Review Article

结肠癌的综合概述——21 世纪的死神

卷 28, 期 14, 2021

发表于: 26 October, 2020

页: [2657 - 2696] 页: 40

弟呕挨: 10.2174/0929867327666201026143757

价格: $65

摘要

几十年前,结直肠癌 (CRC) 的发病率很低,现在在每年造成近 100 万人死亡的致命癌症中排名第四。人口老龄化以及吸烟、肥胖、久坐不动的生活方式以及发达国家的不健康饮食习惯等风险因素会增加患结直肠癌的风险。肠道微生物群的平衡和宿主内细菌发酵过程中产生的代谢物在调节肠道疾病和结直肠癌的发展中起着重要作用。对疾病认识的最新进展导致了多种治疗选择,例如手术、放疗和化疗,包括靶向治疗和多种疗法。 CRC 的治疗计划取决于癌症的位置、阶段和等级以及基因组生物标志物测试。尽管在疾病的遗传和分子方面取得了所有进步,但由于药物作用以及药物反应的广泛变化似乎与个体分子和遗传特征没有密切相关,因此知识似乎不足,这表明需要对这种复杂异质性疾病的全面分子理解。此外,需要在临床研究中验证多种疗法或广谱方法,这是各种有前途且有效的治疗策略的结合,可以解决异质性并作用于疾病的多个目标。在晚期疾病的情况下,最新的治疗方案显着增加了长达三年的存活率。结直肠癌是由息肉样前体发展而来的事实,以及在晚期发生的疾病症状,强调了筛查计划如何帮助早期发现和降低 CRC 的死亡率和发病率。

关键词: 结直肠癌、靶向治疗、天然化合物、微生物群、多种疗法、CRC 发病率。

[1]
Nguyen, H.T.; Duong, H-Q. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol. Lett., 2018, 16(1), 9-18.
[http://dx.doi.org/10.3892/ol.2018.8679] [PMID: 29928381]
[2]
Punt, C.J.; Koopman, M.; Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol., 2017, 14(4), 235-246.
[http://dx.doi.org/10.1038/nrclinonc.2016.171] [PMID: 27922044]
[3]
Vermeulen, L.; Morrissey, E.; van der Heijden, M.; Nicholson, A.M.; Sottoriva, A.; Buczacki, S.; Kemp, R.; Tavaré, S.; Winton, D.J. Defining stem cell dynamics in models of intestinal tumor initiation. Science, 2013, 342(6161), 995-998.
[http://dx.doi.org/10.1126/science.1243148] [PMID: 24264992]
[4]
Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6, 479-507.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130235] [PMID: 21090969]
[5]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[6]
IJspeert, J.E.; Vermeulen, L.; Meijer, G.A.; Dekker, E. Serrated neoplasia-role in colorectal carcinogenesis and clinical implications. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(7), 401-409.
[http://dx.doi.org/10.1038/nrgastro.2015.73] [PMID: 25963511]
[7]
Leedham, S.J.; Graham, T.A.; Oukrif, D.; McDonald, S.A.; Rodriguez-Justo, M.; Harrison, R.F.; Shepherd, N.A.; Novelli, M.R.; Jankowski, J.A.; Wright, N.A. Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology, 2009, 136(2), 542-50.e6.
[http://dx.doi.org/10.1053/j.gastro.2008.10.086] [PMID: 19103203]
[8]
Hussain, S.P.; Amstad, P.; Raja, K.; Ambs, S.; Nagashima, M.; Bennett, W.P.; Shields, P.G.; Ham, A-J.; Swenberg, J.A.; Marrogi, A.J.; Harris, C.C. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res., 2000, 60(13), 3333-3337.
[9]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[10]
Papamichael, D.; Audisio, R.A.; Glimelius, B.; de Gramont, A.; Glynne-Jones, R.; Haller, D.; Köhne, C-H.; Rostoft, S.; Lemmens, V.; Mitry, E.; Rutten, H.; Sargent, D.; Sastre, J.; Seymour, M.; Starling, N.; Van Cutsem, E.; Aapro, M. Treatment of colorectal cancer in older patients: International Society of Geriatric Oncology (SIOG) consensus recommendations 2013. Ann. Oncol., 2015, 26(3), 463-476.
[http://dx.doi.org/10.1093/annonc/mdu253] [PMID: 25015334]
[11]
Valori, R.; Rey, J-F.; Atkin, W.S.; Bretthauer, M.; Senore, C.; Hoff, G.; Kuipers, E.J.; Altenhofen, L.; Lambert, R.; Minoli, G. International Agency for Research on Cancer. European guidelines for quality assurance in colorectal cancer screening and diagnosis-- Quality assurance in endoscopy in colorectal cancer screening and diagnosis. Endoscopy, 2012, 44(S03), SE88-SE105.
[http://dx.doi.org/10.1055/s-0032-1309795] [PMID: 23012124]
[12]
O’Keefe, S.J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(12), 691-706.
[http://dx.doi.org/10.1038/nrgastro.2016.165] [PMID: 27848961]
[13]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[14]
Özdemir, Z.; Utku, S.; Mathew, B.; Carradori, S.; Orlando, G.; Di Simone, S.; Alagöz, M.A.; Özçelik, A.B.; Uysal, M.; Ferrante, C. Synthesis and biological evaluation of new 3(2H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1100-1109.
[http://dx.doi.org/10.1080/14756366.2020.1755670] [PMID: 32321320]
[15]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompso, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35 Suppl(Suppl), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[16]
Colon Cancer Treatment (PDQ®)-Health Professional Version - National Cancer Institute. Available at: https://www.cancer.gov/types/colorectal/hp/colon-treatment-pdq (Accessed date: August 30, 2020).
[17]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[18]
Guren, M.G. The global challenge of colorectal cancer. Lancet Gastroenterol. Hepatol., 2019, 4(12), 894-895.
[http://dx.doi.org/10.1016/S2468-1253(19)30329-2] [PMID: 31648973]
[19]
Cancer today. Available at: http://gco.iarc.fr/today/ home (Accessed date: Aug 30, 2020).
[20]
Capelle, L.G.; Van Grieken, N.C.; Lingsma, H.F.; Steyerberg, E.W.; Klokman, W.J.; Bruno, M.J.; Vasen, H.F.; Kuipers, E.J. Risk and epidemiological time trends of gastric cancer in Lynch syndrome carriers in the Netherlands. Gastroenterology, 2010, 138(2), 487-492.
[http://dx.doi.org/10.1053/j.gastro.2009.10.051] [PMID: 19900449]
[21]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1, 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[22]
Vasen, H.F.; Tomlinson, I.; Castells, A. Clinical management of hereditary colorectal cancer syndromes. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(2), 88-97.
[http://dx.doi.org/10.1038/nrgastro.2014.229] [PMID: 25582351]
[23]
Ait Ouakrim, D.; Pizot, C.; Boniol, M.; Malvezzi, M.; Boniol, M.; Negri, E.; Bota, M.; Jenkins, M.A.; Bleiberg, H.; Autier, P. Trends in colorectal cancer mortality in Europe: retrospective analysis of the WHO mortality database. BMJ, 2015, 351, h4970.
[http://dx.doi.org/10.1136/bmj.h4970] [PMID: 26442928]
[24]
Welch, H.G.; Robertson, D.J. Colorectal cancer on the decline--why screening can’t explain it all. N. Engl. J. Med., 2016, 374(17), 1605-1607.
[http://dx.doi.org/10.1056/NEJMp1600448] [PMID: 27119236]
[25]
Mendelsohn, R.B.; Winawer, S.J.; Ahnen, D.J. Incidence of colorectal cancer matters. Gastroenterology, 2020, 158(5), 1191-1195.
[http://dx.doi.org/10.1053/j.gastro.2019.11.304] [PMID: 31863742]
[26]
Bailey, C.E.; Hu, C-Y.; You, Y.N.; Bednarski, B.K.; Rodriguez-Bigas, M.A.; Skibber, J.M.; Cantor, S.B.; Chang, G.J. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg., 2015, 150(1), 17-22.
[http://dx.doi.org/10.1001/jamasurg.2014.1756] [PMID: 25372703]
[27]
Wolf, A.M.D.; Fontham, E.T.H.; Church, T.R.; Flowers, C.R.; Guerra, C.E.; LaMonte, S.J.; Etzioni, R.; McKenna, M.T.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; Andrews, K.S.; Brawley, O.W.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Siegel, R.L.; Wender, R.C.; Smith, R.A. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin., 2018, 68(4), 250-281.
[http://dx.doi.org/10.3322/caac.21457] [PMID: 29846947]
[28]
Kasi, P.M.; Shahjehan, F.; Cochuyt, J.J.; Li, Z.; Colibaseanu, D.T.; Merchea, A. Rising proportion of young individuals with rectal and colon cancer. Clin. Colorectal Cancer, 2019, 18(1), e87-e95.
[http://dx.doi.org/10.1016/j.clcc.2018.10.002] [PMID: 30420120]
[29]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[30]
Henrikson, N.B.; Webber, E.M.; Goddard, K.A.; Scrol, A.; Piper, M.; Williams, M.S.; Zallen, D.T.; Calonge, N.; Ganiats, T.G.; Janssens, A.C.J.; Zauber, A.; Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Whitlock, E.P. Family history and the natural history of colorectal cancer: systematic review. Genet. Med., 2015, 17(9), 702-712.
[http://dx.doi.org/10.1038/gim.2014.188] [PMID: 25590981]
[31]
Schoen, R.E.; Razzak, A.; Yu, K.J.; Berndt, S.I.; Firl, K.; Riley, T.L.; Pinsky, P.F. Incidence and mortality of colorectal cancer in individuals with a family history of colorectal cancer. Gastroenterology, 2015, 149(6), 1438-1445.e1.
[http://dx.doi.org/10.1053/j.gastro.2015.07.055] [PMID: 26255045]
[32]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[33]
Jiao, S.; Peters, U.; Berndt, S.; Brenner, H.; Butterbach, K.; Caan, B.J.; Carlson, C.S.; Chan, A.T.; Chang-Claude, J.; Chanock, S.; Curtis, K.R.; Duggan, D.; Gong, J.; Harrison, T.A.; Hayes, R.B.; Henderson, B.E.; Hoffmeister, M.; Kolonel, L.N.; Le Marchand, L.; Potter, J.D.; Rudolph, A.; Schoen, R.E.; Seminara, D.; Slattery, M.L.; White, E.; Hsu, L. Estimating the heritability of colorectal cancer. Hum. Mol. Genet., 2014, 23(14), 3898-3905.
[http://dx.doi.org/10.1093/hmg/ddu087] [PMID: 24562164]
[34]
Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol., 2015, 110(2), 223-262.
[http://dx.doi.org/10.1038/ajg.2014.435] [PMID: 25645574]
[35]
Cottet, V.; Jooste, V.; Fournel, I.; Bouvier, A-M.; Faivre, J.; Bonithon-Kopp, C. Long-term risk of colorectal cancer after adenoma removal: a population-based cohort study. Gut, 2012, 61(8), 1180-1186.
[http://dx.doi.org/10.1136/gutjnl-2011-300295] [PMID: 22110052]
[36]
Jess, T.; Rungoe, C.; Peyrin-Biroulet, L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol., 2012, 10(6), 639-645.
[http://dx.doi.org/10.1016/j.cgh.2012.01.010] [PMID: 22289873]
[37]
Vasen, H.F.A.; Blanco, I.; Aktan-Collan, K.; Gopie, J.P.; Alonso, A.; Aretz, S.; Bernstein, I.; Bertario, L.; Burn, J.; Capella, G.; Colas, C.; Engel, C.; Frayling, I.M.; Genuardi, M.; Heinimann, K.; Hes, F.J.; Hodgson, S.V.; Karagiannis, J.A.; Lalloo, F.; Lindblom, A.; Mecklin, J-P.; Møller, P.; Myrhoj, T.; Nagengast, F.M.; Parc, Y.; Ponz de Leon, M.; Renkonen-Sinisalo, L.; Sampson, J.R.; Stormorken, A.; Sijmons, R.H.; Tejpar, S.; Thomas, H.J.W.; Rahner, N.; Wijnen, J.T.; Järvinen, H.J.; Möslein, G. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut, 2013, 62(6), 812-823.
[http://dx.doi.org/10.1136/gutjnl-2012-304356] [PMID: 23408351]
[38]
Botteri, E.; Iodice, S.; Bagnardi, V.; Raimondi, S.; Lowenfels, A.B.; Maisonneuve, P. Smoking and colorectal cancer: a meta-analysis. JAMA, 2008, 300(23), 2765-2778.
[http://dx.doi.org/10.1001/jama.2008.839] [PMID: 19088354]
[39]
Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ, 2017, 356, j477.
[http://dx.doi.org/10.1136/bmj.j477] [PMID: 28246088]
[40]
Cai, S.; Li, Y.; Ding, Y.; Chen, K.; Jin, M. Alcohol drinking and the risk of colorectal cancer death: a meta-analysis. Eur. J. Cancer Prev., 2014, 23(6), 532-539.
[http://dx.doi.org/10.1097/CEJ.0000000000000076] [PMID: 25170915]
[41]
Chan, D.S.M.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One, 2011, 6(6), e20456.
[http://dx.doi.org/10.1371/journal.pone.0020456] [PMID: 21674008]
[42]
Krämer, H.U.; Schöttker, B.; Raum, E.; Brenner, H. Type 2 diabetes mellitus and colorectal cancer: meta-analysis on sex-specific differences. Eur. J. Cancer, 2012, 48(9), 1269-1282.
[http://dx.doi.org/10.1016/j.ejca.2011.07.010] [PMID: 21889332]
[43]
Nakatsu, G.; Li, X.; Zhou, H.; Sheng, J.; Wong, S.H.; Wu, W.K.K.; Ng, S.C.; Tsoi, H.; Dong, Y.; Zhang, N.; He, Y.; Kang, Q.; Cao, L.; Wang, K.; Zhang, J.; Liang, Q.; Yu, J.; Sung, J.J.Y. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun., 2015, 6(1), 8727.
[http://dx.doi.org/10.1038/ncomms9727] [PMID: 26515465]
[44]
Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; El-Omar, E.M.; Brenner, D.; Fuchs, C.S.; Meyerson, M.; Garrett, W.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013, 14(2), 207-215.
[http://dx.doi.org/10.1016/j.chom.2013.07.007] [PMID: 23954159]
[45]
Yu, A.I.; Zhao, L.; Eaton, K.A.; Ho, S.; Chen, J.; Poe, S.; Becker, J.; Gonzalez, A.; McKinstry, D.; Hasso, M.; Mendoza-Castrejon, J.; Whitfield, J.; Koumpouras, C.; Schloss, P.D.; Martens, E.C.; Chen, G.Y. Gut microbiota modulate CD8 T cell responses to influence colitis-associated tumorigenesis. Cell Rep., 2020, 31(1), 107471.
[http://dx.doi.org/10.1016/j.celrep.2020.03.035] [PMID: 32268087]
[46]
Tomasello, G.; Tralongo, P.; Damiani, P.; Sinagra, E.; Di Trapani, B.; Zeenny, M.N.; Hussein, I.H.; Jurjus, A.; Leone, A. Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J. Gastroenterol., 2014, 20(48), 18121-18130.
[http://dx.doi.org/10.3748/wjg.v20.i48.18121] [PMID: 25561781]
[47]
Chai, E.Z.P.; Siveen, K.S.; Shanmugam, M.K.; Arfuso, F.; Sethi, G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem. J., 2015, 468(1), 1-15.
[http://dx.doi.org/10.1042/BJ20141337] [PMID: 25940732]
[48]
Sobhani, I.; Amiot, A.; Le Baleur, Y.; Levy, M.; Auriault, M-L.; Van Nhieu, J.T.; Delchier, J.C. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therap. Adv. Gastroenterol., 2013, 6(3), 215-229.
[http://dx.doi.org/10.1177/1756283X12473674] [PMID: 23634186]
[49]
Candela, M.; Turroni, S.; Biagi, E.; Carbonero, F.; Rampelli, S.; Fiorentini, C.; Brigidi, P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J. Gastroenterol., 2014, 20(4), 908-922.
[http://dx.doi.org/10.3748/wjg.v20.i4.908] [PMID: 24574765]
[50]
Zackular, J.P.; Baxter, N.T.; Iverson, K.D.; Sadler, W.D.; Petrosino, J.F.; Chen, G.Y.; Schloss, P.D. The gut microbiome modulates colon tumorigenesis. MBio, 2013, 4(6), e00692-e13.
[http://dx.doi.org/10.1128/mBio.00692-13] [PMID: 24194538]
[51]
Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(11), 690-704.
[http://dx.doi.org/10.1038/s41575-019-0209-8] [PMID: 31554963]
[52]
Saus, E.; Iraola-Guzmán, S.; Willis, J.R.; Brunet-Vega, A.; Gabaldón, T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol. Aspects Med., 2019, 69, 93-106.
[http://dx.doi.org/10.1016/j.mam.2019.05.001] [PMID: 31082399]
[53]
Nosho, K.; Sukawa, Y.; Adachi, Y.; Ito, M.; Mitsuhashi, K.; Kurihara, H.; Kanno, S.; Yamamoto, I.; Ishigami, K.; Igarashi, H.; Maruyama, R.; Imai, K.; Yamamoto, H.; Shinomura, Y. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J. Gastroenterol., 2016, 22(2), 557-566.
[http://dx.doi.org/10.3748/wjg.v22.i2.557] [PMID: 26811607]
[54]
Bashir, A.; Miskeen, A.Y.; Hazari, Y.M.; Asrafuzzaman, S.; Fazili, K.M. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut. Tumour Biol., 2016, 37(3), 2805-2810.
[http://dx.doi.org/10.1007/s13277-015-4724-0] [PMID: 26718210]
[55]
Allen-Vercoe, E.; Jobin, C. Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol. Lett., 2014, 162(2 Pt A), 54-61.
[http://dx.doi.org/10.1016/j.imlet.2014.05.014] [PMID: 24972311]
[56]
Sears, C.L.; Geis, A.L.; Housseau, F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Invest., 2014, 124(10), 4166-4172.
[http://dx.doi.org/10.1172/JCI72334] [PMID: 25105360]
[57]
Chen, H.D.; Frankel, G. Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol. Rev., 2005, 29(1), 83-98.
[http://dx.doi.org/10.1016/j.femsre.2004.07.002] [PMID: 15652977]
[58]
Choi, H.J.; Kim, J.; Do, K.H.; Park, S.H.; Moon, Y. Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination. Oncogene, 2013, 32(41), 4960-4969.
[http://dx.doi.org/10.1038/onc.2012.508] [PMID: 23503457]
[59]
Bonnet, M.; Buc, E.; Sauvanet, P.; Darcha, C.; Dubois, D.; Pereira, B.; Déchelotte, P.; Bonnet, R.; Pezet, D.; Darfeuille-Michaud, A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin. Cancer Res., 2014, 20(4), 859-867.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1343] [PMID: 24334760]
[60]
Macfarlane, G.T.; Gibson, G.R.; Cummings, J.H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol., 1992, 72(1), 57-64.
[http://dx.doi.org/10.1111/j.1365-2672.1992.tb04882.x] [PMID: 1541601]
[61]
Windey, K.; De Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res., 2012, 56(1), 184-196.
[http://dx.doi.org/10.1002/mnfr.201100542] [PMID: 22121108]
[62]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[63]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M-J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[64]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: a double-edged sword for health? Adv. Nutr., 2018, 9(1), 21-29.
[http://dx.doi.org/10.1093/advances/nmx009] [PMID: 29438462]
[65]
Sakata, T. Pitfalls in short-chain fatty acid research: a methodological review. Anim. Sci. J., 2019, 90(1), 3-13.
[http://dx.doi.org/10.1111/asj.13118] [PMID: 30370625]
[66]
Taira, T.; Yamaguchi, S.; Takahashi, A.; Okazaki, Y.; Yamaguchi, A.; Sakaguchi, H.; Chiji, H. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J. Clin. Biochem. Nutr., 2015, 57(3), 212-216.
[http://dx.doi.org/10.3164/jcbn.15-15] [PMID: 26566306]
[67]
Hodge, A.M.; Williamson, E.J.; Bassett, J.K.; MacInnis, R.J.; Giles, G.G.; English, D.R. Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int. J. Cancer, 2015, 137(5), 1224-1234.
[http://dx.doi.org/10.1002/ijc.29479] [PMID: 25683336]
[68]
Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother., 2006, 60(9), 502-507.
[http://dx.doi.org/10.1016/j.biopha.2006.07.080] [PMID: 17045449]
[69]
Corley, D.A.; Jensen, C.D.; Marks, A.R.; Zhao, W.K.; Lee, J.K.; Doubeni, C.A.; Zauber, A.G.; de Boer, J.; Fireman, B.H.; Schottinger, J.E.; Quinn, V.P.; Ghai, N.R.; Levin, T.R.; Quesenberry, C.P. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med., 2014, 370(14), 1298-1306.
[http://dx.doi.org/10.1056/NEJMoa1309086] [PMID: 24693890]
[70]
Beets-Tan, R.G.H.; Lambregts, D.M.J.; Maas, M.; Bipat, S.; Barbaro, B.; Curvo-Semedo, L.; Fenlon, H.M.; Gollub, M.J.; Gourtsoyianni, S.; Halligan, S.; Hoeffel, C.; Kim, S.H.; Laghi, A.; Maier, A.; Rafaelsen, S.R.; Stoker, J.; Taylor, S.A.; Torkzad, M.R.; Blomqvist, L. Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur. Radiol., 2018, 28(4), 1465-1475.
[http://dx.doi.org/10.1007/s00330-017-5026-2] [PMID: 29043428]
[71]
Nerad, E.; Lahaye, M.J.; Maas, M.; Nelemans, P.; Bakers, F.C.H.; Beets, G.L.; Beets-Tan, R.G.H. Diagnostic accuracy of CT for local staging of colon cancer: a systematic review and meta-analysis. AJR Am. J. Roentgenol., 2016, 207(5), 984-995.
[http://dx.doi.org/10.2214/AJR.15.15785] [PMID: 27490941]
[72]
Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F-S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; Nagtegaal, I.D.; Vink-Börger, E.; Hartmann, A.; Geppert, C.; Kolwelter, J.; Merkel, S.; Grützmann, R.; Van den Eynde, M.; Jouret-Mourin, A.; Kartheuser, A.; Léonard, D.; Remue, C.; Wang, J.Y.; Bavi, P.; Roehrl, M.H.A.; Ohashi, P.S.; Nguyen, L.T.; Han, S.; MacGregor, H.L.; Hafezi-Bakhtiari, S.; Wouters, B.G.; Masucci, G.V.; Andersson, E.K.; Zavadova, E.; Vocka, M.; Spacek, J.; Petruzelka, L.; Konopasek, B.; Dundr, P.; Skalova, H.; Nemejcova, K.; Botti, G.; Tatangelo, F.; Delrio, P.; Ciliberto, G.; Maio, M.; Laghi, L.; Grizzi, F.; Fredriksen, T.; Buttard, B.; Angelova, M.; Vasaturo, A.; Maby, P.; Church, S.E.; Angell, H.K.; Lafontaine, L.; Bruni, D.; El Sissy, C.; Haicheur, N.; Kirilovsky, A.; Berger, A.; Lagorce, C.; Meyers, J.P.; Paustian, C.; Feng, Z.; Ballesteros-Merino, C.; Dijkstra, J.; van de Water, C.; van Lent-van Vliet, S.; Knijn, N.; Mușină, A-M.; Scripcariu, D-V.; Popivanova, B.; Xu, M.; Fujita, T.; Hazama, S.; Suzuki, N.; Nagano, H.; Okuno, K.; Torigoe, T.; Sato, N.; Furuhata, T.; Takemasa, I.; Itoh, K.; Patel, P.S.; Vora, H.H.; Shah, B.; Patel, J.B.; Rajvik, K.N.; Pandya, S.J.; Shukla, S.N.; Wang, Y.; Zhang, G.; Kawakami, Y.; Marincola, F.M.; Ascierto, P.A.; Sargent, D.J.; Fox, B.A.; Galon, J. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 2018, 391(10135), 2128-2139.
[http://dx.doi.org/10.1016/S0140-6736(18)30789-X] [PMID: 29754777]
[73]
Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.; Ribic, C.; Grothey, A.; Moore, M.; Zaniboni, A.; Seitz, J-F.; Sinicrope, F.; Gallinger, S. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol., 2010, 28(20), 3219-3226.
[http://dx.doi.org/10.1200/JCO.2009.27.1825] [PMID: 20498393]
[74]
Li, W.; Li, H.; Liu, R.; Yang, X.; Gao, Y.; Niu, Y.; Geng, J.; Xue, Y.; Jin, X.; You, Q.; Geng, J.; Meng, H. Comprehensive analysis of the relationship between RAS and RAF mutations and MSI status of colorectal cancer in northeastern China. Cell. Physiol. Biochem., 2018, 50(4), 1496-1509.
[http://dx.doi.org/10.1159/000494649] [PMID: 30359964]
[75]
Warren, J.D.; Xiong, W.; Bunker, A.M.; Vaughn, C.P.; Furtado, L.V.; Roberts, W.L.; Fang, J.C.; Samowitz, W.S.; Heichman, K.A. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med., 2011, 9(1), 133.
[http://dx.doi.org/10.1186/1741-7015-9-133] [PMID: 22168215]
[76]
Kin, C.; Kidess, E.; Poultsides, G.A.; Visser, B.C.; Jeffrey, S.S. Colorectal cancer diagnostics: biomarkers, cell-free DNA, circulating tumor cells and defining heterogeneous populations by single-cell analysis. Expert Rev. Mol. Diagn., 2013, 13(6), 581-599.
[http://dx.doi.org/10.1586/14737159.2013.811896] [PMID: 23895128]
[77]
Barbany, G.; Arthur, C.; Liedén, A.; Nordenskjöld, M.; Rosenquist, R.; Tesi, B.; Wallander, K.; Tham, E. Cell-free tumour DNA testing for early detection of cancer - a potential future tool. J. Intern. Med., 2019, 286(2), 118-136.
[http://dx.doi.org/10.1111/joim.12897] [PMID: 30861222]
[78]
Hayashi, N.; Tanaka, S.; Hewett, D.G.; Kaltenbach, T.R.; Sano, Y.; Ponchon, T.; Saunders, B.P.; Rex, D.K.; Soetikno, R.M. Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest. Endosc., 2013, 78(4), 625-632.
[http://dx.doi.org/10.1016/j.gie.2013.04.185] [PMID: 23910062]
[79]
Law, R.; Das, A.; Gregory, D.; Komanduri, S.; Muthusamy, R.; Rastogi, A.; Vargo, J.; Wallace, M.B.; Raju, G.S.; Mounzer, R.; Klapman, J.; Shah, J.; Watson, R.; Wilson, R.; Edmundowicz, S.A.; Wani, S. Endoscopic resection is cost-effective compared with laparoscopic resection in the management of complex colon polyps: an economic analysis. Gastrointest. Endosc., 2016, 83(6), 1248-1257.
[http://dx.doi.org/10.1016/j.gie.2015.11.014] [PMID: 26608129]
[80]
Raju, G.S.; Lum, P.J.; Ross, W.A.; Thirumurthi, S.; Miller, E.; Lynch, P.M.; Lee, J.H.; Bhutani, M.S.; Shafi, M.A.; Weston, B.R.; Pande, M.; Bresalier, R.S.; Rashid, A.; Mishra, L.; Davila, M.L.; Stroehlein, J.R. Outcome of EMR as an alternative to surgery in patients with complex colon polyps. Gastrointest. Endosc., 2016, 84(2), 315-325.
[http://dx.doi.org/10.1016/j.gie.2016.01.067] [PMID: 26859866]
[81]
Ma, B.; Gao, P.; Song, Y.; Zhang, C.; Zhang, C.; Wang, L.; Liu, H.; Wang, Z. Transanal total mesorectal excision (taTME) for rectal cancer: a systematic review and meta-analysis of oncological and perioperative outcomes compared with laparoscopic total mesorectal excision. BMC Cancer, 2016, 16(1), 380.
[http://dx.doi.org/10.1186/s12885-016-2428-5] [PMID: 27377924]
[82]
Ricciardiello, L.; Bazzoli, F.; Fogliano, V. Phytochemicals and colorectal cancer prevention--myth or reality? Nat. Rev. Gastroenterol. Hepatol., 2011, 8(10), 592-596.
[http://dx.doi.org/10.1038/nrgastro.2011.149] [PMID: 21894197]
[83]
Bevacizumab - National Cancer Institute. Available at: https://www.cancer.gov/about-cancer/treatment/drugs/bevacizumab (Accessed date: March 17, 2020).
[84]
Rosen, L.S.; Jacobs, I.A.; Burkes, R.L. Bevacizumab in colorectal cancer: current role in treatment and the potential of biosimilars. Target. Oncol., 2017, 12(5), 599-610.
[http://dx.doi.org/10.1007/s11523-017-0518-1] [PMID: 28801849]
[85]
Hasan, M.R.; Ho, S.H.; Owen, D.A.; Tai, I.T. Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int. J. Cancer, 2011, 129(9), 2115-2123.
[http://dx.doi.org/10.1002/ijc.26179] [PMID: 21618508]
[86]
Irinotecan hydrochloride. Available at: https://www.cancer.gov/about-cancer/treatment/drugs/irinotecanhydrochloride (Accessed date: March 17, 2020).
[87]
Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]
[88]
Capecitabine. Available at: https://www.cancer.gov/about- cancer/treatment/drugs/capecitabine (Accessed date: March 17, 2020).
[89]
Comella, P. A review of the role of capecitabine in the treatment of colorectal cancer. Ther. Clin. Risk Manag., 2007, 3(3), 421-431.
[90]
Cetuximab. Available at: https://www.cancer.gov/about- cancer/treatment/drugs/cetuximab (Accessed date: March 17, 2020).
[91]
Zhao, B.; Wang, L.; Qiu, H.; Zhang, M.; Sun, L.; Peng, P.; Yu, Q.; Yuan, X. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget, 2017, 8(3), 3980-4000.
[http://dx.doi.org/10.18632/oncotarget.14012] [PMID: 28002810]
[92]
Ramucirumab. Available at: https://www.cancer.gov/about-cancer/treatment/drugs/ramucirumab (Accessed date: March 17, 2020).
[93]
Xie, Y-H.; Chen, Y-X.; Fang, J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[94]
Oxaliplatin. Available at: https://www.cancer.gov/about- cancer/treatment/drugs/oxaliplatin (Accessed date: March 17, 2020).
[95]
Alcindor, T.; Beauger, N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr. Oncol., 2011, 18(1), 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[96]
Fluorouracil Injection. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/fluorouracil (Accessed date: 10th September 2020).
[97]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[98]
Ipilimumab. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/ipilimumab (Accessed date: 10th September 2020).
[99]
Yaghoubi, N.; Soltani, A.; Ghazvini, K.; Hassanian, S.M.; Hashemy, S.I. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer. Biomed. Pharmacother., 2019, 110, 312-318.
[http://dx.doi.org/10.1016/j.biopha.2018.11.105] [PMID: 30522017]
[100]
Pembrolizumab. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/pembrolizumab (Accessed date: 10th September 2020).
[101]
Leucovorincalcium. Available at: https://www.cancer.gov/about-cancer/treatment/drugs/leucovorincalcium (Accessed date: 10th September 2020).
[102]
Wang, S.; Wang, L.; Zhou, Z.; Deng, Q.; Li, L.; Zhang, M.; Liu, L.; Li, Y. Leucovorin enhances the anti-cancer effect of bortezomib in colorectal cancer cells. Sci. Rep., 2017, 7(1), 682.
[http://dx.doi.org/10.1038/s41598-017-00839-9] [PMID: 28386133]
[103]
Trifluridine and Tipiracil Hydrochloride. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/trifluridine-tipiracilhydrochloride (Accessed date: 10th September 2020).
[104]
Chen, J.; Han, M.; Saif, M.W. TAS-102 an emerging oral fluoropyrimidine. Anticancer Res., 2016, 36(1), 21-26.
[PMID: 26722024]
[105]
Nivolumab. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/nivolumab (Accessed date: 10th September 2020).
[106]
Jácome, A.A.; Eng, C. Role of immune checkpoint inhibitors in the treatment of colorectal cancer: focus on nivolumab. Expert Opin. Biol. Ther., 2019, 19(12), 1247-1263.
[http://dx.doi.org/10.1080/14712598.2019.1680636] [PMID: 31642347]
[107]
Panitumumab. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/panitumumab (Accessed date: 10th September 2020).
[108]
Regorafenib. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/regorafenib (Accessed date: 10th September 2020).
[109]
Grothey, A.; Prager, G.; Yoshino, T. The mechanism of action of regorafenib in colorectal cancer: a guide for the community physician. Clin. Adv. Hematol. Oncol., 2019, 17(8)(Suppl. 12), 1-19.
[PMID: 32720931]
[110]
Ziv-Aflibercept. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/ziv-aflibercept (Accessed date: 10th September 2020).
[111]
Patel, A.; Sun, W. Ziv-aflibercept in metastatic colorectal cancer. Biol. Targets Ther., 2014, 8, 13-25.
[http://dx.doi.org/10.2147/BTT.S39360] [PMID: 24368879]
[112]
Palozza, P.; Serini, S.; Maggiano, N.; Tringali, G.; Navarra, P.; Ranelletti, F.O.; Calviello, G. β-Carotene downregulates the steady-state and heregulin-α-induced COX-2 pathways in colon cancer cells. J. Nutr., 2005, 135(1), 129-136.
[http://dx.doi.org/10.1093/jn/135.1.129] [PMID: 15623844]
[113]
Choi, S-Y.; Park, J.H.Y.; Kim, J-S.; Kim, M.K.; Aruoma, O.I.; Sung, M-K. Effects of quercetin and β-carotene supplementation on azoxymethane-induced colon carcinogenesis and inflammatory responses in rats fed with high-fat diet rich in omega-6 fatty acids. Biofactors, 2006, 27(1-4), 137-146.
[http://dx.doi.org/10.1002/biof.5520270112] [PMID: 17012770]
[114]
Pham, D.N.T.; Leclerc, D.; Lévesque, N.; Deng, L.; Rozen, R. β,β-carotene 15,15′-monooxygenase and its substrate β-carotene modulate migration and invasion in colorectal carcinoma cells. Am. J. Clin. Nutr., 2013, 98(2), 413-422.
[http://dx.doi.org/10.3945/ajcn.113.060996] [PMID: 23803888]
[115]
Paolini, M.; Cantelli-Forti, G.; Perocco, P.; Pedulli, G.F.; Abdel-Rahman, S.Z.; Legator, M.S. Co-carcinogenic effect of β-carotene. Nature, 1999, 398(6730), 760-761.
[http://dx.doi.org/10.1038/19655] [PMID: 10235258]
[116]
Palozza, P.; Serini, S.; Torsello, A.; Di Nicuolo, F.; Piccioni, E.; Ubaldi, V.; Pioli, C.; Wolf, F.I.; Calviello, G. β- carotene regulates NF-kappaB DNA-binding activity by a redox mechanism in human leukemia and colon adenocarcinoma cells. J. Nutr., 2003, 133(2), 381-388.
[http://dx.doi.org/10.1093/jn/133.2.381] [PMID: 12566471]
[117]
Nishino, H.; Tokuda, H.; Murakoshi, M.; Satomi, Y.; Masuda, M.; Onozuka, M.; Yamaguchi, S.; Takayasu, J.; Tsuruta, J.; Okuda, M.; Khachik, F.; Narisawa, T.; Takasuka, N.; Yano, M. Cancer prevention by natural carotenoids. Biofactors, 2000, 13(1-4), 89-94.
[http://dx.doi.org/10.1002/biof.5520130115] [PMID: 11237205]
[118]
Srinivasan, M.; Sudheer, A.R.; Pillai, K.R.; Kumar, P.R.; Sudhakaran, P.R.; Menon, V.P. Lycopene as a natural protector against γ-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro. Biochim. Biophys. Acta, 2007, 1770(4), 659-665.
[http://dx.doi.org/10.1016/j.bbagen.2006.11.008] [PMID: 17189673]
[119]
Sengupta, A.; Ghosh, S.; Das, R.K.; Bhattacharjee, S.; Bhattacharya, S. Chemopreventive potential of diallylsulfide, lycopene and theaflavin during chemically induced colon carcinogenesis in rat colon through modulation of cyclooxygenase-2 and inducible nitric oxide synthase pathways. Eur. J. Cancer Prev., 2006, 15(4), 301-305.
[http://dx.doi.org/10.1097/00008469-200608000-00005] [PMID: 16835502]
[120]
Tang, F-Y.; Shih, C-J.; Cheng, L-H.; Ho, H-J.; Chen, H-J. Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Mol. Nutr. Food Res., 2008, 52(6), 646-654.
[http://dx.doi.org/10.1002/mnfr.200700272] [PMID: 18537129]
[121]
Palozza, P.; Colangelo, M.; Simone, R.; Catalano, A.; Boninsegna, A.; Lanza, P.; Monego, G.; Ranelletti, F.O. Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis, 2010, 31(10), 1813-1821.
[http://dx.doi.org/10.1093/carcin/bgq157] [PMID: 20699249]
[122]
Tang, F-Y.; Pai, M-H.; Wang, X-D. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model. J. Agric. Food Chem., 2011, 59(16), 9011-9021.
[http://dx.doi.org/10.1021/jf2017644] [PMID: 21744871]
[123]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[124]
Mutoh, M.; Takahashi, M.; Fukuda, K.; Komatsu, H.; Enya, T.; Matsushima-Hibiya, Y.; Mutoh, H.; Sugimura, T.; Wakabayashi, K. Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn. J. Cancer Res., 2000, 91(7), 686-691.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb01000.x] [PMID: 10920275]
[125]
Zhang, X-A.; Zhang, S.; Yin, Q.; Zhang, J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag., 2015, 11(42), 404-409.
[http://dx.doi.org/10.4103/0973-1296.153096] [PMID: 25829782]
[126]
Priego, S.; Feddi, F.; Ferrer, P.; Mena, S.; Benlloch, M.; Ortega, A.; Carretero, J.; Obrador, E.; Asensi, M.; Estrela, J.M. Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol. Cancer Ther., 2008, 7(10), 3330-3342.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0363] [PMID: 18852136]
[127]
Park, C.H.; Chang, J.Y.; Hahm, E.R.; Park, S.; Kim, H-K.; Yang, C.H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 328(1), 227-234.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.151] [PMID: 15670774]
[128]
Shan, B-E.; Wang, M-X.; Li, R.Q. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β- catenin signaling pathway. Cancer Invest., 2009, 27(6), 604-612.
[http://dx.doi.org/10.1080/07357900802337191] [PMID: 19440933]
[129]
Kim, H-J.; Kim, S-K.; Kim, B-S.; Lee, S-H.; Park, Y-S.; Park, B-K.; Kim, S-J.; Kim, J.; Choi, C.; Kim, J-S.; Cho, S.D.; Jung, J.W.; Roh, K.H.; Kang, K.S.; Jung, J.Y. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem., 2010, 58(15), 8643-8650.
[http://dx.doi.org/10.1021/jf101510z] [PMID: 20681654]
[130]
Chisté, R.C.; Freitas, M.; Mercadante, A.Z.; Fernandes, E. Carotenoids are effective inhibitors of in vitro hemolysis of human erythrocytes, as determined by a practical and optimized cellular antioxidant assay. J. Food Sci., 2014, 79(9), H1841-H1847.
[http://dx.doi.org/10.1111/1750-3841.12580] [PMID: 25141990]
[131]
Grudzinski, W.; Piet, M.; Luchowski, R.; Reszczynska, E.; Welc, R.; Paduch, R.; Gruszecki, W.I. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 57-63.
[http://dx.doi.org/10.1016/j.saa.2017.06.041] [PMID: 28689079]
[132]
Zhao, Y.; Hu, X.; Zuo, X.; Wang, M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct., 2018, 9(9), 4548-4568.
[http://dx.doi.org/10.1039/C8FO00850G] [PMID: 30118121]
[133]
Sung, B.; Chung, H.Y.; Kim, N.D. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
[134]
Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett., 2018, 413, 11-22.
[http://dx.doi.org/10.1016/j.canlet.2017.10.041] [PMID: 29097249]
[135]
Karthik Kumar, V.; Vennila, S.; Nalini, N. Inhibitory effect of morin on DMH-induced biochemical changes and aberrant crypt foci formation in experimental colon carcinogenesis. Environ. Toxicol. Pharmacol., 2010, 29(1), 50-57.
[http://dx.doi.org/10.1016/j.etap.2009.09.006] [PMID: 21787582]
[136]
Sharma, S.H.; Thulasingam, S.; Chellappan, D.R.; Chinnaswamy, P.; Nagarajan, S. Morin and Esculetin supplementation modulates c-myc induced energy metabolism and attenuates neoplastic changes in rats challenged with the procarcinogen 1,2 - dimethylhydrazine. Eur. J. Pharmacol., 2017, 796, 20-31.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.019] [PMID: 27989504]
[137]
Gálvez, J.; Coelho, G.; Crespo, M.E.; Cruz, T.; Rodríguez- Cabezas, M.E.; Concha, A.; Gonzalez, M.; Zarzuelo, A. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment. Pharmacol. Ther., 2001, 15(12), 2027-2039.
[http://dx.doi.org/10.1046/j.1365-2036.2001.01133.x] [PMID: 11736735]
[138]
Sharma, S.H.; Kumar, J.S.; Chellappan, D.R.; Nagarajan, S. Molecular chemoprevention by morin - a plant flavonoid that targets nuclear factor kappa B in experimental colon cancer. Biomed. Pharmacother., 2018, 100, 367-373.
[http://dx.doi.org/10.1016/j.biopha.2018.02.035] [PMID: 29453046]
[139]
Hyun, H-B.; Lee, W.S.; Go, S-I.; Nagappan, A.; Park, C.; Han, M.H.; Hong, S.H.; Kim, G.; Kim, G.Y.; Cheong, J.; Ryu, C.H.; Shin, S.C.; Choi, Y.H. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells. Int. J. Oncol., 2015, 46(6), 2670-2678.
[http://dx.doi.org/10.3892/ijo.2015.2967] [PMID: 25892545]
[140]
Kim, J-M.; Kim, J-S.; Yoo, H.; Choung, M-G.; Sung, M-K. Effects of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J. Agric. Food Chem., 2008, 56(18), 8427-8433.
[http://dx.doi.org/10.1021/jf801342p] [PMID: 18710248]
[141]
Cvorovic, J.; Tramer, F.; Granzotto, M.; Candussio, L.; Decorti, G.; Passamonti, S. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch. Biochem. Biophys., 2010, 501(1), 151-157.
[http://dx.doi.org/10.1016/j.abb.2010.05.019] [PMID: 20494645]
[142]
Yun, J-M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog., 2009, 48(3), 260-270.
[http://dx.doi.org/10.1002/mc.20477] [PMID: 18729103]
[143]
Song, H.M.; Park, G.H.; Eo, H.J.; Jeong, J.B. Naringenin- mediated ATF3 expression contributes to apoptosis in human colon cancer. Biomol. Ther. (Seoul), 2016, 24(2), 140-146.
[http://dx.doi.org/10.4062/biomolther.2015.109] [PMID: 26797111]
[144]
Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res., 2011, 31(2), 77-87.
[http://dx.doi.org/10.1016/j.nutres.2011.01.006] [PMID: 21419311]
[145]
Lambert, J.D.; Yang, C.S. Mechanisms of cancer prevention by tea constituents. J. Nutr., 2003, 133(10), 3262S-3267S.
[http://dx.doi.org/10.1093/jn/133.10.3262S] [PMID: 14519824]
[146]
Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res., 2006, 66(5), 2500-2505.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3636] [PMID: 16510563]
[147]
Forester, S.C.; Choy, Y.Y.; Waterhouse, A.L.; Oteiza, P.I. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol. Carcinog., 2014, 53(6), 432-439.
[http://dx.doi.org/10.1002/mc.21974] [PMID: 23124926]
[148]
López de Las Hazas, M-C.; Mosele, J.I.; Macià, A.; Ludwig, I.A.; Motilva, M-J. Exploring the colonic metabolism of grape and strawberry anthocyanins and their in vitro apoptotic effects in HT-29 colon cancer cells. J. Agric. Food Chem., 2017, 65(31), 6477-6487.
[http://dx.doi.org/10.1021/acs.jafc.6b04096] [PMID: 27790915]
[149]
Sun, G.; Zheng, Z.; Lee, M-H.; Xu, Y.; Kang, S.; Dong, Z.; Wang, M.; Gu, Z.; Li, H.; Chen, W. Chemoprevention of colorectal cancer by artocarpin, a dietary phytochemical from Artocarpus heterophyllus. J. Agric. Food Chem., 2017, 65(17), 3474-3480.
[http://dx.doi.org/10.1021/acs.jafc.7b00278] [PMID: 28391699]
[150]
Raina, K.; Kumar, S.; Dhar, D.; Agarwal, R. Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J. Biomed. Res., 2016, 30(6), 452-465.
[http://dx.doi.org/10.7555/JBR.30.20150111] [PMID: 27476880]
[151]
Amado, N.G.; Predes, D.; Moreno, M.M.; Carvalho, I.O.; Mendes, F.A.; Abreu, J.G. Flavonoids and Wnt/β-catenin signaling: potential role in colorectal cancer therapies. Int. J. Mol. Sci., 2014, 15(7), 12094-12106.
[http://dx.doi.org/10.3390/ijms150712094] [PMID: 25007066]
[152]
Raina, K.; Agarwal, C.; Agarwal, R. Effect of silibinin in human colorectal cancer cells: targeting the activation of NF-κB signaling. Mol. Carcinog., 2013, 52(3), 195-206.
[http://dx.doi.org/10.1002/mc.21843] [PMID: 22086675]
[153]
Luo, Y.; Wang, S.X.; Zhou, Z.Q.; Wang, Z.; Zhang, Y.G.; Zhang, Y.; Zhao, P. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumour Biol., 2014, 35(11), 11483-11488.
[http://dx.doi.org/10.1007/s13277-014-2487-7] [PMID: 25128065]
[154]
Liang, Y-S.; Qi, W-T.; Guo, W.; Wang, C-L.; Hu, Z-B.; Li, A-K. Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets. Food Nutr. Res., 2018, 62
[http://dx.doi.org/10.29219/fnr.v62.1384] [PMID: 29849534]
[155]
González-Mauraza, H.; Martín-Cordero, C.; Alarcón-de-la-Lastra, C.; Rosillo, M.A.; León-González, A.J.; Sánchez-Hidalgo, M. Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats. J. Physiol. Biochem., 2014, 70(1), 163-172.
[http://dx.doi.org/10.1007/s13105-013-0290-3] [PMID: 24057513]
[156]
Pintova, S.; Planutis, K.; Planutiene, M.; Holcombe, R.F. ME-143 is superior to genistein in suppression of WNT signaling in colon cancer cells. Anticancer Res., 2017, 37(4), 1647-1653.
[http://dx.doi.org/10.21873/anticanres.11495] [PMID: 28373425]
[157]
Kawamori, T.; Lubet, R.; Steele, V.E.; Kelloff, G.J.; Kaskey, R.B.; Rao, C.V.; Reddy, B.S. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res., 1999, 59(3), 597-601.
[158]
Johnson, J.J.; Mukhtar, H. Curcumin for chemoprevention of colon cancer. Cancer Lett., 2007, 255(2), 170-181.
[http://dx.doi.org/10.1016/j.canlet.2007.03.005] [PMID: 17448598]
[159]
Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[160]
Moragoda, L.; Jaszewski, R.; Majumdar, A.P. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res., 2001, 21(2A), 873-878.
[PMID: 11396178]
[161]
Juan, M.E.; Alfaras, I.; Planas, J.M. Colorectal cancer chemoprevention by trans-resveratrol. Pharmacol. Res., 2012, 65(6), 584-591.
[http://dx.doi.org/10.1016/j.phrs.2012.03.010] [PMID: 22465196]
[162]
Vanamala, J.; Reddivari, L.; Radhakrishnan, S.; Tarver, C. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer, 2010, 10(1), 238.
[http://dx.doi.org/10.1186/1471-2407-10-238] [PMID: 20504360]
[163]
Khanzadeh, T.; Hagh, M.F.; Talebi, M.; Yousefi, B.; Azimi, A.; Hossein Pour Feizi, A.A.; Baradaran, B. Investigation of BAX and BCL2 expression and apoptosis in a resveratrol- and prednisolone-treated human T-ALL cell line, CCRF-CEM. Blood Res., 2018, 53(1), 53-60.
[http://dx.doi.org/10.5045/br.2018.53.1.53] [PMID: 29662863]
[164]
Chen, H-J.; Hsu, L-S.; Shia, Y-T.; Lin, M-W.; Lin, C-M. The β-catenin/TCF complex as a novel target of resveratrol in the Wnt/β-catenin signaling pathway. Biochem. Pharmacol., 2012, 84(9), 1143-1153.
[http://dx.doi.org/10.1016/j.bcp.2012.08.011] [PMID: 22935447]
[165]
Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; Li, Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One, 2013, 8(11), e78700.
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[166]
Sánchez-Fidalgo, S.; Cárdeno, A.; Villegas, I.; Talero, E.; de la Lastra, C.A. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur. J. Pharmacol., 2010, 633(1-3), 78-84.
[http://dx.doi.org/10.1016/j.ejphar.2010.01.025] [PMID: 20132809]
[167]
Singletary, K.W.; Meline, B. Effect of grape seed proanthocyanidins on colon aberrant crypts and breast tumors in a rat dual-organ tumor model. Nutr. Cancer, 2001, 39(2), 252-258.
[http://dx.doi.org/10.1207/S15327914nc392_15] [PMID: 11759289]
[168]
Engelbrecht, A-M.; Mattheyse, M.; Ellis, B.; Loos, B.; Thomas, M.; Smith, R.; Peters, S.; Smith, C.; Myburgh, K. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett., 2007, 258(1), 144-153.
[http://dx.doi.org/10.1016/j.canlet.2007.08.020] [PMID: 17923279]
[169]
Huang, S.; Yang, N.; Liu, Y.; Gao, J.; Huang, T.; Hu, L.; Zhao, J.; Li, Y.; Li, C.; Zhang, X. Grape seed proanthocyanidins inhibit colon cancer-induced angiogenesis through suppressing the expression of VEGF and Ang1. Int. J. Mol. Med., 2012, 30(6), 1410-1416.
[http://dx.doi.org/10.3892/ijmm.2012.1147] [PMID: 23026853]
[170]
Umesalma, S.; Nagendraprabhu, P.; Sudhandiran, G. Antiproliferative and apoptotic-inducing potential of ellagic acid against 1,2-dimethyl hydrazine-induced colon tumorigenesis in Wistar rats. Mol. Cell. Biochem., 2014, 388(1-2), 157-172.
[http://dx.doi.org/10.1007/s11010-013-1907-0] [PMID: 24281858]
[171]
Umesalma, S.; Nagendraprabhu, P.; Sudhandiran, G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells. Mol. Cell. Biochem., 2015, 399(1-2), 303-313.
[http://dx.doi.org/10.1007/s11010-014-2257-2] [PMID: 25355159]
[172]
Ramírez de Molina, A.; Vargas, T.; Molina, S.; Sánchez, J.; Martínez-Romero, J.; González-Vallinas, M.; Martín-Hernández, R.; Sánchez-Martínez, R.; Gómez de Cedrón, M.; Dávalos, A.; Calani, L.; Del Rio, D.; González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A.; Reglero, G. The ellagic acid derivative 4,4′-di-O-methylellagic acid efficiently inhibits colon cancer cell growth through a mechanism involving WNT16. J. Pharmacol. Exp. Ther., 2015, 353(2), 433-444.
[http://dx.doi.org/10.1124/jpet.114.221796] [PMID: 25758919]
[173]
Cheung, K.L.; Khor, T.O.; Huang, M-T.; Kong, A-N. Cancer chemoprevention of azoxymethane/dextran sodium sulfate-induced colon carcinogenesis by phenethyl isothiocyanate and dibenzoylmethane. Carcinogenesis, 2009, 31(5), 880-885.
[http://dx.doi.org/10.1093/carcin/bgp285] [PMID: 19959557]
[174]
Li, H.; Fan, Y.; Zhang, L.; Liu, A.; Tu, F.; He, K.; Zhang, J. Phenethyl isothiocyanate inhibits the migration and invasion of colon cancer SW480 cells via the inhibition of matrix metalloproteinase-9. Int. J. Clin. Exp. Med., 2016, 9(2), 2423-2429.
[175]
Parnaud, G.; Li, P.; Cassar, G.; Rouimi, P.; Tulliez, J.; Combaret, L.; Gamet-Payrastre, L. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer, 2004, 48(2), 198-206.
[http://dx.doi.org/10.1207/s15327914nc4802_10] [PMID: 15231455]
[176]
Cheung, K.L.; Kong, A-N. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J., 2010, 12(1), 87-97.
[http://dx.doi.org/10.1208/s12248-009-9162-8] [PMID: 20013083]
[177]
Rajendran, P.; Delage, B.; Dashwood, W.M.; Yu, T-W.; Wuth, B.; Williams, D.E.; Ho, E.; Dashwood, R.H. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol. Cancer, 2011, 10(1), 68.
[http://dx.doi.org/10.1186/1476-4598-10-68] [PMID: 21624135]
[178]
Kim, D.H.; Sung, B.; Kang, Y.J.; Hwang, S.Y.; Kim, M.J.; Yoon, J-H. Im, E.; Kim, N.D. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. Int. J. Oncol., 2015, 47(6), 2226-2232.
[http://dx.doi.org/10.3892/ijo.2015.3200] [PMID: 26498863]
[179]
Martin, S.L.; Kala, R.; Tollefsbol, T.O. Mechanisms for the inhibition of colon cancer cells by sulforaphane through epigenetic modulation of MicroRNA-21 and human telomerase reverse transcriptase (hTERT) down-regulation. Curr. Cancer Drug Targets, 2018, 18(1), 97-106.
[http://dx.doi.org/10.2174/1568009617666170206104032] [PMID: 28176652 ]
[180]
Abe, N.; Hou, D.X.; Munemasa, S.; Murata, Y.; Nakamura, Y. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells. Cell Death Dis., 2014, 5(11), e1534-e1534.
[http://dx.doi.org/10.1038/cddis.2014.495] [PMID: 25412312]
[181]
Jia, S-S.; Xi, G-P.; Zhang, M.; Chen, Y-B.; Lei, B.; Dong, X-S.; Yang, Y-M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep., 2013, 29(1), 349-354.
[http://dx.doi.org/10.3892/or.2012.2093] [PMID: 23117412]
[182]
Kawamori, T.; Tanaka, T.; Hirose, Y.; Ohnishi, M.; Mori, H. Inhibitory effects of d-limonene on the development of colonic aberrant crypt foci induced by azoxymethane in F344 rats. Carcinogenesis, 1996, 17(2), 369-372.
[http://dx.doi.org/10.1093/carcin/17.2.369] [PMID: 8625465]
[183]
Reddy, B.S.; Wang, C.X.; Samaha, H.; Lubet, R.; Steele, V.E.; Kelloff, G.J.; Rao, C.V. Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res., 1997, 57(3), 420-425.
[PMID: 9012468]
[184]
Belanger, J.T. Perillyl alcohol: applications in oncology. Altern. Med. Rev., 1998, 3(6), 448-457.
[PMID: 9855569]
[185]
Kim, M.; Miyamoto, S.; Yasui, Y.; Oyama, T.; Murakami, A.; Tanaka, T. Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice. Int. J. Cancer, 2009, 124(2), 264-271.
[http://dx.doi.org/10.1002/ijc.23923] [PMID: 19003968]
[186]
Huang, X.; Awano, Y.; Maeda, E.; Asada, Y.; Takemoto, H.; Watanabe, T.; Kojima-Yuasa, A.; Kobayashi, Y. Cytotoxic activity of two natural sesquiterpene lactones, isobutyroylplenolin and arnicolide D, on human colon cancer cell line HT-29. Nat. Prod. Res., 2014, 28(12), 914-916.
[http://dx.doi.org/10.1080/14786419.2014.889133] [PMID: 24588282]
[187]
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823.
[http://dx.doi.org/10.1097/CAD.0000000000000263] [PMID: 26214321]
[188]
Arigesavan, K.; Sudhandiran, G. Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem. Biophys. Res. Commun., 2015, 461(2), 314-320.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.030] [PMID: 25881504]
[189]
Shi, M-D.; Lin, H-H.; Lee, Y-C.; Chao, J-K.; Lin, R-A.; Chen, J-H. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem. Biol. Interact., 2008, 174(3), 201-210.
[http://dx.doi.org/10.1016/j.cbi.2008.06.006] [PMID: 18619950]
[190]
Chao, H-P.; Kuo, C-D.; Chiu, J-H.; Fu, S-L. Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. Planta Med., 2010, 76(16), 1827-1833.
[http://dx.doi.org/10.1055/s-0030-1250039] [PMID: 20539971]
[191]
Banerjee, A.; Ahmed, H.; Yang, P.; Czinn, S.J.; Blanchard, T.G. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment. Oncotarget, 2016, 7(27), 41432-41444.
[http://dx.doi.org/10.18632/oncotarget.9180] [PMID: 27166181]
[192]
Rzeski, W.; Stepulak, A.; Szymański, M.; Sifringer, M.; Kaczor, J.; Wejksza, K.; Zdzisińska, B.; Kandefer-Szerszeń, M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch. Pharmacol., 2006, 374(1), 11-20.
[http://dx.doi.org/10.1007/s00210-006-0090-1] [PMID: 16964520]
[193]
Chintharlapalli, S.; Papineni, S.; Lei, P.; Pathi, S.; Safe, S. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer, 2011, 11(1), 371.
[http://dx.doi.org/10.1186/1471-2407-11-371] [PMID: 21864401]
[194]
Zhang, J.; Wang, Y.; Zhou, Y.; He, Q-Y.; Jolkinolide, B. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway. Oncotarget, 2017, 8(53), 91223-91237.
[http://dx.doi.org/10.18632/oncotarget.20077] [PMID: 29207638]
[195]
Johnson, J.J. Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Lett., 2011, 305(1), 1-7.
[http://dx.doi.org/10.1016/j.canlet.2011.02.005] [PMID: 21382660]
[196]
Park, K-W.; Kundu, J.; Chae, I-G.; Kim, D-H.; Yu, M-H.; Kundu, J.K.; Chun, K-S. Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. Int. J. Oncol., 2014, 44(4), 1309-1315.
[http://dx.doi.org/10.3892/ijo.2014.2281] [PMID: 24481553]
[197]
Thakur, R.; Mishra, D.P. Pharmacological modulation of beta-catenin and its applications in cancer therapy. J. Cell. Mol. Med., 2013, 17(4), 449-456.
[http://dx.doi.org/10.1111/jcmm.12033] [PMID: 23490077]
[198]
Li, S.; Cheng, B.; Hou, L.; Huang, L.; Cui, Y.; Xu, D.; Shen, X.; Li, S. Dioscin inhibits colon cancer cells’ growth by reactive oxygen species-mediated mitochondrial dysfunction and p38 and JNK pathways. Anticancer Drugs, 2018, 29(3), 234-242.
[http://dx.doi.org/10.1097/CAD.0000000000000590] [PMID: 29389802]
[199]
Chen, H.; Xu, L.; Yin, L.; Xu, Y.; Han, X.; Qi, Y.; Zhao, Y.; Liu, K.; Peng, J. iTRAQ-based proteomic analysis of dioscin on human HCT-116 colon cancer cells. Proteomics, 2014, 14(1), 51-73.
[http://dx.doi.org/10.1002/pmic.201300101] [PMID: 24420967]
[200]
Ma, B.; Gao, P.; Wang, H.; Xu, Q.; Song, Y.; Huang, X.; Sun, J.; Zhao, J.; Luo, J.; Sun, Y.; Wang, Z. What has preoperative radio(chemo)therapy brought to localized rectal cancer patients in terms of perioperative and long-term outcomes over the past decades? A systematic review and meta-analysis based on 41,121 patients. Int. J. Cancer, 2017, 141(5), 1052-1065.
[http://dx.doi.org/10.1002/ijc.30805] [PMID: 28560805]
[201]
Du, D.; Su, Z.; Wang, D.; Liu, W.; Wei, Z. Optimal interval to surgery after neoadjuvant chemoradiotherapy in rectal cancer: a systematic review and meta-analysis. Clin. Colorectal Cancer, 2018, 17(1), 13-24.
[http://dx.doi.org/10.1016/j.clcc.2017.10.012] [PMID: 29153429]
[202]
Ryan, J.E.; Warrier, S.K.; Lynch, A.C.; Ramsay, R.G.; Phillips, W.A.; Heriot, A.G. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis., 2016, 18(3), 234-246.
[http://dx.doi.org/10.1111/codi.13207] [PMID: 26531759]
[203]
Abdel-Rahman, O.; Cheung, W.Y. Integrating systemic therapies into the multimodality treatment of resectable colorectal liver metastases. Gastroenterol. Res. Pract., 2018, 2018, 4326082.
[http://dx.doi.org/10.1155/2018/4326082 ] [PMID: 30034465]
[204]
Baratti, D.; Kusamura, S.; Pietrantonio, F.; Guaglio, M.; Niger, M.; Deraco, M. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010-2015. A systematic review. Crit. Rev. Oncol. Hematol., 2016, 100, 209-222.
[http://dx.doi.org/10.1016/j.critrevonc.2016.01.017] [PMID: 26867984]
[205]
Colorectal cancer types. Cancer treatment centers of America. Available at: https://www.cancercenter.com/cancer- types/colorectal-cancer/types (Accessed date: 10th September 2020).
[206]
What is colorectal cancer? American Cancer Society. Available at: https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html (Accessed date: 10th September 2020).
[207]
van der Geest, L.G.; Lam-Boer, J.; Koopman, M.; Verhoef, C.; Elferink, M.A.; de Wilt, J.H. Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases. Clin. Exp. Metastasis, 2015, 32(5), 457-465.
[http://dx.doi.org/10.1007/s10585-015-9719-0] [PMID: 25899064]
[208]
Riihimäki, M.; Hemminki, A.; Sundquist, J.; Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep., 2016, 6(1), 29765.
[http://dx.doi.org/10.1038/srep29765] [PMID: 27416752]
[209]
Cook, A.D.; Single, R.; McCahill, L.E. Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann. Surg. Oncol., 2005, 12(8), 637-645.
[http://dx.doi.org/10.1245/ASO.2005.06.012] [PMID: 15965730]
[210]
Desch, C.E.; Benson, A.B., III; Somerfield, M.R.; Flynn, P.J.; Krause, C.; Loprinzi, C.L.; Minsky, B.D.; Pfister, D.G.; Virgo, K.S.; Petrelli, N.J. Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline. J. Clin. Oncol., 2005, 23(33), 8512-8519.
[http://dx.doi.org/10.1200/JCO.2005.04.0063] [PMID: 16260687]
[211]
Pretzsch, E.; Bösch, F.; Neumann, J.; Ganschow, P.; Bazhin, A.; Guba, M.; Werner, J.; Angele, M. Mechanisms of metastasis in colorectal cancer and metastatic organotropism: hematogenous versus peritoneal spread. J. Oncol., 2019, 2019, 7407190.
[http://dx.doi.org/10.1155/2019/7407190] [PMID: 31641356]
[212]
Segelman, J.; Granath, F.; Holm, T.; Machado, M.; Mahteme, H.; Martling, A. Incidence, prevalence and risk factors for peritoneal carcinomatosis from colorectal cancer. Br. J. Surg., 2012, 99(5), 699-705.
[http://dx.doi.org/10.1002/bjs.8679] [PMID: 22287157]
[213]
van Gestel, Y.R.; Thomassen, I.; Lemmens, V.E.; Pruijt, J.F.; van Herk-Sukel, M.P.; Rutten, H.J.; Creemers, G-J.; de Hingh, I.H. Metachronous peritoneal carcinomatosis after curative treatment of colorectal cancer. Eur. J. Surg. Oncol., 2014, 40(8), 963-969.
[http://dx.doi.org/10.1016/j.ejso.2013.10.001] [PMID: 24183168]
[214]
Thomassen, I.; van Gestel, Y.R.; Lemmens, V.E.; de Hingh, I.H. Incidence, prognosis, and treatment options for patients with synchronous peritoneal carcinomatosis and liver metastases from colorectal origin. Dis. Colon Rectum, 2013, 56(12), 1373-1380.
[http://dx.doi.org/10.1097/DCR.0b013e3182a62d9d] [PMID: 24201391]
[215]
Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol. Res. Pract., 2015, 211(8), 557-569.
[http://dx.doi.org/10.1016/j.prp.2015.05.010] [PMID: 26092594]
[216]
Sluiter, N.; de Cuba, E.; Kwakman, R.; Kazemier, G.; Meijer, G.; Te Velde, E.A. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options. Clin. Exp. Metastasis, 2016, 33(5), 401-416.
[http://dx.doi.org/10.1007/s10585-016-9791-0] [PMID: 27074785]
[217]
Marcuello, M.; Mayol, X.; Felipe-Fumero, E.; Costa, J.; López-Hierro, L.; Salvans, S.; Alonso, S.; Pascual, M.; Grande, L.; Pera, M. Modulation of the colon cancer cell phenotype by pro-inflammatory macrophages: a preclinical model of surgery-associated inflammation and tumor recurrence. PLoS One, 2018, 13(2), e0192958.
[http://dx.doi.org/10.1371/journal.pone.0192958] [PMID: 29462209]
[218]
de Cuba, E.M.V.; Kwakman, R.; van Egmond, M.; Bosch, L.J.W.; Bonjer, H.J.; Meijer, G.A.; te Velde, E.A. Understanding molecular mechanisms in peritoneal dissemination of colorectal cancer: future possibilities for personalised treatment by use of biomarkers. Virchows Arch., 2012, 461(3), 231-243.
[http://dx.doi.org/10.1007/s00428-012-1287-y] [PMID: 22825001]
[219]
Medema, J.P. Cancer stem cells: the challenges ahead. Nat. Cell Biol., 2013, 15(4), 338-344.
[http://dx.doi.org/10.1038/ncb2717] [PMID: 23548926]
[220]
Nassar, D.; Blanpain, C. Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol., 2016, 11(1), 47-76.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044438] [PMID: 27193450]
[221]
de Sousa e Melo, F.; Kurtova, A.V.; Harnoss, J.M.; Kljavin, N.; Hoeck, J.D.; Hung, J.; Anderson, J.E.; Storm, E.E.; Modrusan, Z.; Koeppen, H.; Dijkgraaf, G.J.; Piskol, R.; de Sauvage, F.J. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 2017, 543(7647), 676-680.
[http://dx.doi.org/10.1038/nature21713] [PMID: 28358093]
[222]
Shimokawa, M.; Ohta, Y.; Nishikori, S.; Matano, M.; Takano, A.; Fujii, M.; Date, S.; Sugimoto, S.; Kanai, T.; Sato, T. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 2017, 545(7653), 187-192.
[http://dx.doi.org/10.1038/nature22081] [PMID: 28355176]
[223]
Muzny, D.M.; Bainbridge, M.N.; Chang, K.; Dinh, H.H.; Drummond, J.A.; Fowler, G.; Kovar, C.L.; Lewis, L.R.; Morgan, M.B.; Newsham, I.F.; Reid, J.G.; Santibanez, J.; Shinbrot, E.; Trevino, L.R.; Wu, Y-Q.; Wang, M.; Gunaratne, P.; Donehower, L.A.; Creighton, C.J.; Wheeler, D.A.; Gibbs, R.A.; Lawrence, M.S.; Voet, D.; Jing, R.; Cibulskis, K.; Sivachenko, A.; Stojanov, P.; McKenna, A.; Lander, E.S.; Gabriel, S.; Getz, G.; Ding, L.; Fulton, R.S.; Koboldt, D.C.; Wylie, T.; Walker, J.; Dooling, D.J.; Fulton, L.; Delehaunty, K.D.; Fronick, C.C.; Demeter, R.; Mardis, E.R.; Wilson, R.K.; Chu, A.; Chun, H-J.E.; Mungall, A.J.; Pleasance, E.; Gordon Robertson, A.; Stoll, D.; Balasundaram, M.; Birol, I.; Butterfield, Y.S.N.; Chuah, E.; Coope, R.J.N.; Dhalla, N.; Guin, R.; Hirst, C.; Hirst, M.; Holt, R.A.; Lee, D.; Li, H.I.; Mayo, M.; Moore, R.A.; Schein, J.E.; Slobodan, J.R.; Tam, A.; Thiessen, N.; Varhol, R.; Zeng, T.; Zhao, Y.; Jones, S.J.M.; Marra, M.A.; Bass, A.J.; Ramos, A.H.; Saksena, G.; Cherniack, A.D.; Schumacher, S.E.; Tabak, B.; Carter, S.L.; Pho, N.H.; Nguyen, H.; Onofrio, R.C.; Crenshaw, A.; Ardlie, K.; Beroukhim, R.; Winckler, W.; Getz, G.; Meyerson, M.; Protopopov, A.; Zhang, J.; Hadjipanayis, A.; Lee, E.; Xi, R.; Yang, L.; Ren, X.; Zhang, H.; Sathiamoorthy, N.; Shukla, S.; Chen, P-C.; Haseley, P.; Xiao, Y.; Lee, S.; Seidman, J.; Chin, L.; Park, P.J.; Kucherlapati, R.; Todd Auman, J.; Hoadley, K.A.; Du, Y.; Wilkerson, M.D.; Shi, Y.; Liquori, C.; Meng, S.; Li, L.; Turman, Y.J.; Topal, M.D.; Tan, D.; Waring, S.; Buda, E.; Walsh, J.; Jones, C.D.; Mieczkowski, P.A.; Singh, D.; Wu, J.; Gulabani, A.; Dolina, P.; Bodenheimer, T.; Hoyle, A.P.; Simons, J.V.; Soloway, M.; Mose, L.E.; Jefferys, S.R.; Balu, S.; O’Connor, B.D.; Prins, J.F.; Chiang, D.Y.; Neil Hayes, D.; Perou, C.M.; Hinoue, T.; Weisenberger, D.J.; Maglinte, D.T.; Pan, F.; Berman, B.P.; Van Den Berg, D.J.; Shen, H.; Triche Jr, T.; Baylin, S.B.; Laird, P.W.; Getz, G.; Noble, M.; Voet, D.; Saksena, G.; Gehlenborg, N.; DiCara, D.; Zhang, J.; Zhang, H.; Wu, C-J.; Liu, Y.S.; Shukla, S.; Lawrence, M.S.; Zhou, L.; Sivachenko, A.; Lin, P.; Stojanov, P.; Jing, R.; Park, R.W.; Nazaire, M-D.; Robinson, J.; Thorvaldsdottir, H.; Mesirov, J.; Park, P.J.; Chin, L.; Thorsson, V.; Reynolds, S.M.; Bernard, B.; Kreisberg, R.; Lin, J.; Iype, L.; Bressler, R.; Erkkilä, T.; Gundapuneni, M.; Liu, Y.; Norberg, A.; Robinson, T.; Yang, D.; Zhang, W.; Shmulevich, I.; de Ronde, J.J.; Schultz, N.; Cerami, E.; Ciriello, G.; Goldberg, A.P.; Gross, B.; Jacobsen, A.; Gao, J.; Kaczkowski, B.; Sinha, R.; Arman Aksoy, B.; Antipin, Y.; Reva, B.; Shen, R.; Taylor, B.S.; Chan, T.A.; Ladanyi, M.; Sander, C.; Akbani, R.; Zhang, N.; Broom, B.M.; Casasent, T.; Unruh, A.; Wakefield, C.; Hamilton, S.R.; Craig Cason, R.; Baggerly, K.A.; Weinstein, J.N.; Haussler, D.; Benz, C.C.; Stuart, J.M.; Benz, S.C.; Zachary Sanborn, J.; Vaske, C.J.; Zhu, J.; Szeto, C.; Scott, G.K.; Yau, C.; Ng, S.; Goldstein, T.; Ellrott, K.; Collisson, E.; Cozen, A.E.; Zerbino, D.; Wilks, C.; Craft, B.; Spellman, P.; Penny, R.; Shelton, T.; Hatfield, M.; Morris, S.; Yena, P.; Shelton, C.; Sherman, M.; Paulauskis, J.; Gastier-Foster, J.M.; Bowen, J.; Ramirez, N.C.; Black, A.; Pyatt, R.; Wise, L.; White, P.; Bertagnolli, M.; Brown, J.; Chan, T.A.; Chu, G.C.; Czerwinski, C.; Denstman, F.; Dhir, R.; Dörner, A.; Fuchs, C.S.; Guillem, J.G.; Iacocca, M.; Juhl, H.; Kaufman, A.; Kohl, B., III; Van Le, X.; Mariano, M.C.; Medina, E.N.; Meyers, M.; Nash, G.M.; Paty, P.B.; Petrelli, N.; Rabeno, B.; Richards, W.G.; Solit, D.; Swanson, P.; Temple, L.; Tepper, J.E.; Thorp, R.; Vakiani, E.; Weiser, M.R.; Willis, J.E.; Witkin, G.; Zeng, Z.; Zinner, M.J. The Cancer Genome Atlas Network. Genome Sequencing Center Baylor College of Medicine; Genome Sequencing Center Broad Institute; Genome Sequencing Center Washington University in St Louis; Genome Characterization Center BC Cancer Agency; Genome-Characterization Center Broad Institute; Genome-Characterization Center Brigham and Women’s Hospital and Harvard Medical School; Genome-Characterization Center University of North Carolina, C. H.; Genome-Characterization Centers University of Southern California and Johns Hopkins University; Genome Data Analysis Center Broad Institute; Genome Data Analysis Center Institute for Systems Biology; Genome Data Analysis Center Memorial Sloan-Kettering Cancer Center; Genome Data Analysis Center University of Texas MD Anderson Cancer Center; Genome Data Analysis Centers, U. of C., Santa Cruz and the Buck Institute; Biospecimen Core Resource International Genomics Consortium; Nationwide Children’s Hospital Biospecimen Core Resource; Tissue source sites and disease working group. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487(7407), 330-337.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[224]
Powell, M.K.; Cempirkova, D.; Dundr, P.; Grimmichova, T.; Trebicky, F.E.; Brown, R.; Gregorova, J.; Litschmannova, M.; Janurova, K.; Pesta, M.; Heneberg, P. Metformin treatment for diabetes mellitus correlates with progression and survival in colorectal carcinoma. Transl. Oncol., 2020, 13(2), 383-392.
[http://dx.doi.org/10.1016/j.tranon.2019.10.011] [PMID: 31896527]
[225]
Park, G.B.; Jeong, J.-Y.; Kim, D. GLUT5 regulation by AKT1/3-miR-125b-5p downregulation induces migratory activity and drug resistance in TLR-modified colorectal cancer cells. Carcinogenesis, 2020, 41(10), 1329-1340.
[http://dx.doi.org/10.1093/carcin/bgaa074] [PMID: 32649737]
[226]
Lee, G.H.; Malietzis, G.; Askari, A.; Bernardo, D.; Al-Hassi, H.O.; Clark, S.K. Is right-sided colon cancer different to left-sided colorectal cancer? - a systematic review. Eur. J. Surg. Oncol., 2015, 41(3), 300-308.
[http://dx.doi.org/10.1016/j.ejso.2014.11.001] [PMID: 25468456]
[227]
Loree, J.M.; Pereira, A.A.L.; Lam, M.; Willauer, A.N.; Raghav, K.; Dasari, A.; Morris, V.K.; Advani, S.; Menter, D.G.; Eng, C.; Shaw, K.; Broaddus, R.; Routbort, M.J.; Liu, Y.; Morris, J.S.; Luthra, R.; Meric-Bernstam, F.; Overman, M.J.; Maru, D.; Kopetz, S. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin. Cancer Res., 2018, 24(5), 1062-1072.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2484] [PMID: 29180604]
[228]
Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer, 2017, 17(2), 79-92.
[http://dx.doi.org/10.1038/nrc.2016.126] [PMID: 28050011]
[229]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa, E. Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[230]
Thanki, K.; Nicholls, M.E.; Gajjar, A.; Senagore, A.J.; Qiu, S.; Szabo, C.; Hellmich, M.R.; Chao, C. Consensus molecular subtypes of colorectal cancer and their clinical implications. Int. Biol. Biomed. J., 2017, 3(3), 105-111.
[231]
Lee, M.S.; Menter, D.G.; Kopetz, S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J. Natl. Compr. Canc. Netw., 2017, 15(3), 411-419.
[http://dx.doi.org/10.6004/jnccn.2017.0038] [PMID: 28275039]
[232]
Grady, W.M.; Carethers, J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008, 135(4), 1079-1099.
[http://dx.doi.org/10.1053/j.gastro.2008.07.076] [PMID: 18773902]
[233]
Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6), 2059-2072.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065] [PMID: 20420946]
[234]
Yamamoto, S.; Iwakuma, T. Regulators of oncogenic mutant TP53 gain of function. Cancers (Basel), 2018, 11(1), 4.
[http://dx.doi.org/10.3390/cancers11010004] [PMID: 30577483]
[235]
Sinicrope, F.A.; Sargent, D.J. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin. Cancer Res., 2012, 18(6), 1506-1512.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1469] [PMID: 22302899]
[236]
Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology, 2010, 138(6), 2073-2087.e3.
[http://dx.doi.org/10.1053/j.gastro.2009.12.064] [PMID: 20420947]
[237]
Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; de la Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; Hamilton, S.R.; Hiatt, R.A.; Jass, J.; Lindblom, A.; Lynch, H.T.; Peltomaki, P.; Ramsey, S.D.; Rodriguez-Bigas, M.A.; Vasen, H.F.; Hawk, E.T.; Barrett, J.C.; Freedman, A.N.; Srivastava, S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst., 2004, 96(4), 261-268.
[http://dx.doi.org/10.1093/jnci/djh034] [PMID: 14970275]
[238]
Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793.
[http://dx.doi.org/10.1038/ng1834] [PMID: 16804544]
[239]
Lao, V.V.; Grady, W.M. Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(12), 686-700.
[http://dx.doi.org/10.1038/nrgastro.2011.173] [PMID: 22009203]
[240]
Al-Sohaily, S.; Biankin, A.; Leong, R.; Kohonen-Corish, M.; Warusavitarne, J. Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol., 2012, 27(9), 1423-1431.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07200.x] [PMID: 22694276]
[241]
Brocardo, M.; Henderson, B.R. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol., 2008, 18(12), 587-596.
[http://dx.doi.org/10.1016/j.tcb.2008.09.002] [PMID: 18848448]
[242]
Herzig, D.O.; Tsikitis, V.L. Molecular markers for colon diagnosis, prognosis and targeted therapy. J. Surg. Oncol., 2015, 111(1), 96-102.
[http://dx.doi.org/10.1002/jso.23806] [PMID: 25297801]
[243]
Rennoll, S.; Yochum, G. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World J. Biol. Chem., 2015, 6(4), 290-300.
[http://dx.doi.org/10.4331/wjbc.v6.i4.290] [PMID: 26629312]
[244]
Toon, C.W.; Chou, A.; Clarkson, A.; DeSilva, K.; Houang, M.; Chan, J.C.; Sioson, L.L.; Jankova, L.; Gill, A.J. Immunohistochemistry for myc predicts survival in colorectal cancer. PLoS One, 2014, 9(2), e87456.
[http://dx.doi.org/10.1371/journal.pone.0087456] [PMID: 24503701]
[245]
Chen, J.; Guo, F.; Shi, X.; Zhang, L.; Zhang, A.; Jin, H.; He, Y. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer, 2014, 14(1), 802.
[http://dx.doi.org/10.1186/1471-2407-14-802] [PMID: 25367198]
[246]
Li, W.; Qiu, T.; Zhi, W.; Shi, S.; Zou, S.; Ling, Y.; Shan, L.; Ying, J.; Lu, N. Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages. BMC Cancer, 2015, 15(1), 340.
[http://dx.doi.org/10.1186/s12885-015-1345-3] [PMID: 25929517]
[247]
Kadowaki, S.; Kakuta, M.; Takahashi, S.; Takahashi, A.; Arai, Y.; Nishimura, Y.; Yatsuoka, T.; Ooki, A.; Yamaguchi, K.; Matsuo, K.; Muro, K.; Akagi, K. Prognostic value of KRAS and BRAF mutations in curatively resected colorectal cancer. World J. Gastroenterol., 2015, 21(4), 1275-1283.
[http://dx.doi.org/10.3748/wjg.v21.i4.1275] [PMID: 25632202]
[248]
Day, F.; Muranyi, A.; Singh, S.; Shanmugam, K.; Williams, D.; Byrne, D.; Pham, K.; Palmieri, M.; Tie, J.; Grogan, T.; Gibbs, P.; Sieber, O.; Waring, P.; Desai, J. A mutant BRAF V600E-specific immunohistochemical assay: correlation with molecular mutation status and clinical outcome in colorectal cancer. Target. Oncol., 2015, 10(1), 99-109.
[http://dx.doi.org/10.1007/s11523-014-0319-8] [PMID: 24859797]
[249]
Yaeger, R.; Cercek, A.; O’Reilly, E.M.; Reidy, D.L.; Kemeny, N.; Wolinsky, T.; Capanu, M.; Gollub, M.J.; Rosen, N.; Berger, M.F.; Lacouture, M.E.; Vakiani, E.; Saltz, L.B. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res., 2015, 21(6), 1313-1320.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2779] [PMID: 25589621]
[250]
Morkel, M.; Riemer, P.; Bläker, H.; Sers, C. Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget, 2015, 6(25), 20785-20800.
[http://dx.doi.org/10.18632/oncotarget.4750] [PMID: 26299805]
[251]
Rosty, C.; Young, J.P.; Walsh, M.D.; Clendenning, M.; Sanderson, K.; Walters, R.J.; Parry, S.; Jenkins, M.A.; Win, A.K.; Southey, M.C.; Hopper, J.L.; Giles, G.G.; Williamson, E.J.; English, D.R.; Buchanan, D.D. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. PLoS One, 2013, 8(6), e65479.
[http://dx.doi.org/10.1371/journal.pone.0065479] [PMID: 23785428]
[252]
Liao, X.; Morikawa, T.; Lochhead, P.; Imamura, Y.; Kuchiba, A.; Yamauchi, M.; Nosho, K.; Qian, Z.R.; Nishihara, R.; Meyerhardt, J.A.; Fuchs, C.S.; Ogino, S. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin. Cancer Res., 2012, 18(8), 2257-2268.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2410] [PMID: 22357840]
[253]
Atreya, C.E.; Sangale, Z.; Xu, N.; Matli, M.R.; Tikishvili, E.; Welbourn, W.; Stone, S.; Shokat, K.M.; Warren, R.S. PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med., 2013, 2(4), 496-506.
[http://dx.doi.org/10.1002/cam4.97] [PMID: 24156022]
[254]
Sarli, L.; Bottarelli, L.; Bader, G.; Iusco, D.; Pizzi, S.; Costi, R.; D’Adda, T.; Bertolani, M.; Roncoroni, L.; Bordi, C. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis. Colon Rectum, 2004, 47(9), 1467-1482.
[http://dx.doi.org/10.1007/s10350-004-0628-6] [PMID: 15486743]
[255]
Popat, S.; Houlston, R.S. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur. J. Cancer, 2005, 41(14), 2060-2070.
[http://dx.doi.org/10.1016/j.ejca.2005.04.039] [PMID: 16125380]
[256]
Munro, A.J.; Lain, S.; Lane, D.P. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br. J. Cancer, 2005, 92(3), 434-444.
[http://dx.doi.org/10.1038/sj.bjc.6602358] [PMID: 15668707]
[257]
Rooney, P.H.; Boonsong, A.; McKay, J.A.; Marsh, S.; Stevenson, D.A.; Murray, G.I.; Curran, S.; Haites, N.E.; Cassidy, J.; McLeod, H.L. Colorectal cancer genomics: evidence for multiple genotypes which influence survival. Br. J. Cancer, 2001, 85(10), 1492-1498.
[http://dx.doi.org/10.1054/bjoc.2001.2095] [PMID: 11720434]
[258]
Jose, J.; Kumar, R.; Harilal, S.; Mathew, G.E.; Prabhu, A.; Uddin, M.S.; Aleya, L.; Kim, H.; Mathew, B. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19214-19225.
[http://dx.doi.org/10.1007/s11356-019-07231-2] [PMID: 31884543]
[259]
Kumar, R.; Harilal, S.; Gupta, S.V.; Jose, J.; Thomas Parambi, D.G.; Uddin, M.S.; Shah, M.A.; Mathew, B. Exploring the new horizons of drug repurposing: a vital tool for turning hard work into smart work. Eur. J. Med. Chem., 2019, 182, 111602.
[http://dx.doi.org/10.1016/j.ejmech.2019.111602] [PMID: 31421629]
[260]
Van Cutsem, E.; Nordlinger, B.; Cervantes, A. ESMO Guidelines Working Group. Advanced colorectal cancer: ESMO clinical practice guidelines for treatment. Ann. Oncol., 2010, 21(suppl_5), v93-v97.
[http://dx.doi.org/10.1093/annonc/mdq222] [PMID: 20555112]
[261]
Palmieri, L-J.; Mineur, L.; Tougeron, D.; Rousseau, B.; Granger, V.; Gornet, J-M.; Smith, D.; Lievre, A.; Galais, M-P.; Doat, S.; Pernot, S.; Bignon-Bretagne, A.L.; Metges, J.P.; Baba-Hamed, N.; Michel, P.; Obled, S.; Vitellius, C.; Bouche, O.; Saban-Roche, L.; Buecher, B.; des Guetz, G.; Locher, C.; Trouilloud, I.; Goujon, G.; Dior, M.; Manfredi, S.; Soularue, E.; Phelip, J.M.; Henriques, J.; Vernery, D.; Coriat, R. Withholding the introduction of anti-epidermal growth factor receptor: impact on outcomes in RAS wild- type metastatic colorectal tumors: a multicenter AGEO study (the WAIT or ACT Study). Oncologist, 2020, 25(2), e266-e275.
[http://dx.doi.org/10.1634/theoncologist.2019-0328] [PMID: 32043796]
[262]
Venook, A. Gastrointestinal cancer. Oncologist, 2005, 10(4), 250-261.
[http://dx.doi.org/10.1634/theoncologist.10-4-250] [PMID: 15821245]
[263]
Vincenzi, B.; Santini, D.; Rabitti, C.; Coppola, R.; Beomonte Zobel, B.; Trodella, L.; Tonini, G. Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre phase II trial. Br. J. Cancer, 2006, 94(6), 792-797.
[http://dx.doi.org/10.1038/sj.bjc.6603018] [PMID: 16508634]
[264]
CAPOX. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/capox (Accessed date: 10th September 2020).
[265]
FOLFIRI. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/folfiri (Accessed date: 10th September 2020).
[266]
FOLFIRI-BEVACIZUMAB. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/ treatment/drugs/folfiri-bevacizumab (Accessed date: 10th September 2020).
[267]
FOLFIRI-CETUXIMAB. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/folfiri-cetuximab (Accessed date: 10th September 2020).
[268]
FOLFOX. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/folfox (Accessed date: 10th September 2020).
[269]
FU-LV. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/fu-lv (Accessed date: 10th September 2020).
[270]
XELIRI. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/xeliri (Accessed date: 10th September 2020).
[271]
XELOX. National Cancer Institute (NIH). Available at: https://www.cancer.gov/about-cancer/treatment/drugs/xelox (Accessed date: 10th September 2020).
[272]
Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; Patterson, S.D.; Chang, D.D. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(10), 1626-1634.
[http://dx.doi.org/10.1200/JCO.2007.14.7116] [PMID: 18316791]
[273]
Giusti, R.M.; Shastri, K.A.; Cohen, M.H.; Keegan, P.; Pazdur, R. FDA drug approval summary: panitumumab (Vectibix). Oncologist, 2007, 12(5), 577-583.
[http://dx.doi.org/10.1634/theoncologist.12-5-577] [PMID: 17522246]
[274]
LeBlanc, J.G.; Levit, R.; Savoy de Giori, G.; de Moreno de LeBlanc, A. Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl. Microbiol. Biotechnol., 2020, 104(8), 3331-3337.
[http://dx.doi.org/10.1007/s00253-020-10487-1] [PMID: 32112134]
[275]
Kahouli, I.; Tomaro-Duchesneau, C.; Prakash, S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J. Med. Microbiol., 2013, 62(Pt 8), 1107-1123.
[http://dx.doi.org/10.1099/jmm.0.048975-0] [PMID: 23558140]
[276]
Chong, E.S.L. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J. Microbiol. Biotechnol., 2014, 30(2), 351-374.
[http://dx.doi.org/10.1007/s11274-013-1499-6] [PMID: 24068536]
[277]
Zhong, L.; Zhang, X.; Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol., 2014, 20(24), 7878-7886.
[http://dx.doi.org/10.3748/wjg.v20.i24.7878] [PMID: 24976724]
[278]
Pala, V.; Sieri, S.; Berrino, F.; Vineis, P.; Sacerdote, C.; Palli, D.; Masala, G.; Panico, S.; Mattiello, A.; Tumino, R.; Giurdanella, M.C.; Agnoli, C.; Grioni, S.; Krogh, V. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer, 2011, 129(11), 2712-2719.
[http://dx.doi.org/10.1002/ijc.26193] [PMID: 21607947]
[279]
Chen, C-C.; Lin, W-C.; Kong, M-S.; Shi, H.N.; Walker, W.A.; Lin, C-Y.; Huang, C-T.; Lin, Y-C.; Jung, S-M.; Lin, T-Y. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue. Br. J. Nutr., 2012, 107(11), 1623-1634.
[http://dx.doi.org/10.1017/S0007114511004934] [PMID: 21992995]
[280]
Choi, S.S.; Kim, Y.; Han, K.S.; You, S.; Oh, S.; Kim, S.H. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol., 2006, 42(5), 452-458.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01913.x] [PMID: 16620202]
[281]
Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem., 2014, 156, 264-270.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.105] [PMID: 24629967]
[282]
Morales-Oyarvide, V.; Meyerhardt, J.A.; Ng, K. Vitamin D and physical activity in patients with colorectal cancer: epidemiological evidence and therapeutic implications. Cancer J., 2016, 22(3), 223-231.
[http://dx.doi.org/10.1097/PPO.0000000000000197] [PMID: 27341603]
[283]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[284]
Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol., 2014, 19, 144-153.
[http://dx.doi.org/10.1016/j.cbpa.2014.02.003] [PMID: 24608084]
[285]
Komeda, S.; Casini, A. Next-generation anticancer metallodrugs. Curr. Top. Med. Chem., 2012, 12(3), 219-235.
[http://dx.doi.org/10.2174/156802612799078964] [PMID: 22236158]
[286]
Kelland, L.R. Cisplatin-based anticancer agents. Uses of Inorganic Chemistry in Medicine; Royal Society of Chemistry: Cambridge, 1999, pp. 109-123.
[287]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[288]
de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; Papamichael, D.; Le Bail, N.; Louvet, C.; Hendler, D.; de Braud, F.; Wilson, C.; Morvan, F.; Bonetti, A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 2000, 18(16), 2938-2947.
[http://dx.doi.org/10.1200/JCO.2000.18.16.2938] [PMID: 10944126]
[289]
Hoff, P.M.; Saad, E.D.; Costa, F.; Coutinho, A.K.; Caponero, R.; Prolla, G.; Gansl, R.C. Literature review and practical aspects on the management of oxaliplatin-associated toxicity. Clin. Colorectal Cancer, 2012, 11(2), 93-100.
[http://dx.doi.org/10.1016/j.clcc.2011.10.004] [PMID: 22154408]
[290]
Ciombor, K.K.; Wu, C.; Goldberg, R.M. Recent therapeutic advances in the treatment of colorectal cancer. Annu. Rev. Med., 2015, 66, 83-95.
[http://dx.doi.org/10.1146/annurev-med-051513-102539] [PMID: 25341011]
[291]
Hu, C.; Li, X.; Wang, W.; Zhang, R.; Deng, L. Metal-N-heterocyclic carbene complexes as anti-tumor agents. Curr. Med. Chem., 2014, 21(10), 1220-1230.
[http://dx.doi.org/10.2174/0929867321666131217161849] [PMID: 24350852]
[292]
Kim, J.H.; Reeder, E.; Parkin, S.; Awuah, S.G. Gold(I/III)-phosphine complexes as potent antiproliferative agents. Sci. Rep., 2019, 9(1), 12335.
[http://dx.doi.org/10.1038/s41598-019-48584-5] [PMID: 31451718]
[293]
Lum, C.T.; Wong, A.S-T.; Lin, M.C.; Che, C-M.; Sun, R.W-Y.A. A gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells. Chem. Commun. (Camb.), 2013, 49(39), 4364-4366.
[http://dx.doi.org/10.1039/C2CC37366A] [PMID: 23223325]
[294]
Schmitt, S.M.; Frezza, M.; Dou, Q.P. New applications of old metal-binding drugs in the treatment of human cancer. Front. Biosci. (Schol. Ed.), 2012, 4, 375-391.
[http://dx.doi.org/10.2741/s274] [PMID: 22202066]
[295]
Tsuji, P.A.; Carlson, B.A.; Yoo, M-H.; Naranjo-Suarez, S.; Xu, X-M.; He, Y.; Asaki, E.; Seifried, H.E.; Reinhold, W.C.; Davis, C.D.; Gladyshev, V.N.; Hatfield, D.L. The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways. PLoS One, 2015, 10(4), e0124487.
[http://dx.doi.org/10.1371/journal.pone.0124487] [PMID: 25886253]
[296]
Huang, H.; Liao, Y.; Liu, N.; Hua, X.; Cai, J.; Yang, C.; Long, H.; Zhao, C.; Chen, X.; Lan, X.; Zang, D.; Wu, J.; Li, X.; Shi, X.; Wang, X.; Liu, J. Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects in vitro and in vivo. Oncotarget, 2016, 7(3), 2796-2808.
[http://dx.doi.org/10.18632/oncotarget.6425] [PMID: 26625200]
[297]
Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of polyphenolics from plant material for functional foods- engineering and technology. Food Rev. Int., 2005, 21(1), 139-166.
[http://dx.doi.org/10.1081/FRI-200040606]
[298]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects- a review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[299]
Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa canina extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS One, 2016, 11(7), e0159136.
[http://dx.doi.org/10.1371/journal.pone.0159136] [PMID: 27467555]
[300]
Yang, B.; McCullough, M.L.; Gapstur, S.M.; Jacobs, E.J.; Bostick, R.M.; Fedirko, V.; Flanders, W.D.; Campbell, P.T. Calcium, vitamin D, dairy products, and mortality among colorectal cancer survivors: the cancer prevention Study-II Nutrition Cohort. J. Clin. Oncol., 2014, 32(22), 2335-2343.
[http://dx.doi.org/10.1200/JCO.2014.55.3024] [PMID: 24958826]
[301]
Chan, A.T.; Ogino, S.; Fuchs, C.S. Aspirin use and survival after diagnosis of colorectal cancer. JAMA, 2009, 302(6), 649-658.
[http://dx.doi.org/10.1001/jama.2009.1112] [PMID: 19671906]
[302]
Liao, X.; Lochhead, P.; Nishihara, R.; Morikawa, T.; Kuchiba, A.; Yamauchi, M.; Imamura, Y.; Qian, Z.R.; Baba, Y.; Shima, K.; Sun, R.; Nosho, K.; Meyerhardt, J.A.; Giovannucci, E.; Fuchs, C.S.; Chan, A.T.; Ogino, S. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med., 2012, 367(17), 1596-1606.
[http://dx.doi.org/10.1056/NEJMoa1207756] [PMID: 23094721]
[303]
Janakiram, N.B.; Rao, C.V. The role of inflammation in colon cancer. Inflamm. Cancer; Springer, 2014, pp. 25-52.
[http://dx.doi.org/10.1007/978-3-0348-0837-8_2]
[304]
Rigau, J.; Piqué, J.M.; Rubio, E.; Planas, R.; Tarrech, J.M.; Bordas, J.M. Effects of long-term sulindac therapy on colonic polyposis. Ann. Intern. Med., 1991, 115(12), 952-954.
[http://dx.doi.org/10.7326/0003-4819-115-12-952] [PMID: 1659272]
[305]
Suh, N.; Reddy, B. S.; DeCastro, A.; Paul, S.; Lee, H. J.; Smolarek, A. K.; So, J. Y.; Simi, B.; Wang, C. X.; Janakiram, N. B. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the P65/β-Catenin/Cyclin D1 signaling pathway in rats. Cancer Prev. Res. (Phila. Pa.), 2011, 4(11), 1895-1902.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0222] [PMID: 21764859]
[306]
Ungprasert, P.; Cheungpasitporn, W.; Crowson, C.S.; Matteson, E.L. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies. Eur. J. Intern. Med., 2015, 26(4), 285-291.
[http://dx.doi.org/10.1016/j.ejim.2015.03.008] [PMID: 25862494]
[307]
Gupta, R.A.; Dubois, R.N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat. Rev. Cancer, 2001, 1(1), 11-21.
[http://dx.doi.org/10.1038/35094017] [PMID: 11900248]
[308]
Jüni, P.; Nartey, L.; Reichenbach, S.; Sterchi, R.; Dieppe, P.A.; Egger, M. Risk of cardiovascular events and rofecoxib: cumulative meta-analysis. Lancet, 2004, 364(9450), 2021-2029.
[http://dx.doi.org/10.1016/S0140-6736(04)17514-4] [PMID: 15582059]
[309]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs. nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247] [PMID: 10979111]
[310]
Solomon, S.D.; McMurray, J.J.; Pfeffer, M.A.; Wittes, J.; Fowler, R.; Finn, P.; Anderson, W.F.; Zauber, A.; Hawk, E.; Bertagnolli, M. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med., 2005, 352(11), 1071-1080.
[http://dx.doi.org/10.1056/NEJMoa050405] [PMID: 15713944]
[311]
McDonald, B.F.; Quinn, A.M.; Devers, T.; Cullen, A.; Coulter, I.S.; Marison, I.W.; Loughran, S.T. In vitro characterisation of a novel celecoxib microbead formulation for the treatment and prevention of colorectal cancer. J. Pharm. Pharmacol., 2015, 67(5), 685-695.
[http://dx.doi.org/10.1111/jphp.12372] [PMID: 25650335]
[312]
Lev-Ari, S.; Strier, L.; Kazanov, D.; Madar-Shapiro, L.; Dvory-Sobol, H.; Pinchuk, I.; Marian, B.; Lichtenberg, D.; Arber, N. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin. Cancer Res., 2005, 11(18), 6738-6744.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0171] [PMID: 16166455]
[313]
Smith, B.H.; Gazda, L.S.; Conn, B.L.; Jain, K.; Asina, S.; Levine, D.M.; Parker, T.S.; Laramore, M.A.; Martis, P.C.; Vinerean, H.V.; David, E.M.; Qiu, S.; North, A.J.; Couto, C.G.; Post, G.S.; Waters, D.J.; Cordon-Cardo, C.; Hall, R.D.; Gordon, B.R.; Diehl, C.H.; Stenzel, K.H.; Rubin, A.L. Hydrophilic agarose macrobead cultures select for outgrowth of carcinoma cell populations that can restrict tumor growth. Cancer Res., 2011, 71(3), 725-735.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2258] [PMID: 21266362]
[314]
Ocean, A.J.; Parikh, T.; Berman, N.; Escalon, J.; Shah, M.A.; Andrada, Z.; Akahoho, E.; Pogoda, J.M.; Stoms, G.B.; Escobia, V.B.; Ruggiero, J.T.; Fahey, T.J.; Smith, B.H. Phase I/II Trial of Intraperitoneal Implantation of Agarose-Agarose Macrobeads (MB) Containing Mouse Renal Adenocarcinoma Cells (RENCA) in Patients (Pts) with Advanced Colorectal Cancer (CRC) Am. Soc. Clin. Onco., 2013, 13(15_SUPPL), e14517.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e14517]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy