Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Potential Application of A Synthetic Organo-funtionalized High Load Expandable Mica as A Drug Carrier for Controlled Release

Author(s): M. Mar Orta*, Sara Maisanaba, Santiago Medina-Carrasco and Angeles Jos

Volume 18, Issue 5, 2021

Published on: 22 October, 2020

Page: [645 - 653] Pages: 9

DOI: 10.2174/1567201817666201022122845

Price: $65

Abstract

Background: In this work the cytotoxicity and gastric and gastrointestinal resistance of a high-load synthetic expandable mica, Na-mica-4, is studied for the first time. The hydrophilic character of this clay mineral can be modified by ion exchange reaction between Na+ inorganic cations housed in the interlayer space, and surfactant molecules, resulting in the formation of an organophilic material. This adsorption capability of organic compounds makes them very useful for a wide range of applications, such as their use as drug carriers. Previous studies have shown the high adsorption capacity of organofunctionalized Na-mica-4 of different types of drugs.

Objetive: To carry out initial trials aimed at testing the cytotoxicity of a synthetic organofunctional expandable mica and evaluating its resistance to gastric and gastrointestinal digestion.

Methods: A highly charged sodium mica (Na-mica-4) was synthesized and organofunctional by cationic exchange with an alkylamine, primary amine of 18 carbon atoms (C18-mica-4). Both were characterized by X-ray diffraction, field transmission electron microscopy, surface-specific analysis, differential scanning calorimetry, and thermal gravimetric analysis. In addition, screening cytotoxicity trials were conducted on the human intestinal cell line Caco-2 with C18-mica-4 (0-125 μg/ml).

Results: Only one of the endpoints evaluated (the reduction of tetrazolium MTS salt by dehydrogenase enzymes) showed a significant decrease in cellular viability after 48h at the highest concentration tested. C18-mica-4 shows structural resistance to both, gastric and gastrointestinal, digestion.

Conclusion: A successful development of a functionalized mica has been made with a promising potential application as a carrier to the drug.

Keywords: High-charge swelling mica, organo-functionalization, cytotoxicity, drug carrier, characterization, synthetic mica.

Graphical Abstract

[1]
Iborra, C.V.; Cultrone, G.; Cerezo, P.; Aguzzi, C.; Baschini, M.T.; Vallés, J. Characterisation of northern Patagonian bentonites for pharmaceutical uses. Appl. Clay Sci., 2006, 31(3-4), 272-281.
[http://dx.doi.org/10.1016/j.clay.2005.11.002]
[2]
Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of clays as drug delivery systems: Possibilities and limitations. Appl. Clay Sci., 2007, 36(1-3), 22-36.
[http://dx.doi.org/10.1016/j.clay.2006.06.015]
[3]
Choy, J.H.; Choi, S.J.; Oh, J.M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci., 2007, 36(1-3), 122-132.
[http://dx.doi.org/10.1016/j.clay.2006.07.007]
[4]
Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current challenges in clay minerals for drug delivery. Vol. 48. Appl. Clay Sci., 2010, 48(3), 291-295.
[http://dx.doi.org/10.1016/j.clay.2010.01.007]
[5]
Modabberi, S.; Namayandeh, A.; López-Galindo, A.; Viseras, C.; Setti, M.; Ranjbaran, M. Characterization of Iranian bentonites to be used as pharmaceutical materials. Appl. Clay Sci., 2015, 116-117, 193-201.
[http://dx.doi.org/10.1016/j.clay.2015.03.013]
[6]
Nones, J.; Riella, H.G.; Trentin, A.G.; Nones, J. Effects of bentonite on different cell types: A brief review. Appl. Clay Sci., 2015, 105-106, 225-230.
[http://dx.doi.org/10.1016/j.clay.2014.12.036]
[7]
Lagaly, G. Pesticide-clay interactions and formulations. Appl. Clay Sci., 2001, 18(5-6), 205-209.
[http://dx.doi.org/10.1016/S0169-1317(01)00043-6]
[8]
Alba, M.D.; Castro, M.A.; Naranjo, M.; Pavón, E. Hydrothermal reactivity of Na-n-micas (n = 2, 3, 4). Chem. Mater., 2006, 18(12)
[http://dx.doi.org/10.1021/cm0514802]
[9]
Zadaka, D.; Mishael, Y.G.; Polubesova, T.; Serban, C.; Nir, S. Modified silicates and porous glass as adsorbents for removal of organic pollutants from water and comparison with activated carbons. Appl. Clay Sci., 2007, 36(1-3), 174-181.
[http://dx.doi.org/10.1016/j.clay.2006.04.012]
[10]
Sánchez-Martín, M.J.; Dorado, M.C.; del Hoyo, C.; Rodríguez-Cruz, M.S. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. J. Hazard. Mater., 2008, 150(1), 115-123.
[http://dx.doi.org/10.1016/j.jhazmat.2007.04.093] [PMID: 17532126]
[11]
De Oliveira, T.; Guégan, R.; Thiebault, T.; Milbeau, C.L.; Muller, F.; Teixeira, V.; Giovanela, M.; Boussafir, M. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. J. Hazard. Mater., 2017, 323(Pt A), 558-566.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.001] [PMID: 27180207]
[12]
Gámiz, B.; Hermosín, M.C.; Cornejo, J.; Celis, R. Hexadimethrine-montmorillonite nanocomposite: Characterization and application as a pesticide adsorbent. Appl. Surf. Sci., 2015, 332, 606-613.
[http://dx.doi.org/10.1016/j.apsusc.2015.01.179]
[13]
Pazos, M.C.; Castro, M.A.; Orta, M.M.; Pavón, E.; Valencia Rios, J.S.; Alba, M.D. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants. Langmuir, 2012, 28(19), 7325-7332.
[http://dx.doi.org/10.1021/la300153e] [PMID: 22515233]
[14]
Pazos, M.C.; Castro, M.A.; Cota, A.; Osuna, F.J.; Pavón, E.; Alba, M.D. New insights into surface-functionalized swelling high charged micas: Their adsorption performance for non-ionic organic pollutants. J. Ind. Eng. Chem., 2017, 52, 179-186.
[http://dx.doi.org/10.1016/j.jiec.2017.03.042]
[15]
Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J., 2017.
[http://dx.doi.org/10.1016/j.cej.2017.04.106]
[16]
Bujdáková, H.; Bujdáková, V.; Májeková-Koščová, H.; Gaálová, B.; Bizovská, V.; Boháč, P. Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite. Appl. Clay Sci., 2018, 158(15), 21-28.
[http://dx.doi.org/10.1016/j.clay.2018.03.010]
[17]
Orta, M.D.M.; Martín, J.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Novel synthetic clays for the adsorption of surfactants from aqueous media. J. Environ. Manage., 2018, 206, 357-363.http://linkinghub.elsevier.com/retrieve/pii/S0301479717310496
[http://dx.doi.org/10.1016/j.jenvman.2017.10.053] [PMID: 29101877]
[18]
Martín, J.; Orta, M.D.M.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ. Res., 2018, 164, 488-494.
[http://dx.doi.org/10.1016/j.envres.2018.03.037] [PMID: 29602092]
[19]
Martín, J.; Orta, M.; Medina-carrasco, S.; Luis, J.; Aparicio, I.; Alonso, E. Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media. Appl. Clay Sci., 2019, 171(February), 29-37.
[http://dx.doi.org/10.1016/j.clay.2019.02.002]
[20]
López-Galindo, A.; Viseras, C.; Cerezo, P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sci., 2007, 36(1-3), 51-63.
[http://dx.doi.org/10.1016/j.clay.2006.06.016]
[21]
Borrego-Sánchez, A.; Carazo, E.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I. Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl. Clay Sci., 2017, 2018(160), 173-179.
[http://dx.doi.org/10.1016/j.clay.2017.12.024]
[22]
López-Galindo, A.; Viseras, C. Pharmaceutical and cosmetic applications of clays.Interface Science and Technology; , 2004.
[http://dx.doi.org/10.1016/S1573-4285(04)80044-9]
[23]
Calabrese, I.; Gelardi, G.; Merli, M.; Liveri, M.L.T.; Sciascia, L. Clay-biosurfactant materials as functional drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid. Appl. Clay Sci., 2017, 135, 567-574.
[http://dx.doi.org/10.1016/j.clay.2016.10.039]
[24]
Yang, L.; Choi, S.K.; Shin, H.J.; Han, H.K. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen. Int. J. Nanomedicine, 2013, 8, 4147-4155.
[PMID: 24204143]
[25]
Kim, M.H.; Choi, G.; Elzatahry, A.; Vinu, A.; Choy, Y.B.; Choy, J.H. Bin, Choy JH. Review of clay-drug hybrid materials for biomedical applications: Administration routes. Clays Clay Miner., 2016, 64(2), 115-130.
[http://dx.doi.org/10.1346/CCMN.2016.0640204] [PMID: 32218609]
[26]
Kanzaki, Y.; Shimoyama, Y.; Tsukamoto, M.; Okano, M.; Suzuki, N.; Inoue, Y. Drug release characteristics of ternary mica/phosphatidylcholine/drug intercalation compounds. Chem. Pharm. Bull. (Tokyo), 1998.
[http://dx.doi.org/10.1248/cpb.46.1663]
[27]
Niles, A.L.; Moravec, R.A.; Riss, T.L. In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. Curr. Chem. Genomics, 2009, 3, 33-41.http://benthamopen.com/ABSTRACT/CCGTM-3-33
[http://dx.doi.org/10.2174/1875397300903010033] [PMID: 20161834]
[28]
Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol., 2005, 21(1), 1-26.
[http://dx.doi.org/10.1007/s10565-005-0085-6] [PMID: 15868485]
[29]
Aznar, M.; Gómez-Estaca, J.; Vélez, D.; Devesa, V.; Nerín, C. Migrants determination and bioaccessibility study of ethyl Lauroyl Arginate (LAE) from a LAE based antimicrobial food packaging material. Food Chem. Toxicol., 2013, 56, 363-370.
[http://dx.doi.org/10.1016/j.fct.2013.02.018] [PMID: 23485618]
[30]
Alba, M.D.; Castro, M.A.; Orta, M.M.; Pavón, E.; Pazos, M.C.; Valencia Rios, J.S. Formation of organo-highly charged mica. Langmuir, 2011, 27(16), 9711-9718.
[http://dx.doi.org/10.1021/la200942u] [PMID: 21631117]
[31]
Houtman, J; Maisanaba, S; Puerto, M Toxicity assessment of organomodified clays used in food contact materials on human target cell lines. Appl. Clay Sci., 2014, 90, 150-158.
[http://dx.doi.org/10.1016/j.clay.2014.01.009]
[32]
Bruker. Bruker AXS GmbH, Karlsruhe, Germany Search PubMed., 2017.
[33]
Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr., 2005, 20(04), 316-326.http://journals.cambridge.org/abstract_S0885715600002980
[http://dx.doi.org/10.1154/1.2135315]
[34]
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 1938, 60(2), 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[35]
Borenfreund, E. Puerner J a. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J. Tissue Cult. Methods, 1985, 9(75101), 7-9.
[http://dx.doi.org/10.1007/BF01666038]
[36]
Barltrop, J.A.; Owen, T.C.; Cory, A.H.; Cory, J.G. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)te trazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indica. Bioorg. Med. Chem. Lett., 1991, 1(11), 611-614.
[http://dx.doi.org/10.1016/S0960-894X(01)81162-8]
[37]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[38]
Maisanaba, S.; Puerto, M.; Pichardo, S.; Jordá, M.; Moreno, F.J.; Aucejo, S.; Jos, Á. In vitro toxicological assessment of clays for their use in food packaging applications. Food Chem. Toxicol., 2013, 57, 266-275.
[http://dx.doi.org/10.1016/j.fct.2013.03.043] [PMID: 23579166]
[39]
Laparra, J.M.; Vélez, D.; Barberá, R.; Farré, R.; Montoro, R. Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. J. Agric. Food Chem., 2005, 53(22), 8829-8833.
[http://dx.doi.org/10.1021/jf051365b] [PMID: 16248591]
[40]
Wang, J.H.; Young, T.H.; Lin, D.J.; Sun, M.K.; Huag, H.S.; Cheng, L.P. Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol. Mater. Eng., 2006, 291(6), 661-669.
[http://dx.doi.org/10.1002/mame.200500389]
[41]
Schampera, B.; Tunega, D.; Šolc, R.; Woche, S.K.; Mikutta, R.; Wirth, R.; Dultz, S.; Guggenberger, G. External surface structure of organoclays analyzed by transmission electron microscopy and X-ray photoelectron spectroscopy in combination with molecular dynamics simulations. J. Colloid Interface Sci., 2016, 478, 188-200.
[http://dx.doi.org/10.1016/j.jcis.2016.06.008] [PMID: 27295321]
[42]
Macht, F.; Eusterhues, K.; Pronk, G.J.; Totsche, K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl. Clay Sci., 2011, 53(1), 20-26.
[http://dx.doi.org/10.1016/j.clay.2011.04.006]
[43]
TOXNET TDN. Hazardous Substances Data Bank (HSDB); United States National Library of Medicine, 2018.
[44]
Sharma, A.K.; Schmidt, B.; Frandsen, H.; Jacobsen, N.R.; Larsen, E.H.; Binderup, M.L. Genotoxicity of unmodified and organo- modified montmorillonite. Mutat. Res., 2010, 700(1-2), 18-25.
[http://dx.doi.org/10.1016/j.mrgentox.2010.04.021] [PMID: 20433941]
[45]
Maisanaba, S.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Jordá, M.; Cameán, A.M.; Aucejo, S.; Jos, A. Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. J. Appl. Toxicol., 2014, 34(6), 714-725.
[http://dx.doi.org/10.1002/jat.2945] [PMID: 24122917]
[46]
Maisanaba, S.; Pichardo, S.; Puerto, M.; Gutiérrez-Praena, D.; Cameán, A.M.; Jos, A. Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ. Res., 2015, 138, 233-254.
[http://dx.doi.org/10.1016/j.envres.2014.12.024] [PMID: 25732897]
[47]
Maisanaba, S.; Hercog, K.; Filipic, M.; Jos, Á.; Zegura, B. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2. J. Hazard. Mater., 2016, 304, 425-433.
[http://dx.doi.org/10.1016/j.jhazmat.2015.10.018] [PMID: 26599662]
[48]
Wijenayake, A.; Pitawala, A.; Bandara, R.; Abayasekara, C. The role of herbometallic preparations in traditional medicine-a review on mica drug processing and pharmaceutical applications. J. Ethnopharmacol., 2014, 155(2), 1001-1010.
[http://dx.doi.org/10.1016/j.jep.2014.06.051] [PMID: 24993885]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy