar, R.; Haratian, P. Microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish. J. Chromatogr. A, 2012, 1237, 30-36.
[http://dx.doi.org/10.1016/j.chroma.2012.02.078] [PMID: 22483095]
[51]
Mohammadi, A.; Ghasemzadeh-Mohammadi, V.; Haratian, P.; Khaksar, R.; Chaichi, M. Determination of polycyclic aromatic hydrocarbons in smoked fish samples by a new microextraction technique and method optimisation using response surface methodology. Food Chem., 2013, 141(3), 2459-2465.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.065] [PMID: 23870981]
[52]
Forsberg, N.D.; Wilson, G.R.; Anderson, K.A. Determination of parent and substituted polycyclic aromatic hydrocarbons in high-fat salmon using a modified QuEChERS extraction, dispersive SPE and GC-MS. J. Agric. Food Chem., 2011, 59(15), 8108-8116.
[http://dx.doi.org/10.1021/jf201745a] [PMID: 21732651]
[53]
Duedahl-Olesen, L.; Iversen, N.M.; Kelmo, C.; Jensen, L.K. Validation of QuEChERS for screening of 4 marker polycyclic aromatic hydrocarbons in fish and malt. Food Control, 2020, 108106434
[http://dx.doi.org/10.1016/j.foodcont.2018.12.010]
[54]
Pfannkoch, E.A.; Stuff, J.R.; Whitecavage, J.A.; Blevins, J.M.; Seely, K.A.; Moran, J.H. A high throughput method for measuring polycyclic aromatic hydrocarbons in seafood using QuEChERS extraction and SBSE. Int. J. Anal. Chem., 2015, 2015359629
[http://dx.doi.org/10.1155/2015/359629] [PMID: 25873967]
[55]
Yuan, Y.; Lin, X.; Li, T.; Pang, T.; Dong, Y.; Zhuo, R.; Wang, Q.; Cao, Y.; Gan, N. A solid phase microextraction Arrow with zirconium metal-organic framework/molybdenum disulfide coating coupled with gas chromatography-mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples. J. Chromatogr. A, 2019, 1592, 9-18.
[http://dx.doi.org/10.1016/j.chroma.2019.01.066] [PMID: 30711322]
[56]
Liu, M.; Liu, J.; Guo, C.; Li, Y. Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr. A, 2019, 1584, 57-63.
[http://dx.doi.org/10.1016/j.chroma.2018.11.043] [PMID: 30502036]
[57]
Hou, X.; Guo, Y.; Liang, X.; Wang, X.; Wang, L.; Wang, L.; Liu, X. Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap. Talanta, 2016, 153, 392-400.
[http://dx.doi.org/10.1016/j.talanta.2016.03.034] [PMID: 27130133]
[58]
Rostampour, R.; Kamalabadi, M.; Kamankesh, M.; Hadian, Z.; Jazaeri, S.; Mohammadi, A.; Zolgharnein, J. An efficient, sensitive and fast microextraction method followed by gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in bread samples. Anal. Methods, 2017, 9, 6246-6253.
[http://dx.doi.org/10.1039/C7AY02229H]
[59]
Mahmoudpour, M.; Pilevar, Z.; Javanmardi, F.; Taram, F.; Mousavi, M.M. PAHs in toasted bread: Determination using microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Anal. Methods, 2018, 10, 2398-2404.
[http://dx.doi.org/10.1039/C8AY00475G]
[60]
Mahmoudpour, M.; Mohtadinia, J.; Mousavi, M.M.; Ansarin, M.; Nemati, M. Application of the microwave-assisted extraction and dispersive liquid-liquid microextraction for the analysis of PAHs in smoked rice. Food Anal. Methods, 2017, 10, 277-286.
[http://dx.doi.org/10.1007/s12161-016-0579-2]
[61]
Boon, Y.H.; Mohamad Zain, N.N.; Mohamad, S.; Osman, H.; Raoov, M. Magnetic poly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem., 2019, 278, 322-332.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.145] [PMID: 30583379]
[62]
Sadowska-Rociek, A.; Surma, M.; Cieślik, E. Determination of polycyclic aromatic hydrocarbons in coffee and coffee substitutes using dispersive SPE and gas chromatography-mass spectrometry. Food Anal. Methods, 2015, 8, 109-121.
[http://dx.doi.org/10.1007/s12161-014-9876-9]
[63]
Sadowska-Rociek, A.; Surma, M.; Cieślik, E. Comparison of different modifications on QuEChERS sample preparation method for PAHs determination in black, green, red and white tea. Environ. Sci. Pollut. Res. Int., 2014, 21(2), 1326-1338.
[http://dx.doi.org/10.1007/s11356-013-2022-1] [PMID: 23900956]
[64]
Chen, H.; Gao, G.; Liu, P.; Pan, R.; Liu, X.; Lu, C. Determination of 16 polycyclic aromatic hydrocarbons in tea by simultaneous dispersive solid-phase extraction and liquid-liquid extraction coupled with gas chromatography-tandem mass spectrometry. Food Anal. Methods, 2016, 9, 2374-2384.
[http://dx.doi.org/10.1007/s12161-016-0427-4]
[65]
Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem., 1993, 65(14), 1843-1852.
[http://dx.doi.org/10.1021/ac00062a008]
[66]
Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC -. Trends Analyt. Chem., 2019, 112, 226-233.
[http://dx.doi.org/10.1016/j.trac.2018.12.005]
[67]
Trojanowicz, M. Analytical applications of carbon nanotubes: A review. TrAC -. Trends Analyt. Chem., 2006, 25(5), 480-489.
[http://dx.doi.org/10.1016/j.trac.2005.11.008]
[68]
Han, Q.; Wang, Z.; Xia, J.; Chen, S.; Zhang, X.; Ding, M. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta, 2012, 101(15), 388-395.
[http://dx.doi.org/10.1016/j.talanta.2012.09.046] [PMID: 23158339]
[69]
Manousi, N.; Rosenberg, E.; Deliyanni, E.; Zachariadis, G.A.; Samanidou, V. Magnetic solid-phase extraction of organic compounds based on graphene oxide nanocomposites. Molecules, 2020, 25, 1148.
[http://dx.doi.org/10.3390/molecules25051148]
[70]
Liu, R.; Liu, J.F.; Yin, Y.G.; Hu, X.L.; Jiang, G.B. Ionic liquids in sample preparation. Anal. Bioanal. Chem., 2009, 393(3), 871-883.
[http://dx.doi.org/10.1007/s00216-008-2445-6] [PMID: 18958452]
[71]
Sun, P.; Armstrong, D.W. Ionic liquids in analytical chemistry. Anal. Chim. Acta, 2010, 661(1), 1-16.
[http://dx.doi.org/10.1016/j.aca.2009.12.007] [PMID: 20113709]
[72]
Wang, Y.; Hong, J.; Zhang, W.; Xu, R. Carbon nitride nanosheets for photocatalytic hydrogen evolution: Remarkably enhanced activity by dye sensitization. Catal. Sci. Technol., 2013, 3, 1703-1711.
[http://dx.doi.org/10.1039/c3cy20836b]
[73]
Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A, 2006, 1116(1-2), 1-9.
[http://dx.doi.org/10.1016/j.chroma.2006.03.007] [PMID: 16574135]
[74]
Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A, 2010, 1217(16), 2342-2357.
[http://dx.doi.org/10.1016/j.chroma.2009.11.088] [PMID: 20005521]
[75]
Zhang, P.P.; Shi, Z.G.; Yu, Q.W.; Feng, Y.Q. A new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water samples. Talanta, 2011, 83(5), 1711-1715.
[http://dx.doi.org/10.1016/j.talanta.2010.11.076] [PMID: 21238773]
[76]
Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int., 2003, 86(2), 412-431.
[http://dx.doi.org/10.1093/jaoac/86.2.412] [PMID: 12723926]
[77]
Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep., 1999, 11(10), 737-747.
[http://dx.doi.org/10.1002/(SICI)1520-667X(1999)11:10<737:AID-MCS7>3.0.CO;2-4]
[78]
Nazyropoulou, C.; Samanidou, V. Stir bar sorptive extraction applied to the analysis of biological fluids. Bioanalysis, 2015, 7(17), 2241-2250.
[http://dx.doi.org/10.4155/bio.15.129] [PMID: 26354598]
[79]
Kremser, A.; Jochmann, M.A.; Schmidt, T.C. PAL SPME Arrow--evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal. Bioanal. Chem., 2016, 408(3), 943-952.
[http://dx.doi.org/10.1007/s00216-015-9187-z] [PMID: 26677018]
[80]
Yaghi, O.M.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc., 1995, 117(41), 10401-10402.
[http://dx.doi.org/10.1021/ja00146a033]
[81]
Manousi, N.; Giannakoudakis, D.A.; Rosenberg, E.; Zachariadis, G.A. Extraction of metal ions with metal-organic frameworks. Molecules, 2019, 24(24), 4605.
[http://dx.doi.org/10.3390/molecules24244605] [PMID: 31888229]
[82]
Thomas-Hillman, I.; Laybourn, A.; Dodds, C.; Kingman, S.W. Realising the environmental benefits of metal-organic frameworks: Recent advances in microwave synthesis. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 11564-11581.
[http://dx.doi.org/10.1039/C8TA02919A]
[83]
Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? - A review. Anal. Chim. Acta, 2016, 939, 26-41.
[http://dx.doi.org/10.1016/j.aca.2016.07.047] [PMID: 27639141]
[84]
Sadowska-Rociek, A.; Surma, M.; Cieślik, E. Determination of pahs in cocoa samples using d-spe with different sorbents. J. Microbiol. Biotechnol. Food Sci., 2015, 4, 135-137.
[http://dx.doi.org/10.15414/jmbfs.2015.4.special3.135-137]
[85]
Pang, J.; Yuan, D.; Huang, X. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples. J. Chromatogr. A, 2018, 1571, 29-37.
[http://dx.doi.org/10.1016/j.chroma.2018.07.077] [PMID: 30177269]
[86]
Sanagi, M.M.; Loh, S.H.; Wan Ibrahim, W.A.; Hasan, M.N.; Aboul Enein, H.Y. Determination of polycyclic aromatic hydrocarbons in fresh milk by hollow fiber liquid-phase microextraction-gas chromatography mass spectrometry. J. Chromatogr. Sci., 2013, 51(2), 112-116.
[http://dx.doi.org/10.1093/chromsci/bms113] [PMID: 22776739]
[87]
Wang, M.; Cheng, C.; Liu, C.; Yang, Y. Hollow fiber supported ionic liquids liquid-phase micro-extraction followed by high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons in milk samples. J. Chromatogr. Sci., 2018, 56(1), 74-80.
[http://dx.doi.org/10.1093/chromsci/bmx075] [PMID: 28977478]
[88]
Ishizaki, A.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A, 2010, 1217(35), 5555-5563.
[http://dx.doi.org/10.1016/j.chroma.2010.06.068] [PMID: 20637468]
[89]
Yazdi, M.N.; Yamini, Y.; Asiabi, H. Multiwall carbon nanotube- zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples. J. Chromatogr. A, 2018, 1554, 8-15.
[http://dx.doi.org/10.1016/j.chroma.2018.04.040] [PMID: 29691055]
[90]
Loh, S.H.; Sanagi, M.M.; Wan Ibrahim, W.A.; Hasan, M.N. Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage. Talanta, 2013, 106, 200-205.
[http://dx.doi.org/10.1016/j.talanta.2012.12.032] [PMID: 23598117]
[91]
Kamalabadi, M.; Mohammadi, A.; Alizadeh, N. Simultaneous determination of seven polycyclic aromatic hydrocarbons in coffee samples using effective microwave-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry and method optimization using central composite. Food Anal. Methods, 2018, 11, 781-789.
[http://dx.doi.org/10.1007/s12161-017-1042-8]
[92]
Rivera-Vera, C.; Lasarte-Aragonés, G.; Bravo, M.A.; Muñoz-Lira, D.; Salazar, R.; Toledo-Neira, C. Ionic liquids-based dispersive liquid-liquid microextraction for determination of carcinogenic polycyclic aromatic hydrocarbons in tea beverages: Evaluation of infusion preparation on pollutants release. Food Control, 2019, 106106685
[http://dx.doi.org/10.1016/j.foodcont.2019.06.011]
[93]
Yih Hui, B.; Mohamad Zain, N.N.; Mohamad, S.; Varanusupakul, P.; Osman, H.; Raoov, M. Poly(cyclodextrin-ionic liquid) based ferrofluid: A new class of magnetic colloid for dispersive liquid phase microextraction of polycyclic aromatic hydrocarbons from food samples prior to GC-FID analysis. Food Chem., 2020, 314126214
[http://dx.doi.org/10.1016/j.foodchem.2020.126214] [PMID: 31972404]
[94]
Shi, Z.; Jiang, J.; Pang, W.; Ma, H.; Chu, X.; Zhou, C.; Zhang, H. Dispersive micro-solid phase extraction using cotton based carbon fiber sorbent for the determination of three polycyclic aromatic hydrocarbons in tea infusion by gas chromatography-quadrupole mass spectrometry. Microchem. J., 2019, 151104209
[http://dx.doi.org/10.1016/j.microc.2019.104209]
[95]
Rocío-Bautista, P.; Pino, V.; Ayala, J.H.; Pasán, J.; Ruiz-Pérez, C.; Afonso, A.M. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. J. Chromatogr. A, 2016, 1436, 42-50.
[http://dx.doi.org/10.1016/j.chroma.2016.01.067] [PMID: 26852621]
[96]
Zhou, D.B.; Sheng, X.; Han, F.; Hu, Y.Y.; Ding, L.; Lv, Y.L.; Song, W.; Zheng, P. Magnetic solid-phase extraction based on [60]fullerene functionalization of magnetic nanoparticles for the determination of sixteen polycyclic aromatic hydrocarbons in tea samples. J. Chromatogr. A, 2018, 1578, 53-60.
[http://dx.doi.org/10.1016/j.chroma.2018.10.010] [PMID: 30337166]
[97]
Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC-FLD. Food Chem., 2016, 199, 75-80.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.137] [PMID: 26775946]
[98]
Eisert, R.; Pawliszyn, J. Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal. Chem., 1997, 69(16), 3140-3147.
[http://dx.doi.org/10.1021/ac970319a]
[99]
Manousi, N.; Tzanavaras, P.D.; Zacharis, C.K. Bioanalytical HPLC applications of in-tube solid phase microextraction: A two-decade overview. Molecules, 2020, 25(9), 2096.
[http://dx.doi.org/10.3390/molecules25092096] [PMID: 32365828]
[100]
Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A, 2000, 880(1-2), 35-62.
[http://dx.doi.org/10.1016/S0021-9673(00)00309-5] [PMID: 10890509]
[101]
Sharifi, V.; Abbasi, A.; Nosrati, A. Application of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction techniques in analytical toxicology. Yao Wu Shi Pin Fen Xi, 2016, 24(2), 264-276.
[http://dx.doi.org/10.1016/j.jfda.2015.10.004] [PMID: 28911578]
[102]
Zhao, L.; Lee, H.K. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal. Chem., 2002, 74(11), 2486-2492.
[http://dx.doi.org/10.1021/ac011124c] [PMID: 12069227]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy