Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Drug Synergy Prediction Using Dynamic Mutation Based Differential Evolution

Author(s): Manjit Kaur, Dilbag Singh* and Vijay Kumar

Volume 27, Issue 8, 2021

Published on: 06 November, 2020

Page: [1103 - 1111] Pages: 9

DOI: 10.2174/1381612826666201106090938

Price: $65

Abstract

Purpose: In cancer therapies, drug combinations have shown significant accuracy and minimal side effects than the single drug administration. Therefore, drug synergy has drawn great interest from pharmaceutical companies and researchers. Unfortunately, the prediction of drug synergy score was carried out based on the small group of drugs.

Methods: Due to the advancement in high-throughput screening (HTS), the size of drug synergy datasets has grown enormously in recent years. Hence, machine learning models have been utilized to predict the drug synergy score. However, the majority of these machine learning models suffer from over-fitting and hyperparameters tuning issues.

Results: A novel deep bidirectional mixture density network (BMDN) model is proposed. A dynamic mutationbased multi-objective differential evolution is used to optimize the hyper-parameters of BMDN. Extensive is conducted on the NCI-ALMANAC drug synergy dataset that consists of 2,90,000 synergy determinations.

Conclusions: Experimental results reveal that BMDN outperforms the existing drug synergy models in terms of various performance metrics.

Keywords: Drug synergy, deep learning, machine learning, neural networks, BMDN, HTS.

[1]
Celebi R, Bear Don’t Walk O IV, Movva R, Alpsoy S, Dumontier M. In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data. Sci Rep 2019; 9(1): 8949.
[http://dx.doi.org/10.1038/s41598-019-45236-6] [PMID: 31222109]
[2]
Stephen Chan HC, Shan H. Thamani Dahoun, Horst Vogel, and Shuguang Yuan. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[3]
Cheng F, Istvan A. Kovacs, and Albert-Laszlo Barabasi. Publisher correction: Network-based prediction of drug combinations. Nat Commun 2019; 10(1): 1-1.
[http://dx.doi.org/10.1038/s41467-019-09692-y] [PMID: 30602773]
[4]
Chiu Jason PC. Nichols Eric. Named entity recognition with bidirectional lstm-cnns. Trans Assoc Comput Linguist 2016; 4: 357-70.
[http://dx.doi.org/10.1162/tacl_a_00104]
[5]
Chiu Y-C. Hung-I Harry Chen, Tinghe Zhang, Songyao Zhang, Aparna Gorthi, Li-Ju Wang, Yufei Huang, and Yidong Chen. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genomics 2019; 12(1): 18.
[http://dx.doi.org/10.1186/s12920-018-0460-9] [PMID: 31405368]
[6]
Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58(3): 621-81.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[7]
Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med 2016; 8(1): 115.
[http://dx.doi.org/10.1186/s13073-016-0369-x] [PMID: 27793177]
[8]
Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. International conference on parallel problem solving from nature. 849-58.
[http://dx.doi.org/10.1007/3-540-45356-3_83]
[9]
Di Veroli GY, Fornari C, Wang D, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016; 32(18): 2866-8.
[http://dx.doi.org/10.1093/bioinformatics/btw230] [PMID: 27153664]
[10]
Dorozhinsky VI, Pavlovsky OV. Artificial quantum neural network: quantum neurons logical elements and tests of convolutional nets 2018.
[11]
Fan Q, Yan X. Multi-objective modified differential evolution algorithm with archive-base mutation for solving multi-objective xylene oxidation rocess. J Intell Manuf 2018; 29(1): 35-49.
[http://dx.doi.org/10.1007/s10845-015-1087-8]
[12]
Ferreira D, Adega F, Chaves R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing 10.5772/1745
[13]
Flynn E, Altman R, et al. Grep: Gene set representation via gaussian embedding. bioRxiv 2019.
[14]
CH Li, XH Ma, WZ Chen, CX Wang. A protein-protein docking algorithm dependent on the type of complexes. Protein Eng 2003; 16(4): 265-9.
[http://dx.doi.org/10.1093/proeng/gzg035] [PMID: 12736369]
[15]
Gianni Matt, Qin Yong, Wenes Geert, et al. High-throughput architecture for discovering combination cancer therapeutics JCO clinical cancer informatics 2018; 2: 1-12.
[16]
Gilvary C, Madhukar N, Elkhader J, Elemento O. The missing pieces of artificial intelligence in medicine. Trends Pharmacol Sci 2019; 40(8): 555-64.
[http://dx.doi.org/10.1016/j.tips.2019.06.001] [PMID: 31277839]
[17]
Goswami CP, Cheng L, Alexander PS, Singal A, Li L. A new drug combinatory effect prediction algorithm on the cancer cell based on gene expression and dose-response curve. CPT Pharmacometrics Syst Pharmacol 2015; 4(2): e9.
[http://dx.doi.org/10.1002/psp4.9] [PMID: 26225234]
[18]
Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009; 27(5): 672-80.
[http://dx.doi.org/10.1200/JCO.2008.19.8135] [PMID: 19114685]
[19]
Held MA, Langdon CG, Platt JT, et al. Genotype-selective combination therapies for melanoma identified by high-throughput drug screening. Cancer Discov 2013; 3(1): 52-67.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0408] [PMID: 23239741]
[20]
He L, Kulesskiy E, Saarela J, et al. Methods for high-throughput drug combination screening and synergy scoring biorxiv Preprint bioRxiv 2016. 51698
[21]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9(8): 1735-80.
[http://dx.doi.org/10.1162/neco.1997.9.8.1735] [PMID: 9377276]
[22]
Susan L, Camalier Richard, Crowell James A, et al. The national cancer institute almanac: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer research 2017; 77(13): 3564-76.
[23]
Ianevski A, He L, Aittokallio T, Tang J. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics 2017; 33(15): 2413-5.
[http://dx.doi.org/10.1093/bioinformatics/btx162] [PMID: 28379339]
[24]
Joseph D. Janizek, Safiye Celik, and Su-In Lee. Explainable machine learning prediction of synergistic drug combinations for precision cancer medicine. bioRxiv 2018.
[25]
Jiang P, Huang S, Fu Z, Sun Z, Lakowski TM, Hu P. Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput Struct Biotechnol J 2020; 18: 427-38.
[http://dx.doi.org/10.1016/j.csbj.2020.02.006] [PMID: 32153729]
[26]
Killoran N, Thomas R. Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd. Continuous-variable quantum neural networks. Phys Rev Res 2019; 1(3)033063
[http://dx.doi.org/10.1103/PhysRevResearch.1.033063]
[27]
HY Wu, YS Zhang, W Chen, ZC Mu. Comparative analysis of protein primary sequences with graph energy. Physica A 2015; 437: 249-62.
[http://dx.doi.org/10.1016/j.physa.2015.04.017]
[28]
Qing L, Fan Q-Q, Li J-J. Translation control of an immersed tunnel element using a multi-objective differential evolution algorithm. Comput Ind Eng 2019; 130: 158-65.
[http://dx.doi.org/10.1016/j.cie.2019.02.018]
[29]
Li H, Li T, Quang D, Guan Y. Network propagation predicts drug synergy in cancers. Cancer Res 2018; 78(18): 5446-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0740] [PMID: 30054332]
[30]
Li P, Huang C, Fu Y, et al. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015; 31(12): 2007-16.
[http://dx.doi.org/10.1093/bioinformatics/btv080] [PMID: 25667546]
[31]
Li Q, Wang B, Melucci M. Cnm: An interpretable complex-valued network for matching. Computation Lang 2019.
[32]
Li X, Xu Y, Cui H, et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif Intell Med 2017; 83: 35-43.
[http://dx.doi.org/10.1016/j.artmed.2017.05.008] [PMID: 28583437]
[33]
Li Y, Tian M, Liu G, Peng C, Jiao L. Quantum optimization and quantum learning: A survey IEEE Access 2020; 8: 23568-93.
[http://dx.doi.org/10.1109/ACCESS.2020.2970105]
[34]
Li Z, Tan J, Feng Y, Fang H. Multi-objective particle swarm optimization algorithm based on crowding distance sorting and its application. Jisuanji Jicheng Zhizao Xitong 2008; 7: 1329-36.
[35]
Malyutina A, Majumder MM, Wang W, Pessia A, Heckman CA, Tang J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLOS Comput Biol 2019; 15(5)e1006752
[http://dx.doi.org/10.1371/journal.pcbi.1006752] [PMID: 31107860]
[36]
Mayr A, Klambauer G, Unterthiner T, Hochreiter S. Deeptox: toxicity prediction using deep learning. Front Environ Sci 2016; 3: 80.
[http://dx.doi.org/10.3389/fenvs.2015.00080]
[37]
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 2015; 55(2): 263-74.
[http://dx.doi.org/10.1021/ci500747n] [PMID: 25635324]
[38]
Meenu M, Xu B. Application of vibrational spectroscopy for classification, authentication and quality analysis of mushroom: A concise review. Food Chem 2019; 289: 545-57.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.091] [PMID: 30955647]
[39]
Michael P. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 2019; 10(1): 1-17.
[PMID: 30602773]
[40]
O’Neil J, Benita Y, Feldman I, et al. An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther 2016; 15(6): 1155-62.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0843] [PMID: 26983881]
[41]
Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 2018; 34(9): 1538-46.
[http://dx.doi.org/10.1093/bioinformatics/btx806] [PMID: 29253077]
[42]
Kelly E. Regan-Fendt, Jielin Xu, Mallory DiVincenzo, Megan C Duggan, Reena Shakya, Ryejung Na, William E Carson, Philip RO Payne, and Fuhai Li. Synergy from gene expression and network mining (syngenet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. NPJ Syst Biol Appl 2019; 5(1): 1-15.
[43]
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6(10): 813-23.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[44]
Sidorov P, Naulaerts S, Ariey-Bonnet J, Pasquier E, Ballester PJ. Predicting synergism of cancer drug combinations using nci-almanac data. Front Chem 2019; 7: 509.
[http://dx.doi.org/10.3389/fchem.2019.00509] [PMID: 31380352]
[45]
Singh H, Rana PS, Singh U. Prediction of drug synergy score using ensemble based differential evolution. IET Syst Biol 2019; 13(1): 24-9.
[http://dx.doi.org/10.1049/iet-syb.2018.5023] [PMID: 30774113]
[46]
Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 1997; 11(4): 341-59.
[http://dx.doi.org/10.1023/A:1008202821328]
[47]
Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360(6): 563-72.
[http://dx.doi.org/10.1056/NEJMoa0808268] [PMID: 19196673]
[48]
Wang Z, Li H, Guan Y. Machine learning for cancer drug combination. Clin Pharmacol Ther 2020; 107(4): 749-52.
[http://dx.doi.org/10.1002/cpt.1773] [PMID: 32045490]
[49]
Wildenhain J, Spitzer M, Dolma S, et al. Bellows, Gerard D Wright, and Mike Tyers. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst 2015; 1(6): 383-95.
[http://dx.doi.org/10.1016/j.cels.2015.12.003] [PMID: 27136353]
[50]
Yarotsky D. Error bounds for approximations with deep ReLU networks. Neural Netw 2017; 94: 103-14.
[http://dx.doi.org/10.1016/j.neunet.2017.07.002] [PMID: 28756334]
[51]
Zeng X, Zhu S, Hou Y, et al. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics 2020; 36(9): 2805-12.
[52]
Zhang T, Zhang L, Philip RO. Synergistic drug combination prediction by integrating multi-omics data in deep learning models 2018; 223-38.
[53]
Zhao Y, Yang R, Chevalier G, Rajiv C. Shah, and Rob Romijnders. Applying deep bidirectional lstm and mixture density network for basketball trajectory prediction. Optik (Stuttg) 2018; 158: 266-72.
[http://dx.doi.org/10.1016/j.ijleo.2017.12.038]
[54]
Zou J, Ji P, Zhao Y-L, et al. Neighbor communities in drug combination networks characterize synergistic effect. Mol Biosyst 2012; 8(12): 3185-96.
[http://dx.doi.org/10.1039/c2mb25267h] [PMID: 23014807]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy