Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

QSAR Studies on the IC50 of a Class of Thiazolidinone/Thiazolide Based Hybrids as Antitrypanosomal Agents

Author(s): Bo Yang, Hongzong Si* and Honglin Zhai

Volume 18, Issue 4, 2021

Published on: 02 November, 2020

Page: [406 - 415] Pages: 10

DOI: 10.2174/1570180817999201102200015

Price: $65

Abstract

Background: Trypanosomiasis is a widespread zoonotic disease and the existing drugs are not enough to prevent and treat it.

Objective: This study aimed to build a quantitative structure-activity relationship model by the chemical structures of a class of thiazolidone/thiazolidamide based hybrids. The model was used to screen new antitrypanosomal agents and predict the properties of composite molecules.

Methods: All compounds were randomly divided into a training set and a test set. A large number of descriptors were calculated by the software, then some of the best descriptors were selected to build the models. The linear model was built by the heuristic method and the nonlinear model was built by gene expression programming method.

Results: In the heuristic method, the correlation coefficients ,R2, R2cv, F and S2 were 0.581, 0.457, 14.053 and 15.311, respectively. In gene expression programming, the R2 and S2 were 0.715, 10.997 in the training set and 0.617, 22.778 in the test set. The results showed that the relative number of S atoms and the minimum bond order of an H atom had a significant positive contribution to IC50. Meanwhile, the relative number of double bonds and the count of hydrogen-bonding acceptor sites had a great negative impact on IC50.

Conclusion: Both the heuristic method and gene expression programming had a good predictive performance. By contrast, the gene expression programming method fitted well with the experimental values and it was expected to be beneficial in the synthesis of new antitrypanosomal drugs.

Keywords: Human african trypanosomiasis, quantitative structure-activity relationship, antitrypanosomal agent, IC50, gene expression programming, heuristic method.

« Previous
Graphical Abstract

[1]
WHO/Expert Committee on the Control of human African trypanosomiasis.. https://www.who.int/trypanosomiasis_african/resources/who_trs_984/en/
[2]
Matthews, G. Integrated Vector Management: Controlling Vectors of Malaria and Other Insect Vector Borne Diseases; Wiley-Blackwell, 2011.
[3]
Hassan, M.D.; Castanha, R.C.G.; Wolfram, D. Scientometric analysis of global trypanosomiasis research: 1988-2017. J. Infect. Public Health, 2020, 13(4), 514-520.
[http://dx.doi.org/10.1016/j.jiph.2019.10.006] [PMID: 31831393]
[5]
Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol., 2006, 25(8), 471-479.
[http://dx.doi.org/10.1191/0960327106het653oa] [PMID: 16937919]
[6]
WHO/Department of control of neglected tropical diseases WHO interim guidelines for the treatment of gambiense human African trypanosomiasis.. https://www.who.int/trypanosomiasis_african/resources/9789241550567/en/
[7]
Picado, A.; Ndung’u, J. Elimination of sleeping sickness in Uganda could be jeopardised by conflict in South Sudan. Lancet Glob. Health, 2017, 5(1), e28-e29.
[http://dx.doi.org/10.1016/S2214-109X(16)30288-1] [PMID: 27955775]
[8]
Sutherland, C.S.; Stone, C.M.; Steinmann, P.; Tanner, M.; Tediosi, F. Seeing beyond 2020: an economic evaluation of contemporary and emerging strategies for elimination of Trypanosoma brucei gambiense. Lancet Glob. Health, 2017, 5(1), e69-e79.
[http://dx.doi.org/10.1016/S2214-109X(16)30237-6] [PMID: 27884709]
[9]
Kalel, V.C.; Mäser, P.; Sattler, M.; Erdmann, R.; Popowicz, G.M. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Curr. Opin. Microbiol., 2018, 46, 116-122.
[http://dx.doi.org/10.1016/j.mib.2018.11.003] [PMID: 30481613]
[10]
Lindner, A.K.; Lejon, V.; Chappuis, F.; Seixas, J.; Kazumba, L.; Barrett, M.P.; Mwamba, E.; Erphas, O.; Akl, E.A.; Villanueva, G.; Bergman, H.; Simarro, P.; Kadima Ebeja, A.; Priotto, G.; Franco, J.R. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: Substantial changes for clinical practice. Lancet Infect. Dis., 2020, 20(2), e38-e46.
[http://dx.doi.org/10.1016/S1473-3099(19)30612-7] [PMID: 31879061]
[11]
Franco, J.; Scarone, L.; Comini, M.A. Chapter Three - Drugs and Drug Resistance in African and American Trypanosomiasis. Annu. Rep. Med. Chem., 2018, 51, 97-133.
[http://dx.doi.org/10.1016/bs.armc.2018.08.003]
[12]
Si, H.; Lian, N.; Yuan, S.; Fu, A.; Duan, Y.B.; Zhang, K.; Yao, X. Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds. Eur. J. Med. Chem., 2009, 44(10), 4044-4050.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.039] [PMID: 19482386]
[13]
Kryshchyshyn, A.; Kaminskyy, D.; Karpenko, O.; Gzella, A.; Grellier, P.; Lesyk, R. Thiazolidinone/thiazole based hybrids - New class of antitrypanosomal agents. Eur. J. Med. Chem., 2019, 174, 292-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.052] [PMID: 31051403]
[14]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[15]
Holota, S.; Kryshchyshyn, A.; Derkach, H.; Trufin, Y.; Demchuk, I.; Gzella, A.; Grellier, P.; Lesyk, R. Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorg. Chem., 2019, 86, 126-136.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.045] [PMID: 30690336]
[16]
Kryshchyshyn, A.; Devinyak, O.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Development of predictive QSAR models of 4-thiazolidinones antitrypanosomal activity using modern machine learning algorithms. Mol. Inform., 2018, 37(5)1700078
[http://dx.doi.org/10.1002/minf.201700078] [PMID: 29134756]
[17]
Ferreira, C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst., 2001, 13(2), 87-129.
[18]
Jedrzejowicz, J.; Jedrzejowicz, P. Gene Expression Programming as a data classification tool. A review. J. Intell. Fuzzy Syst., 2019, 36, 91-100.
[http://dx.doi.org/10.3233/JIFS-18026]
[19]
Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence; Springer: Berlin, Heidelberg, 2006.
[http://dx.doi.org/10.1007/3-540-32849-1_2]
[20]
Burg, A.B. Chapter 4. . Bonding Characteristics of the Sulfur Atom; Organic Sulfur Compounds, 1961, pp. 30-40.
[21]
Xie, J. The Development of resonance theory -introduction to structural resonance theory. J. Shaoguan Univ., 1985, (4), 62 -81..
[22]
Sannigrahi, A.; Kar, T. Molecular orbital theory of bond order and valency. J. Chem. Educ., 1988, 65(8), 674-676.
[http://dx.doi.org/10.1021/ed065p674]
[23]
Benavente-Garcia, O.; Castillo, J.; Lorente, J. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem., 2000, 68(4), 457-462.
[http://dx.doi.org/10.1016/S0308-8146(99)00221-6]
[24]
Muroi, H.; Nihei, K.; Tsujimoto, K.; Kubo, I. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorg. Med. Chem., 2004, 12(3), 583-587.
[http://dx.doi.org/10.1016/j.bmc.2003.10.046] [PMID: 14738968]
[25]
Abraham, M.H.; Ibrahim, A.; Zissimos, A.M.; Zhao, Y.H.; Comer, J.; Reynolds, D.P. Application of hydrogen bonding calculations in property based drug design. Drug Discov. Today, 2002, 7(20), 1056-1063.
[http://dx.doi.org/10.1016/S1359-6446(02)02478-9] [PMID: 12546895]
[26]
Li, Y.; Lü, Y.; Zhou, L.; Chen, L.; Li, S. Atomic partial charges for periodic systems from first-principles calculations. Wuli Huaxue Xuebao, 2010, 26(10), 2793-2800.
[http://dx.doi.org/10.3866/PKU.WHXB20101009]
[27]
Sǐller, L.; Hock, K.M.; Palmer, R.E.; Wendelken, J.F. Resonance electron scattering by adsorbed molecules: σ* resonance energy versus bond length. Surf. Sci. Lett., 1993, 287-288(1), 165-168.
[http://dx.doi.org/10.1016/0039-6028(93)90763-A]
[28]
Song, F.; Cui, L.; Piao, J.; Liang, H.; Si, H.; Duan, Y.; Zhai, H. Quantitative structure-activity relationship and molecular docking studies on designing inhibitors of the perforin. Chem. Biol. Drug Des., 2017, 90(4), 535-544.
[http://dx.doi.org/10.1111/cbdd.12975] [PMID: 28296049]

© 2025 Bentham Science Publishers | Privacy Policy