Generic placeholder image

Current Chromatography

Editor-in-Chief

ISSN (Print): 2213-2406
ISSN (Online): 2213-2414

Letter Article

Evaluation of Enantioselective Capillary Electrophoretic Approach for the Enantiomeric Separation of Abscisic Acid

Author(s): Atiqah Binti Zaid, Udhayasurya N. Saravanan, Ng Woen Ching, Bahruddin Saad and Yong Foo Wong*

Volume 7, Issue 1, 2020

Page: [51 - 56] Pages: 6

DOI: 10.2174/2213240607999201021123132

Price: $65

Abstract

Background: The application of enantioselective capillary electrophoresis approach for the assessment of the enantiomeric purity of chiral molecules is receiving increased attention. Abscisic acid is one of the chiral sesquiterpenic plant growth regulators that regulate various ecological and physiological roles in higher plants. Enantiomeric determination of ABA is of great concern because of the different biological activity of its enantiomers.

Materials and Methods: In this study, we investigated the enantioseparation selectivity of ABA by incorporating native β-cyclodextrins (β-CD) and its derivatives as chiral modifiers in the background electrolyte of an enantioselective capillary zone electrophoresis system. Electrophoretic aspects that affect the enantiomeric separation, such as pH, types of β-CD and its concentration, applied voltage, injection pressure and time, were studied and optimised.

Results and Discussions: An enhancement in enantioseparation was achieved in a bare fused-silica capillary (64.5 cm × 50 mm i.d.) using a background electrolyte solution consisting of (2-hydroxypropyl)- β-CD (80 mM) solubilised in 100 mM phosphate buffer adjusted to pH 5.9 with NaOH, operated under normal polarity mode (25 kV) at 25°C, and using hydrodynamic injection (75 mbar for 10s). Relative standard deviations of (intra- and inter-day) ≤ 3.23% and ≤ 1.39% for migration times and enantiomeric fractions (EF) were achieved using the proposed method.

Conclusion: The proposed chiral capillary electrophoretic method offers advantages in terms of enantioselectivity and analysis times, which can serve as a reliable platform for the stereoisomeric analysis of ABA.

Keywords: Enantioselective capillary zone electrophoresis, enantiomer separation, abscisic acid, beta-cyclodextrins, chiral selectors, (2-hydroxypropyl)-β-CD.

[1]
Saz, J.M.; Marina, M.L. Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J. Chromatogr. A, 2016, 1467, 79-94.
[http://dx.doi.org/10.1016/j.chroma.2016.08.029] [PMID: 27558357]
[2]
Herrero, M.; Simó, C.; García-Cañas, V.; Fanali, S.; Cifuentes, A. Chiral capillary electrophoresis in food analysis. Electrophoresis, 2010, 31(13), 2106-2114.
[http://dx.doi.org/10.1002/elps.200900770] [PMID: 20533328]
[3]
Porfírio, S.; Gomes da Silva, M.D.R.; Peixe, A.; Cabrita, M.J.; Azadi, P. Current analytical methods for plant auxin quantification-A review. Anal. Chim. Acta, 2016, 902, 8-21.
[http://dx.doi.org/10.1016/j.aca.2015.10.035] [PMID: 26703249]
[4]
Murofushi, N.; Yamane, H.; Sakagami, Y.; Imaseki, H.; Kamiya, Y.; Iwamura, H.; Hirai, N.; Tsuji, H.; Yokota, T.; Ueda, J. Abscisic acid.Comprehensive Natural Products Chemistry; Barton, S.D.; Nakanishi, K.; Meth-Cohn, O., Eds.; Elsevier Science: Amsterdam, 1999, Vol. 8, pp. 72-91.
[5]
Davies, W.J.; Jones, H.G. Abscisic Acid: Physiology and Biochemistry; BIOS Scientific Publishers: Oxford, 1991.
[6]
Zeevaart, J.A.D.; Creelman, R.A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 39(1), 439-473.
[http://dx.doi.org/10.1146/annurev.pp.39.060188.002255]
[7]
Urano, K.; Maruyama, K.; Ogata, Y.; Morishita, Y.; Takeda, M.; Sakurai, N.; Suzuki, H.; Saito, K.; Shibata, D.; Kobayashi, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J., 2009, 57(6), 1065-1078.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03748.x] [PMID: 19036030]
[8]
Liu, X.; Ma, L.; Lin, Y.W.; Lu, Y.T. Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection. J. Chrom. A, 2003, 1021(1-2), 209-213.
[http://dx.doi.org/10.1016/j.chroma.2003.09.004] [PMID: 14735990]
[9]
Hartung, W.; Sauter, A.; Hose, E. Abscisic acid in the xylem: where does it come from, where does it go to? J. Exp. Bot., 2002, 53(366), 27-32.
[http://dx.doi.org/10.1093/jexbot/53.366.27] [PMID: 11741037]
[10]
Li, J.; Wu, Y.; Xie, Q.; Gong, Z. Abscisic acid.Hormone Metabolism and Signaling in Plants; Li, J.; Li, C.; Smith, S.M., Eds.; Academic Press: Cambridge, MA, USA, 2017, pp. 161-202.
[http://dx.doi.org/10.1016/B978-0-12-811562-6.00005-0]
[11]
Cummins, W.R.; Sondheimer, E. Activity of the asymmetric isomers of abscisic acid in a rapid bioassay. Planta, 1973, 111(4), 365-369.
[http://dx.doi.org/10.1007/BF00385556] [PMID: 24469703]
[12]
Kramell, R.; Schneider, G.; Miersch, O. Resolution of racemic jasmonic acid and abscisic acid by chiral high performance liquid chromatography. Phytochem. Anal., 1996, 7(4), 209-212.
[http://dx.doi.org/10.1002/(SICI)1099-1565(199607)7:4<209::AID-PCA292>3.0.CO;2-H]
[13]
Hui, F.; Ekborg-Ott, K.H.; Armstrong, D.W. High-performance liquid chromatographic and capillary electrophoretic enantioseparation of plant growth regulators and related indole compounds using macrocyclic antibiotics as chiral selectors. J. Chromatogr. A, 2001, 906(1-2), 91-103.
[http://dx.doi.org/10.1016/S0021-9673(00)00954-7] [PMID: 11215905]
[14]
Gratz, S.R.; Gamble, B.M.; Stalcup, A.M. Inclusion complexation: Liquid chromatography.Encyclopedia of Separation Science; Wilson, I.D., Ed.; Academic Press: Oxford, 2000, pp. 3079-3086.
[http://dx.doi.org/10.1016/B0-12-226770-2/01931-1]
[15]
Hou, J.G.; Liu, H.L.; Du, X.Z.; Han, X.Q.; Deng, H.L.; Gao, J.Z. Chiral separation of abscisic acid enantiomers by capillary zone electrophoresis using cyclodextrins and their derivatives as chiral selectors. Anal. Lett., 2002, 35(13), 2185-2197.
[http://dx.doi.org/10.1081/AL-120015005]
[16]
Wang, Y.; Zhao, M. Chiral separation of enantiomers of a plant growth regulator, abscisic acid, by capillary electrophoresis with cyclodextrin additives. J. Liq. Chromatogr. Relat. Technol., 2003, 26(11), 1709-1717.
[http://dx.doi.org/10.1081/JLC-120021278]
[17]
Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis; John Wiley & Sons: Chichester, 1997.
[18]
Wong, Y.F.; Saad, B.; Makahleh, A. Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of cis/trans isomers of octadec-9-enoic acid and other long chain fatty acids. J. Chromatogr. A, 2013, 1290, 82-90.
[http://dx.doi.org/10.1016/j.chroma.2013.03.014] [PMID: 23578483]
[19]
Vespalec, R.; Boček, P. Chiral separations in capillary electrophoresis. Chem. Rev., 2000, 100(10), 3715-3754.
[http://dx.doi.org/10.1021/cr9411583] [PMID: 11749326]
[20]
Mano, N.; Oda, Y.; Ishihama, Y.; Katayama, H.; Asakawa, N. Investigation of interactions between drug enantiomers and flavoprotein as a chiral selector by affinity capillary electrophoresis. J. Liq. Chromatogr. Relat. Technol., 1998, 21, 1311-1332.
[http://dx.doi.org/10.1080/10826079808005880]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy