Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

A Novel Reversibly Glycosylated Polypeptide-2 of Bee Pollen from Rape (Brassica napus L.): Purification and Characterization

Author(s): Qi Zhang, Tian Sun, Xingxia Tuo, Yujin Li, Haixia Yang* and Jianjun Deng*

Volume 28, Issue 5, 2021

Published on: 03 November, 2020

Page: [543 - 553] Pages: 11

DOI: 10.2174/0929866527666201103161302

Price: $65

Abstract

Background: Reversibly glycosylated polypeptide (RGP), a kind of hydrosoluble and plasmodesmal-associated protein found in plants, plays a crucial role in the development of pollen.

Objective: A novel RGP 2 was isolated and identified from rape (Brassica napus L.) bee pollen.

Methods: RGP2 was isolated and purified by ion-exchange column and gel filtration chromatography, and characterized by MALDI-TOF-MS, LC-MS, immunological histological chemistry, and transmission electron microscope.

Results: Our results indicated that the RGP2 is an acidic protein (pI=5.46) with the molecular weight 42388 Da. It contained 17 kinds of amino acids, among which aspartic acid had the highest amount (71.56 mg/g). Homologous alignment of amino acid sequence results showed that RGP2 was 80.33%, 85.02%, 86.06%, and 88.93% identical to Arabidopsis thaliana RGP2 (AtRGP2), Oryza sativa RGP (OsRGP), Triticum aestivum RGP (TaRGP), and Zea maize RGP (ZmRGP), respectively. The localization results showed that RGP2 in rape anther existed in exine and intine of anther cells of rape flower by immunological histological chemistry and the subcellular localization identified that RGP2 appeared around the Golgi apparatus in cytoplasm by transmission electron microscope.

Conclusion: RGP2 has a highly conserved sequence of amino acid residues and potential glycosylation sites.

Keywords: Reversibly glycosylated polypeptide, rape bee pollen, immunological histological chemistry, peptide mass fingerprinting, MALDI-TOF-MS, Transmission Electron Microscope.

Graphical Abstract

[1]
Dong, J.; Gao, K.; Wang, K.; Xu, X.; Zhang, H. Cell wall disruption of rape bee pollen treated with combination of protamex hydrolysis and ultrasonication. Food Res. Int., 2015, 75, 123-130.
[http://dx.doi.org/10.1016/j.foodres.2015.05.039] [PMID: 28454938]
[2]
Conte, P.; Del Caro, A.; Balestra, F.; Piga, A.; Fadda, C. Bee pollen as a functional ingredient in gluten-free bread: a physical-chemical, technological and sensory approach. Lebensm. Wiss. Technol., 2018, 90, 1-7.
[http://dx.doi.org/10.1016/j.lwt.2017.12.002]
[3]
Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front. Pharmacol., 2017, 8(176), 104-113.
[http://dx.doi.org/10.3389/fphar.2017.00104] [PMID: 28337140]
[4]
Rzepecka-Stojko, A.; Stojko, J.; Jasik, K.; Buszman, E. Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients, 2017, 9(12), 1369.
[http://dx.doi.org/10.3390/nu9121369] [PMID: 29258230]
[5]
Mohamed, N.A.; Ahmed, O.M.; Hozayen, W.G.; Ahmed, M.A. Ameliorative effects of bee pollen and date palm pollen on the glycemic state and male sexual dysfunctions in streptozotocin-induced diabetic wistar rats. Biomed. Pharmacother., 2018, 97, 9-18.
[http://dx.doi.org/10.1016/j.biopha.2017.10.117] [PMID: 29080463]
[6]
Cheng, N.; Chen, S.; Liu, X.; Zhao, H.; Cao, W. Impact of Schisandra chinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet induced obese mice. Nutrients, 2019, 11(2), 346.
[http://dx.doi.org/10.3390/nu11020346]
[7]
Liao, Y.; Bae, H.J.; Zhang, J.; Kwon, Y.; Koo, B.; Jung, I.H.; Kim, H.M.; Park, J.H.; Lew, J.H.; Ryu, J.H. The ameliorating effects of bee pollen on scopolamine-induced cognitive impairment in mice. Biol. Pharm. Bull., 2019, 42(3), 379-388.
[http://dx.doi.org/10.1248/bpb.b18-00552] [PMID: 30828070]
[8]
Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.; Estevinho, L.M. Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem. Toxicol., 2014, 63, 233-239.
[http://dx.doi.org/10.1016/j.fct.2013.11.010] [PMID: 24262487]
[9]
Bakour, M.; Al-Waili, N.S.; El Menyiy, N.; Imtara, H.; Figuira, A.C.; Al-Waili, T.; Lyoussi, B. Antioxidant activity and protective effect of bee bread (honey and pollen) in aluminum-induced anemia, elevation of inflammatory makers and hepato-renal toxicity. J. Food Sci. Technol., 2017, 54(13), 4205-4212.
[http://dx.doi.org/10.1007/s13197-017-2889-9] [PMID: 29184226]
[10]
Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and determination of bioactive compounds from bee pollen. J. Pharm. Biomed. Anal., 2018, 147, 110-124.
[http://dx.doi.org/10.1016/j.jpba.2017.08.009] [PMID: 28851545]
[11]
QYR Food & Beverage Research Center. Global bee pollen market research report 2017. Available from: http://www.qyresearchglobal.com/goods-1229177.html
[12]
Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: a review. Trends Food Sci. Technol., 2018, 71, 170-180.
[http://dx.doi.org/10.1016/j.tifs.2017.10.021]
[13]
Gardana, C.; Del Bo’, C.; Quicazán, M.C.; Corrrea, A.R.; Simonetti, P. Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. J. Food Compos. Anal., 2018, 73, 29-38.
[http://dx.doi.org/10.1016/j.jfca.2018.07.009]
[14]
Dhugga, K.S.; Ulvskov, P.; Gallagher, S.R.; Ray, P.M. Plant polypeptides reversibly glycosylated by UDP-glucose. Possible components of Golgi beta-glucan synthase in pea cells. J. Biol. Chem., 1991, 266(32), 21977-21984.
[PMID: 1834664]
[15]
Rothschild, A.; Tandecarz, J.S. UDP-glucose: protein transglucosylase in developing maize endosperm. Plant Sci., 1994, 97(2), 119-127.
[http://dx.doi.org/10.1016/0168-9452(94)90048-5]
[16]
Dhugga, K.S.; Tiwari, S.C.; Ray, P.M. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7679-7684.
[http://dx.doi.org/10.1073/pnas.94.14.7679] [PMID: 9207152]
[17]
Delgado, I.J.; Wang, Z.; de Rocher, A.; Keegstra, K.; Raikhel, N.V. Cloning and characterization of AtRGP1. A reversibly autoglycosylated arabidopsis protein implicated in cell wall biosynthesis. Plant Physiol., 1998, 116(4), 1339-1350.
[http://dx.doi.org/10.1104/pp.116.4.1339] [PMID: 9536051]
[18]
Bocca, S.N.; Kissen, R.; Rojas-Beltrán, J.A.; Noël, F.; Gebhardt, C.; Moreno, S.; Tandecarz, J.S.; Tandecarz, J.S. du Jardin P. Molecular cloning and characterization of the enzyme UDP-glucose: protein transglucosylase from potatodaggerdagger. This paper is specially dedicated to the memory of Dr Juana S. Tandecarz, deceased on December 10, 1996. Plant Physiol. Biochem., 1999, 37(11), 809-819.
[http://dx.doi.org/10.1016/S0981-9428(99)00117-5] [PMID: 10580281]
[19]
Zhao, G.R.; Liu, J.Y. Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochim. Biophys. Acta, 2002, 1574(3), 370-374.
[http://dx.doi.org/10.1016/S0167-4781(01)00311-6] [PMID: 11997105]
[20]
Langeveld, S.M.J.; Vennik, M.; Kottenhagen, M.; Van Wijk, R.; Buijk, A.; Kijne, J.W.; de Pater, S. Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides. Plant Physiol., 2002, 129(1), 278-289.
[http://dx.doi.org/10.1104/pp.010720] [PMID: 12011358]
[21]
Saxena, I.M.; Brown, R.M.Jr. Are the reversibly glycosylated polypeptides implicated in plant cell wall biosynthesis non-processive beta-glycosyltransferases? Trends Plant Sci., 1999, 4(1), 6-7.
[http://dx.doi.org/10.1016/S1360-1385(98)01358-2] [PMID: 10234262]
[22]
Sagi, G.; Katz, A.; Guenoune-Gelbart, D.; Epel, B.L. Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. Plant Cell, 2005, 17(6), 1788-1800.
[http://dx.doi.org/10.1105/tpc.105.031823] [PMID: 15879561]
[23]
Konishi, T.; Takeda, T.; Miyazaki, Y.; Ohnishi-Kameyama, M.; Hayashi, T.; O’Neill, M.A.; Ishii, T. A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology, 2007, 17(3), 345-354.
[http://dx.doi.org/10.1093/glycob/cwl081] [PMID: 17182701]
[24]
Hu, X.B.; Xu, M.G.; Wu, M.C.; Yao, X.Y. Study on the effect of temperature change wall-broken method on the content of the main nutrient in rape pollen (in Chinese with English abstract). Shipin Kexue, 2005, 26(10), 120-124.
[25]
Yang, F.L.; Dang, Y.G. Study on method of wall-breaking by temperature difference and ultrasonic (in Chinese with English abstract). Food Sci. Tech., 2010, 3, 94-97.
[26]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[27]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[28]
Zhang, Q.; Sun, T.; Liu, Q.Q.; Qu, L.L.; Fan, D.D.; Deng, J.J.; Yang, H.X. Purification, characterization and localization of reversibly glycosylated polypeptide 1 from rape (Brassica napus L.) bee pollen. Int. J. Agric. Biol., 2019, 21(2), 300-306.
[29]
Shi, J.; Cui, M.; Yang, L.; Kim, Y.J.; Zhang, D. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci., 2015, 20(11), 741-753.
[http://dx.doi.org/10.1016/j.tplants.2015.07.010] [PMID: 26442683]
[30]
Li, Q.; Liang, X.; Zhao, L.; Zhang, Z.; Xue, X.; Wang, K.; Wu, L. UPLC-Q-exactive orbitrap/MS-based lipidomics approach to characterize lipid extracts from bee pollen and their in vitro anti-inflammatory properties. J. Agric. Food Chem., 2017, 65(32), 6848-6860.
[http://dx.doi.org/10.1021/acs.jafc.7b02285] [PMID: 28737913]
[31]
Epel, B.L.; van Lent, J.W.M.; Cohen, L.; Kotlizky, G.; Katz, A.; Yahalom, A.A. 41 kDa protein isolated from maize mesocotyl cell walls immunolocalizes to plasmodesmata. Protoplasma, 1996, 191(1-2), 70-78.
[http://dx.doi.org/10.1007/BF01280826]
[32]
Konishi, T.; Ohnishi-Kameyama, M.; Funane, K.; Miyazaki, Y.; Konishi, T.; Ishii, T. An arginyl residue in rice UDP-arabinopyranose mutase is required for catalytic activity and autoglycosylation. Carbohydr. Res., 2010, 345(6), 787-791.
[http://dx.doi.org/10.1016/j.carres.2010.01.008] [PMID: 20149347]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy