Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Biosynthesis of Silver Nanoparticles from Citrobacter freundii as Antibiofilm Agents with their Cytotoxic Effects on Human Cells

Author(s): Muhamad A.K. Shakhatreh*, Omar F. Al-Rawi, Samer F. Swedan, Karem H. Alzoubi, Omar F. Khabour and Mohamed Al-Fandi

Volume 22, Issue 9, 2021

Published on: 20 October, 2020

Page: [1254 - 1263] Pages: 10

DOI: 10.2174/1389201021666201020162158

Price: $65

Abstract

Background: Nanomaterials have recently been identified for their potential benefits in the areas of medicine and pharmaceuticals. Among these nanomaterials, silver nanoparticles (Ag-NPs) have been widely utilized in the fields of diagnostics, antimicrobials, and catalysis.

Objective: To investigate the potential utility of Citrobacter freundii in the synthesis of silver Nanoparticles (Ag-NPs), and to determine the antimicrobial activities of the Ag-NPs produced.

Methods: Aqueous Ag+ ions were reduced when exposed to C. freundii extract and sunlight, leading to the formation of Ag-NPs. Qualitative microanalysis for the synthesized Ag-NPs was done using UVvis spectrometry, Energy Dispersive X-ray analysis (EDX), and scanning and transmission electron microscopy. The hydrodynamic size and stability of the particles were detected using Dynamic Light Scattering (DLS) analysis. The Ag-NPs’ anti-planktonic and anti-biofilm activities against Staphylococcus aureus and Pseudomonas aeruginosa, which are two important skin and wound pathogens, were investigated. The cytotoxicity on human dermal fibroblast cell line was also determined.

Results: Ag-NPs were spherical with a size range between 15 to 30 nm. Furthermore, Ag-NPs displayed potent bactericidal activities against both S. aureus and P. aeruginosa and showed noticeable anti-biofilm activity against S. aureus biofilms. Ag-NPs induced minor cytotoxic effects on human cells as indicated by a reduction in cell viability, a disruption of plasma membrane integrity, and apoptosis induction.

Conclusion: Ag-NPs generated in this study might be a future potential alternative to be used as antimicrobial agents in pharmaceutical applications for wound and skin related infections.

Keywords: Silver nanoparticles, biosynthesis, Citrobacter freundii, biofilms, antibacterial, cytotoxicity, antimicrobials, infection.

« Previous
Graphical Abstract

[1]
Radzig, M.A.; Nadtochenko, V.A.; Koksharova, O.A.; Kiwi, J.; Lipasova, V.A.; Khmel, I.A. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces, 2013, 102, 300-306.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.039] [PMID: 23006569]
[2]
Martinez-Gutierrez, F.; Boegli, L.; Agostinho, A.; Sánchez, E.M.; Bach, H.; Ruiz, F.; James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 2013, 29(6), 651-660.
[http://dx.doi.org/10.1080/08927014.2013.794225] [PMID: 23731460]
[3]
Attinger, C.; Wolcott, R. Clinically addressing biofilm in chronic wounds. Adv. Wound Care (New Rochelle), 2012, 1(3), 127-132.
[http://dx.doi.org/10.1089/wound.2011.0333] [PMID: 24527292]
[4]
Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis., 2001, 7(2), 277-281.
[http://dx.doi.org/10.3201/eid0702.010226] [PMID: 11294723]
[5]
Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol., 2003, 57, 677-701.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090720] [PMID: 14527295]
[6]
Al-Amri, A.H.; Al Saegh, A.; Al-Mamari, W.; El-Asrag, M.E.; Al-Kindi, M.N.; Al Khabouri, M.; Al Wardy, N.; Al Lamki, K.; Gabr, A.; Idris, A.; Inglehearn, C.F.; Clapcote, S.J.; Ali, M. LHFPL5 mutation: A rare cause of non-syndromic autosomal recessive hearing loss. Eur. J. Med. Genet., 2019, 62(12), 103592.
[http://dx.doi.org/10.1016/j.ejmg.2018.11.026] [PMID: 30476627]
[7]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[8]
Satyanarayana, T.; Reddy, S. A review on chemical and physical synthesis methods of nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6, 2321-9653.
[http://dx.doi.org/10.22214/ijraset.2018.1396]
[9]
Sadowska-Bartosz, I.; Bartosz, G. Redox nanoparticles: Synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J. Nanobiotechnology, 2018, 16(1), 87.
[http://dx.doi.org/10.1186/s12951-018-0412-8] [PMID: 30390681]
[10]
Tanzil, A.H.; Sultana, S.T.; Saunders, S.R.; Shi, L.; Marsili, E.; Beyenal, H. Biological synthesis of nanoparticles in biofilms. Enzyme Microb. Technol., 2016, 95, 4-12.
[http://dx.doi.org/10.1016/j.enzmictec.2016.07.015] [PMID: 27866625]
[11]
Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc., 2002, 124(41), 12108-12109.
[http://dx.doi.org/10.1021/ja027296o] [PMID: 12371846]
[12]
Haji Mansor, M.; Najberg, M.; Contini, A.; Alvarez-Lorenzo, C.; Garcion, E.; Jérôme, C.; Boury, F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur. J. Pharm. Biopharm., 2018, 125, 38-50.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.020] [PMID: 29325770]
[13]
Samadi, A.; Klingberg, H.; Jauffred, L.; Kjær, A.; Bendix, P.M.; Oddershede, L.B. Platinum nanoparticles: 3 non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale, 2018, 10(19), 9097-9107.
[http://dx.doi.org/10.1039/C8NR02275E] [PMID: 29718060]
[14]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), E1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[15]
Yi, Z.; Chen, G.; Chen, X.; Ma, X.; Cui, X.; Sun, Z.; Su, W.; Li, X. Preparation of strong antioxidative, therapeutic nanoparticles based on amino acid-induced ultrafast assembly of tea polyphenols. Preparation of strong antioxidative, therapeutic nanoparticles based on amino acid-induced ultrafast assembly of tea polyphenols. ACS Appl. Mater. Interfaces, 2020, 12(30), 33550-33563.
[http://dx.doi.org/10.1021/acsami.0c10282] [PMID: 32627530]
[16]
Zhou, P.; Feng, R.; Luo, Z.; Li, X.; Wang, L.; Gao, L. Synthesis, identification and bioavailability of Juglans regia L. polyphenols-Hohenbuehelia serotina polysaccharides nanoparticles. Food Chem., 2020, 329127158.
[http://dx.doi.org/10.1016/j.foodchem.2020.127158] [PMID: 32512394]
[17]
Ahmed, M.J.; Murtaza, G.; Rashid, F.; Iqbal, J. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Dev. Ind. Pharm., 2019, 45(10), 1682-1694.
[http://dx.doi.org/10.1080/03639045.2019.1656224] [PMID: 31407925]
[18]
Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine, 2018, 13, 3311-3327.
[http://dx.doi.org/10.2147/IJN.S165125] [PMID: 29892194]
[19]
Al-Halhouli, A.; Al-Ghussain, L.; El Bouri, S.; Liu, H.; Zheng, D. Fabrication and evaluation of a novel non-invasive stretchable and wearable respiratory rate sensor based on silver nanoparticles using inkjet printing technology. Polymers (Basel), 2019, 11(9), E1518.
[http://dx.doi.org/10.3390/polym11091518] [PMID: 31540494]
[20]
Otari, S.V.; Patel, S.K.S.; Kalia, V.C.; Kim, I.W.; Lee, J.K. Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J. Microbiol., 2019, 59(3), 379-382.
[http://dx.doi.org/10.1007/s12088-019-00812-2] [PMID: 31388218]
[21]
Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci., 2016, 28(4), 273-279.
[22]
Mnatsakanyan, N. Application of silver nanoparticles in food industry, 2018.
[23]
Gajbhiye, S.; Sakharwade, S. Silver nanoparticles in cosmetics. J. Cosmet. Dermatologic. Sci. Appl., 2016, 06, 48-53.
[http://dx.doi.org/10.4236/jcdsa.2016.61007]
[24]
Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine (Lond.), 2010, 6(4), 570-574.
[http://dx.doi.org/10.1016/j.nano.2009.12.002] [PMID: 20060498]
[25]
Foldbjerg, R.; Dang, D.A.; Autrup, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol., 2011, 85(7), 743-750.
[http://dx.doi.org/10.1007/s00204-010-0545-5] [PMID: 20428844]
[26]
Ceri, H.; Olson, M.; Morck, D.; Storey, D.; Read, R.; Buret, A.; Olson, B. The MBEC assay system: Multiple equivalent biofilms for antibiotic and biocide susceptibility testing. Methods Enzymol., 2001, 337, 377-385.
[http://dx.doi.org/10.1016/S0076-6879(01)37026-X] [PMID: 11398443]
[27]
Sun, F.; Qu, F.; Ling, Y.; Mao, P.; Xia, P.; Chen, H.; Zhou, D. Biofilm-associated infections: Antibiotic resistance and novel therapeutic strategies. Future Microbiol., 2013, 8(7), 877-886.
[http://dx.doi.org/10.2217/fmb.13.58] [PMID: 23841634]
[28]
Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence, 2011, 2(5), 435-444.
[http://dx.doi.org/10.4161/viru.2.5.16140] [PMID: 21778817]
[29]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[30]
Mohanta, Y.K.; Panda, S.K.; Bastia, A.K.; Mohanta, T.K. Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front. Microbiol., 2017, 8, 626.
[http://dx.doi.org/10.3389/fmicb.2017.00626] [PMID: 28458659]
[31]
Kumar, B.; Smita, K.; Cumbal, L. Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. J. Sol-Gel Sci. Technol., 2016, 78(2), 285-292.
[http://dx.doi.org/10.1007/s10971-015-3941-8]
[32]
Kalpana, D.; Han, J.H.; Park, W.S.; Lee, S.M.; Wahab, R.; Lee, Y.S. Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity. Arab. J. Chem., 2019, 12(7), 1722-1732.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.016]
[33]
Banala, R.R.; Nagati, V.B.; Karnati, P.R. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J. Biol. Sci., 2015, 22(5), 637-644.
[http://dx.doi.org/10.1016/j.sjbs.2015.01.007] [PMID: 26288570]
[34]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14-14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[35]
Jenkins, S.I.; Pickard, M.R.; Furness, D.N.; Yiu, H.H.; Chari, D.M. Differences in magnetic particle uptake by CNS neuroglial subclasses: Implications for neural tissue engineering. Nanomedicine (Lond.), 2013, 8(6), 951-968.
[http://dx.doi.org/10.2217/nnm.12.145] [PMID: 23173710]
[36]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2016, 6(3), 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[37]
Adebayo-Tayo, B.; Salaam, A.; Ajibade, A. Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon, 2019, 5(10), e02502.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02502] [PMID: 31667375]
[38]
Lu, Z.; Rong, K.; Li, J.; Yang, H.; Chen, R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med., 2013, 24(6), 1465-1471.
[http://dx.doi.org/10.1007/s10856-013-4894-5] [PMID: 23440430]
[39]
de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; Larrañaga, D.; Estévez, M.; Pérez, R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Phys., 2017, 7, 2639-2643.
[http://dx.doi.org/10.1016/j.rinp.2017.07.044]
[40]
Sanchooli, N.; Saeidi, S.; Barani, H.K.; Sanchooli, E. In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran. J. Microbiol., 2018, 10(6), 400-408.
[PMID: 30873268]
[41]
Mohanta, Y.K.; Biswas, K.; Jena, S.K.; Hashem, A. Abd Allah, E.F.; Mohanta, T.K. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front. Microbiol., 2020, 11(1143)
[42]
Whiteley, M.; Bangera, M.G.; Bumgarner, R.E.; Parsek, M.R.; Teitzel, G.M.; Lory, S.; Greenberg, E.P. Gene expression in Pseudomonas aeruginosa biofilms. Nature, 2001, 413(6858), 860-864.
[http://dx.doi.org/10.1038/35101627] [PMID: 11677611]
[43]
de Meringo, A.; Morscheidt, C.; Thélohan, S.; Tiesler, H. In vitro assessment of biodurability: Acellular systems. Environ. Health Perspect., 1994, 102(Suppl. 5), 47-53.
[PMID: 7882955]
[44]
Browning, L.M.; Lee, K.J.; Nallathamby, P.D.; Xu, X.H. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chem. Res. Toxicol., 2013, 26(10), 1503-1513.
[http://dx.doi.org/10.1021/tx400228p] [PMID: 24024906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy