Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Letter Article

Unprecedented Role of the N73-F124 Pair in the Staphylococcus equorum MnSOD Activity

Author(s): Debbie S. Retnoningrum*, Hiromi Yoshida, Muthia D. Razani, Vincencius F. Meidianto, Andrian Hartanto, Anita Artarini and Wangsa T. Ismaya

Volume 17, Issue 1, 2021

Published on: 27 October, 2020

Page: [2 - 8] Pages: 7

DOI: 10.2174/1573408016999201027212952

Price: $65

Abstract

Background: Bacterial manganese superoxide dismutase (MnSOD) occurs as a dimer, which is responsible for its activity and stability. Therefore, increasing the dimeric strength would increase the stability of the enzyme while maintaining its activity.

Objective: An N73F substitution was introduced to strengthen interactions between the monomers at the dimer interface. This substitution would introduce a π-stacking interaction between F73 of one monomer to F124 from the other monomers.

Methods: Site-directed mutagenesis was carried out to substitute N73 with phenylalanine. The activity of the mutant was qualitative- and quantitatively checked while the stability was evaluated with a fluorescence- based thermal-shift assay. Finally, the structure of the mutant was elucidated by means of Xray crystallography.

Results: The N73F mutant activity was only ~40% of the wild type. The N73F mutant showed one TM at 60+1°C while the wild type has two (at 52-55°C and 63-67°C). The crystal structure of the mutant showed the interactions between F73 from one monomer to F124 from the other monomer. The N73F structure presents an enigma because of no change in the enzyme structure including the active site. Furthermore, N73 and F124 position and interaction are conserved in human MnSOD but with a different location in the amino acid sequence. N73 has a role in the enzyme activity, likely related to its interaction with F124, which resides in the active site region but has not been considered to participate in the reaction.

Conclusion: The N73F substitution has revealed the unprecedented role of the N73-F124 pair in the enzyme activity.

Keywords: Dimeric strength, MnSOD, π-interaction, superoxide dismutation, Staphylococcus equorum, N73F.

[1]
, Miller A-F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett., 2012, 586(3), 585-595.
[http://dx.doi.org/10.1016/j.febslet.2011.10.048] [PMID: 22079668]
[2]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B. III Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[3]
Indrayati, A. 16S rDNA Based identification of novel superoxide dismutase producing bacteria isolate from Indonesia. Microbiol. Indones., 2011, 5, 88-93.
[http://dx.doi.org/10.5454/mi.5.2.6]
[4]
Retnoningrum, D.S.; Arumsari, S.; Artarini, A.; Ismaya, W.T. Structure-activity relationship of a recombinant hybrid Manganese superoxide dismutase of Staphylococcus saprophyticus/S. equorum. Int. J. Biol. Macromol., 2017, 98, 222-227.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.096] [PMID: 28130140]
[5]
Whittaker, M.M.; Whittaker, J.W. A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J. Biol. Chem., 1998, 273(35), 22188-22193.
[http://dx.doi.org/10.1074/jbc.273.35.22188] [PMID: 9712831]
[6]
Retnoningrum, D.S.; Arumsari, S.; Desi, E.S.; Tandra, Y.S.; Artarini, A.; Ismaya, W.T. Leu169Trp substitution in MnSOD from Staphylococcus equorum created an active new form of similar resistance to UVC irradiation. Enzyme Microb. Technol., 2018, 118, 13-19.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.015] [PMID: 30143194]
[7]
Retnoningrum, D.S.; Rahayu, A.P.; Mulyanti, D.; Dita, A.; Valerius, O.; Ismaya, W.T. Unique characteristics of recombinant hybrid manganese superoxide dismutase from Staphylococcus equorum and S. saprophyticus. Protein J., 2016, 35(2), 136-144.
[http://dx.doi.org/10.1007/s10930-016-9650-5] [PMID: 26960678]
[8]
Edwards, R.A.; Whittaker, M.M.; Whittaker, J.W.; Baker, E.N.; Jameson, G.B. Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity. Biochemistry, 2001, 40(15), 4622-4632.
[http://dx.doi.org/10.1021/bi002403h] [PMID: 11294629]
[9]
Retnoningrum, D.S.; Yoshida, H.; Arumsari, S.; Kamitori, S.; Ismaya, W.T. The first crystal structure of manganese superoxide dismutase from the genus Staphylococcus. Acta Crystallogr. F Struct. Biol. Commun., 2018, 74(Pt 3), 135-142.
[http://dx.doi.org/10.1107/S2053230X18001036] [PMID: 29497016]
[10]
Azadmanesh, J.; Borgstahl, G.E.O. A review of the catalytic mechanism of human Manganese superoxide dismutase. Antioxidants, 2018, 7(2), 25-40.
[http://dx.doi.org/10.3390/antiox7020025] [PMID: 29385710]
[11]
Edelheit, O.; Hanukoglu, A.; Hanukoglu, I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol., 2009, 9, 61.
[http://dx.doi.org/10.1186/1472-6750-9-61] [PMID: 19566935]
[12]
Kostyuk, V.A.; Potapovich, A.I.; Strigunova, E.N.; Kostyuk, T.V.; Afanas’ev, I.B. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch. Biochem. Biophys., 2004, 428(2), 204-208.
[http://dx.doi.org/10.1016/j.abb.2004.06.008] [PMID: 15246878]
[13]
Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 2), 133-144.
[http://dx.doi.org/10.1107/S0907444909047374] [PMID: 20124693]
[14]
Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; McNicholas, S.J.; Murshudov, G.N.; Pannu, N.S.; Potterton, E.A.; Powell, H.R.; Read, R.J.; Vagin, A.; Wilson, K.S. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 4), 235-242.
[http://dx.doi.org/10.1107/S0907444910045749] [PMID: 21460441]
[15]
Vagin, A.; Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 1), 22-25.
[http://dx.doi.org/10.1107/S0907444909042589] [PMID: 20057045]
[16]
Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 4), 486-501.
[http://dx.doi.org/10.1107/S0907444910007493] [PMID: 20383002]
[17]
Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 4), 355-367.
[http://dx.doi.org/10.1107/S0907444911001314] [PMID: 21460454]
[18]
Srnec, M.; Aquilante, F.; Ryde, U.; Rulísek, L. Reaction mechanism of manganese superoxide dismutase studied by combined quantum and molecular mechanical calculations and multiconfigurational methods. J. Phys. Chem. B, 2009, 113(17), 6074-6086.
[http://dx.doi.org/10.1021/jp810247u] [PMID: 19344143]
[19]
Meyer, E.A.; Castellano, R.K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. Engl., 2003, 42(11), 1210-1250.
[http://dx.doi.org/10.1002/anie.200390319] [PMID: 12645054]
[20]
Greenleaf, W.B.; Perry, J.J.; Hearn, A.S.; Cabelli, D.E.; Lepock, J.R.; Stroupe, M.E.; Tainer, J.A.; Nick, H.S.; Silverman, D.N. Role of hydrogen bonding in the active site of human manganese superoxide dismutase. Biochemistry, 2004, 43(22), 7038-7045.
[http://dx.doi.org/10.1021/bi049888k] [PMID: 15170341]
[21]
Dougherty, D.A. The cation-π interaction. Acc. Chem. Res., 2013, 46(4), 885-893.
[http://dx.doi.org/10.1021/ar300265y] [PMID: 23214924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy