Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Routes to 2-Iminothiazolidines: State-of-the-Art 2006-2020

Author(s): Aditya Bhattacharyya*

Volume 24, Issue 24, 2020

Page: [2823 - 2844] Pages: 22

DOI: 10.2174/1385272824999201019162400

Price: $65

Abstract

Multiheteroatom-containing small-sized cyclic molecules such as 2- iminothiazolidines are often found to possess beneficial pharmacological properties. In this review article, the biological significance of 2-iminothiazolidines is discussed and the literature reports published in the last 15 years spanning from 2006 to 2020 describing various preparative routes to access 2-iminothiazolidine derivatives have been categorically and chronologically described. The notable synthetic methods discussed here involve ringexpansion transformations of nonactivated and activated aziridines, thiiranes, epoxides, and other miscellaneous reactions.

Keywords: 2-Iminothiazolidine, aziridine, thiirane, condensation, dominoring-opening cyclization, ring expansion.

Graphical Abstract

[1]
Wu, J.; Watson, J.T. Optimization of the cleavage reaction for cyanylated cysteinyl proteins for efficient and simplified mass mapping. Anal. Biochem., 1998, 258(2), 268-276.
[http://dx.doi.org/10.1006/abio.1998.2596] [PMID: 9570840]
[2]
Nagasawa, H.T.; Cummings, S.E.; Baskin, S.I. The structure of “ITCA”, a urinary metabolite of cyanide. Org. Prep. Proced. Int., 2004, 36, 178.
[http://dx.doi.org/10.1080/00304940409355393]
[3]
Wood, J.L.; Cooley, S.L. Detoxication of cyanide by cystine. J. Biol. Chem., 1956, 218(1), 449-457.
[PMID: 13278352]
[4]
Toida, T.; Kakinuma, N.; Imanari, T.; Shiina, T. Study on detoxication mechanisms of cyanide in vivo. Jap. J. Toxicol. Environ. Health, 1994, 40, 61.
[http://dx.doi.org/10.1248/jhs1956.40.61]
[5]
Takagi, M.; Ishimitsu, K.; Nishibe, T. Oxa(thia)zolidine derivative and anti-Inflammatory drug. U.S. Patent 6,762,200, July 13,. 2004.
[6]
Shukla, U.K.; Singh, R.; Khanna, J.M.; Saxena, A.K.; Singh, H.K.; Sur, R.N.; Dhawan, B.N.; Anand, N. Synthesis of trans-2-[N-(2-hydroxy-1,2,3,4-tetrahydronaphthalene-1-yl)]iminothiazolidine and related compounds - a new class of antidepressants. Collect. Czech. Chem. Commun., 1992, 57, 415-424.
[http://dx.doi.org/10.1135/cccc19920415]
[7]
Gyertyan, I.; Petocz, L.; Gacsalyi, I.; Fekete, M.I.K.; Tekes, K.; Kapolnai, L. Psychopharmacological effects of an iminothiazolidine derivative antidepressant candidate, EGYT-4201. Drug Dev. Res., 1991, 22, 385-399.
[http://dx.doi.org/0.1002/ddr.430220410 ]
[8]
Farkas, S.; Berzsenyi, P.; Kárpáti, E.; Kocsis, P.; Tarnawa, I. Simple pharmacological test battery to assess efficacy and side effect profile of centrally acting muscle relaxant drugs. J. Pharmacol. Toxicol. Methods, 2005, 52(2), 264-273.
[http://dx.doi.org/10.1016/j.vascn.2004.11.005] [PMID: 16125625]
[9]
Hosseinimehr, S.J.; Shafiee, A.; Mozdarani, H.; Akhlagpour, S. Radioprotective effects of 2-iminothiazolidine derivatives against lethal doses of gamma radiation in mice. J. Radiat. Res. (Tokyo), 2001, 42(4), 401-408.
[http://dx.doi.org/10.1269/jrr.42.401] [PMID: 11951663]
[10]
Hosseinimehr, S.J.; Shafiee, A.; Mozdarani, H.; Akhlagpour, S.; Froughizadeh, M. Radioprotective effects of 2-imino-3-[(chromone-2-yl)carbonyl] thiazolidines against gamma-irradiation in mice. J. Radiat. Res. (Tokyo), 2002, 43(3), 293-300.
[http://dx.doi.org/10.1269/jrr.43.293] [PMID: 12518989]
[11]
Wakita, T.; Kinoshita, K.; Yamada, E.; Yasui, N.; Kawahara, N.; Naoi, A.; Nakaya, M.; Ebihara, K.; Matsuno, H.; Kodaka, K. The discovery of dinotefuran: a novel neonicotinoid. Pest Manag. Sci., 2003, 59(9), 1016-1022.
[http://dx.doi.org/10.1002/ps.727] [PMID: 12974353]
[12]
Pandey, Y.; Sharma, P.K.; Kumar, N.; Singh, A. Biological activities of thiazolidine - a review. Int. J. Pharm. Tech. Res., 2011, 3, 980-985.
[13]
Dai, H.; Liu, J.; Miao, W.; Wu, S.; Zhang, X.; Wang, T.; Fang, J. Synthesis and bioactivities of novel thiazole amide derivatives containing a 2-substituted-1,3-thiazolidine ring. Youji Huaxue, 2011, 31, 1943-1948.
[14]
Vinuelas-Zahinos, E.; Luna-Giles, F.; Torres-Garcia, P.; Rodriguez, A.B.; Bernalte-Garcia, A. Effects of a derivative thiazoline/thiazolidine azine ligand and its cadmium complexes on phagocytic activity by human neutrophils. Inorg. Chim. Acta, 2011, 366, 373-379.
[http://dx.doi.org/10.1016/j.ica.2010.11.037]
[15]
Li, G.; Qian, X.; Cui, J.; Huang, Q.; Cui, D.; Zhang, R.; Liu, F. Synthesis and herbicidal activities of fluorine-containing 3-pyridylmethyl-2-phenyliminothiazolidine derivatives. J. Fluor. Chem., 2006, 127, 182-186.
[http://dx.doi.org/10.1016/j.jfluchem.2005.10.016]
[16]
Toldy, L.G. Biologically active heterocyclic analogs of thiourea. Chem. Heterocycl. Compd., 1978, 14, 705-714.
[http://dx.doi.org/10.1007/BF00471632]
[17]
Dixon, B.R.; Bagi, C.M.; Brennan, C.R.; Brittelli, D.R.; Bullock, W.H.; Chen, J.; Collibee, W.L.; Dally, R.; Johnson, J.S.; Kluender, H.C.E.; Lathrop, W.F.; Liu, P.; Mase, C.A.; Redman, A.M.; Scott, W.J.; Urbahns, K.; Wolanin, D.J. Substituted 2-arylimino heterocycles and compositions containing them, for use as progesterone receptor binding agents. World Patent WO/2000/042031, July 20, 2000.
[18]
D’Hooghe, M.; De Kimpe, N. Synthetic approaches towards 2-iminothia-zolidines: an overview. Tetrahedron, 2006, 62, 513-535.
[http://dx.doi.org/10.1016/j.tet.2005.09.028]
[19]
Ferreira, M.; Sa, M.M. Formal [3+2] annulation involving allylic bromides and thioureas. Synthesis of 2-iminothiazolidines through a base-catalyzed intramolecular anti-Michael addition. Adv. Synth. Catal., 2015, 357, 829-833.
[http://dx.doi.org/10.1002/adsc.201401026]
[20]
Craig, R.A., II; O’Connor, N.R.; Goldberg, A.F.G.; Stoltz, B.M. Stereoselective Lewis acid mediated (3+2) cycloadditions of N-H- and N-sulfonylaziridines with heterocumulenes. Chemistry, 2014, 20(16), 4806-4813.
[http://dx.doi.org/10.1002/chem.201303699] [PMID: 24604740]
[21]
Sengoden, M.; Punniyamurthy, T. “On water”: efficient iron-catalyzed cycloaddition of aziridines with heterocumulenes. Angew. Chem. Int. Ed., 2013, 52(2), 572-575.
[http://dx.doi.org/10.1002/anie.201207746] [PMID: 23165819]
[22]
Zhou, H-B.; Dong, C.; Alper, H. Novel rhodium-catalyzed reaction of thiazolidine derivatives with carbodiimides. Chemistry, 2004, 10(23), 6058-6065.
[http://dx.doi.org/10.1002/chem.200400543] [PMID: 15515101]
[23]
Istuk, Z.M.; Vujasinovic, I.; Cikos, A.; Kragol, G. Regioselective 2-imino-1,3-thiazolidine vs. 2-imino-1,3-oxazolidine formation from the vicinal sec-amino alcohol of desosamine. Eur. J. Org. Chem., 2013, 2013, 4666-4673.
[http://dx.doi.org/10.1002/ejoc.201300266]
[24]
Nadir, U.K.; Susan, J. Synthesis of 2-iminothiazolidines through reaction of N-arylsulphonylaziridines with sodium thiocyanate in the presence of tetra-butylammonium hydrogen sulphate. Indian J. Chem. Sect. B, 2003, 42B, 1531.
[http://dx.doi.org/10.1002/chin.200340143 ]
[25]
Nadir, U.K.; Joshi, S. Synthesis of 2-iminothiazolidines through reaction of N-arylsulphonylaziridines with isothiocyanates in the presence of iodide ions. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem., 2003, 42B, 1760.
[26]
Liu, C.; Xu, X.; Li, Z.; Chen, W.; Huang, Q.; Qian, X. Synthesis and biological activities of hydroxyl-protected fluorine-containing 4,4-dihydroxyl-methyl-2-aryl-iminothiazolidines. J. Fluor. Chem., 2005, 126, 53-58.
[http://dx.doi.org/10.1016/j.jfluchem.2004.10.007]
[27]
Nadir, U.K.; Basu, N. Unusual cycloaddition reactions of substituted-N-(arylsulfonyl)aziridines with aryl and alkyl isothiocyanates in the presence of sodium iodide as catalyst. J. Org. Chem., 1995, 60, 1458-1460.
[http://dx.doi.org/10.1021/jo00110a056]
[28]
D’Hooghe, M.; Waterinckx, A.; De Kimpe, N. A novel entry toward 2-imino-1,3-thiazolidines and 2-imino-1,3-thiazolines by ring transformation of 2-(thiocyanomethyl)aziridines. J. Org. Chem., 2005, 70(1), 227-232.
[http://dx.doi.org/10.1021/jo048486f] [PMID: 15624926]
[29]
Wu, J-Y.; Luo, Z-B.; Dai, L-X.; Hou, X-L. Tributylphosphine-catalyzed cycloaddition of aziridines with carbon disulfide and isothiocyanate. J. Org. Chem., 2008, 73(22), 9137-9139.
[http://dx.doi.org/10.1021/jo801703h] [PMID: 18942793]
[30]
Saeed, M.; Abbas, M.; Heinrich, A.; Voelter, W. An efficient approach to the synthesis of tri-substituted iminothiazolidenes and their effects on the human neuroblastoma cell line. Tetrahedron Lett., 2003, 44, 6107.
[http://dx.doi.org/10.1016/S0040-4039(03)01457-6]
[31]
Dighe, S.U.; Yadav, V.D.; Srivastava, R.; Mishra, A.; Gautam, S.; Srivastava, A.K.; Balaramnavar, V.M.; Saxena, A.K.; Batra, S. Reinvestigations into synthesis of allyldithiocarbamates and their intramolecular cyclization: synthesis and antihyperglycemic activity of 2-thioxothiazolidine-4-alkanoates. Tetrahedron, 2014, 70, 6841-6850.
[http://dx.doi.org/10.1016/j.tet.2014.07.044]
[32]
Guirado, A.; Andreu, R.; Martiz, B.; Bautista, D.; Ramirez de Arellano, C.; Jones, P.G. The reaction of 4-amino-2-oxazolines with isocyanates and isothiocyanates. Synthesis and X-ray structures of polysubstituted 2-imidazolidinones, 1,3-oxazolidines and 1,3-thiazolidines. Tetrahedron, 2006, 62, 6172-6181.
[http://dx.doi.org/10.1016/j.tet.2006.04.058]
[33]
Baeg, J-O.; Bensimon, C.; Alper, H. The first enantiospecific palladium-catalyzed cycloaddition of aziridines and heterocumulenes. Novel synthesis of chiral five-membered ring heterocycles. J. Am. Chem. Soc., 1995, 117, 4700-4701.
[http://dx.doi.org/10.1021/ja00121a026]
[34]
Wohl, R.A.; Headley, D.F. Stereochemistry of aziridine ring expansion reactions with sulfur nucleophiles to give thiazolidines and 2-amino-2-thiazolines. J. Org. Chem., 1972, 37, 4401-4406.
[http://dx.doi.org/10.1021/jo00799a609]
[35]
Nomura, R.; Nakano, T.; Nishio, Y.; Ogawa, S.; Ninagawa, A.; Matsuda, H. Regioselective cycloaddition of 1,2-disubstituted aziridines to heterocumulenes catalyzed by organoantimony halides. Chem. Ber., 1989, 122, 2407-2409.
[http://dx.doi.org/10.1002/cber.19891221232]
[36]
Ghorai, M.K.; Bhattacharyya, A.; Das, S.; Chauhan, N. Ring expansions of activated aziridines and azetidines. Top. Heterocycl. Chem., 2016, 41, 49-142.
[http://dx.doi.org/10.1007/7081_2015_159]
[37]
Callebaut, G.; Meiresonne, T.; De Kimpe, N.; Mangelinckx, S. Synthesis and reactivity of 2-(carboxymethyl)aziridine derivatives. Chem. Rev., 2014, 114(16), 7954-8015.
[http://dx.doi.org/10.1021/cr400582d] [PMID: 24773209]
[38]
Stanković, S.; D’hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N.; Ha, H-J. Regioselectivity in the ring opening of non-activated aziridines. Chem. Soc. Rev., 2012, 41(2), 643-665.
[http://dx.doi.org/10.1039/C1CS15140A] [PMID: 21894345]
[39]
Schneider, C. Catalytic, enantioselective ring opening of aziridines. Angew. Chem. Int. Ed., 2009, 48(12), 2082-2084.
[http://dx.doi.org/10.1002/anie.200805542] [PMID: 19173352]
[40]
Singh, G.S.; D’hooghe, M.; De Kimpe, N. Synthesis and reactivity of C-heteroatom-substituted aziridines. Chem. Rev., 2007, 107(5), 2080-2135.
[http://dx.doi.org/10.1021/cr0680033] [PMID: 17488062]
[41]
Nielsen, L.P.C.; Jacobsen, E.N. Aziridines and Epoxides in Organic Synthesis; Yudin, A.K., Ed.; Wiley-VCH: Weinheim, 2006, p. 229.
[http://dx.doi.org/10.1002/3527607862.ch7]
[42]
Watson, I.D.G.; Yu, L.; Yudin, A.K. Advances in nitrogen transfer reactions involving aziridines. Acc. Chem. Res., 2006, 39(3), 194-206.
[http://dx.doi.org/10.1021/ar050038m] [PMID: 16548508]
[43]
Hu, X.E. Nucleophilic ring opening of aziridines. Tetrahedron, 2004, 60, 2701-2743.
[http://dx.doi.org/10.1016/j.tet.2004.01.042]
[44]
Sweeney, J.B. Aziridines: epoxides’ ugly cousins? Chem. Soc. Rev., 2002, 31(5), 247-258.
[http://dx.doi.org/10.1039/B006015L] [PMID: 12357722]
[45]
Wang, P.; Zhao, Y.; Chapagain, B.; Yang, Y.; Liu, W.; Wang, Y. Mechanistic insights into Cu-catalyzed enantioselective Friedel–Crafts reaction between indoles and 2-aryl-N-sulfonylaziridines. Catal. Sci. Technol., 2020, 10, 1117-1124.
[http://dx.doi.org/10.1039/C9CY01967G]
[46]
Lautens, M.; Lam, H. Recent advances in transition-metal-catalyzed (4+3)-cycloadditions. Synthesis, 2020, 52(17), 2427-2449.
[http://dx.doi.org/10.1055/s-0039-1690875]
[47]
Lu, P. Recent developments in regioselective ring opening of aziridines. Tetrahedron, 2010, 66, 2549-2560.
[http://dx.doi.org/10.1016/j.tet.2010.01.077]
[48]
Ohno, H. Synthesis and applications of vinylaziridines and ethynylaziridines. Chem. Rev., 2014, 114(16), 7784-7814.
[http://dx.doi.org/10.1021/cr400543u] [PMID: 24678905]
[49]
Huang, C.Y.; Doyle, A.G. The chemistry of transition metals with three-membered ring heterocycles. Chem. Rev., 2014, 114(16), 8153-8198.
[http://dx.doi.org/10.1021/cr500036t] [PMID: 24869559]
[50]
Li, J.; Liao, Y.; Zhang, Y.; Liu, X.; Lin, L.; Feng, X. Chiral magnesium(II)-catalyzed asymmetric ring-opening of meso-aziridines with primary alcohols. Chem. Commun. (Camb.), 2014, 50(50), 6672-6674.
[http://dx.doi.org/10.1039/c4cc02206h] [PMID: 24827993]
[51]
Li, X.; Guo, J.; Lin, L.; Hu, H.; Chang, F.; Liu, X.; Feng, X. Chiral magnesium(II) complex-catalyzed enantioselective desymmetrization of meso-aziridines with pyrazoles. Adv. Synth. Catal., 2017, 359, 3532-3537.
[http://dx.doi.org/10.1002/adsc.201700888]
[52]
Sabir, S.; Kumar, G.; Verma, V.P.; Jat, J.L. Aziridine ring opening: An overview of sustainable methods. ChemistrySelect, 2018, 3, 3702-3711.
[http://dx.doi.org/10.1002/slct.201800170]
[53]
Akhtar, R.; Naqvi, S.A.R.; Zahoor, A.F.; Saleem, S. Nucleophilic ring opening reactions of aziridines. Mol. Divers., 2018, 22(2), 447-501.
[http://dx.doi.org/10.1007/s11030-018-9829-0] [PMID: 29728870]
[54]
Zhang, F.; Zhang, Y.; Tan, Q.; Lin, L.; Liu, X.; Feng, X. Kinetic resolution of aziridines via catalytic asymmetric ring-opening reaction with mercaptobenzothiazoles. Org. Lett., 2019, 21(15), 5928-5932.
[http://dx.doi.org/10.1021/acs.orglett.9b02058] [PMID: 31334664]
[55]
Žukauskaitė, A.; Mangelinckx, S.; Callebaut, G.; Wybon, C.; Šačkus, A.; De Kimpe, N. Synthesis of 1,5-diazaspiro[2.3]hexanes, a novel diazaspirocyclic system. Tetrahedron, 2013, 69, 3437-3443.
[http://dx.doi.org/10.1016/j.tet.2013.02.065]
[56]
Kenis, S.; D’hooghe, M.; Verniest, G.; Reybroeck, M.; Dang Thi, T.A. Pham The, C.; Thi Pham, T.; Törnroos, K.W.; Van Tuyen, N.; De Kimpe, N. Nucleophile-directed selective transformation of cis-1-tosyl-2-tosyloxy-methyl-3-(trifluoromethyl)aziridine into aziridines, azetidines, and benzo-fused dithianes, oxathianes, dioxanes, and (thio)morpholines. Chemistry, 2013, 19(19), 5966-5971.
[http://dx.doi.org/10.1002/chem.201204485] [PMID: 23512331]
[57]
Peruncheralathan, S.; Aurich, S.; Teller, H.; Schneider, C. The Ti-BINOLate-catalyzed, enantioselective ring-opening of meso-aziridines with amines. Org. Biomol. Chem., 2013, 11(17), 2787-2803.
[http://dx.doi.org/10.1039/c3ob40222c] [PMID: 23515632]
[58]
Takeda, Y.; Murakami, Y.; Ikeda, Y.; Minakata, S. Nucleophilic ring-opening of N-o-nosylaziridines with N-chloro-N-sodiocarbamate: Facile preparation of differentially protected vicinal diamines. Asian J. Org. Chem., 2012, 1(3), 226-230.
[http://dx.doi.org/10.1002/ajoc.201200070]
[59]
De Vreese, R.; D’hooghe, M. N-Heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis. Beilstein J. Org. Chem., 2012, 8, 398-402.
[http://dx.doi.org/10.3762/bjoc.8.43] [PMID: 22509208]
[60]
Cockrell, J.; Wilhelmsen, C.; Rubin, H.; Martin, A.; Morgan, J.B. Enantioselective synthesis and stereoselective ring opening of N-acylaziridines. Angew. Chem. Int. Ed., 2012, 51(39), 9842-9845.
[http://dx.doi.org/10.1002/anie.201204224] [PMID: 22945340]
[61]
Žukauskaitė, A.; Mangelinckx, S.; Buinauskaitė, V.; Šačkus, A.; De Kimpe, N. Synthesis of new functionalized aziridine-2- and azetidine-3-carboxylic acid derivatives of potential interest for biological and foldameric applications. Amino Acids, 2011, 41(3), 541-558.
[http://dx.doi.org/10.1007/s00726-011-0879-1] [PMID: 21424811]
[62]
De Rycke, N.; David, O.; Couty, F. Assessing the rates of ring-opening of aziridinium and azetidinium ions: a dramatic ring size effect. Org. Lett., 2011, 13(7), 1836-1839.
[http://dx.doi.org/10.1021/ol200348k] [PMID: 21384826]
[63]
D’hooghe, M.; Kenis, S.; Vervisch, K.; Lategan, C.; Smith, P.J.; Chibale, K.; De Kimpe, N. Synthesis of 2-(aminomethyl)aziridines and their microwave-assisted ring opening to 1,2,3-triaminopropanes as novel antimalarial pharmacophores. Eur. J. Med. Chem., 2011, 46(2), 579-587.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.037] [PMID: 21183259]
[64]
Bera, M.; Pratihar, S.; Roy, S. Ag(I)-catalyzed regioselective ring-opening of N-tosylaziridine and N-tosylazetidine with S-, O-, and N-nucleophiles and tethered dinucleophiles. J. Org. Chem., 2011, 76(5), 1475-1478.
[http://dx.doi.org/10.1021/jo102285z] [PMID: 21291173]
[65]
Hajra, S.; Sinha, D. Catalytic enantioselective aziridoarylation of aryl cinnamyl ethers toward synthesis of trans-3-amino-4-arylchromans. J. Org. Chem., 2011, 76(18), 7334-7340.
[http://dx.doi.org/10.1021/jo200711s] [PMID: 21797274]
[66]
Xu, Y.; Lin, L.; Kanai, M.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric ring-opening of meso-aziridines with malonates under heterodinuclear rare earth metal Schiff base catalysis. J. Am. Chem. Soc., 2011, 133(15), 5791-5793.
[http://dx.doi.org/10.1021/ja201492x] [PMID: 21443197]
[67]
Yadav, J.S.; Satheesh, G.; Murthy, C.V.S.R. Synthesis of (+)-lycoricidine by the application of oxidative and regioselective ring-opening of aziridines. Org. Lett., 2010, 12(11), 2544-2547.
[http://dx.doi.org/10.1021/ol100755v] [PMID: 20441205]
[68]
Kelley, B.T.; Joullié, M.M. Ring opening of a trisubstituted aziridine with amines: regio- and stereoselective formation of substituted 1,2-diamines. Org. Lett., 2010, 12(19), 4244-4247.
[http://dx.doi.org/10.1021/ol101584z] [PMID: 20812750]
[69]
D’hooghe, M.; Aelterman, W.; De Kimpe, N. A new entry into cis-3-amino-2-methylpyrrolidines via ring expansion of 2-(2-hydroxyethyl)-3-methylaziridines. Org. Biomol. Chem., 2009, 7(1), 135-141.
[http://dx.doi.org/10.1039/B816617J] [PMID: 19081956]
[70]
Wu, B.; Parquette, J.R. RajanBabu, T.V. Regiodivergent ring opening of chiral aziridines. Science, 2009, 326(5960), 1662.
[http://dx.doi.org/10.1126/science.1180739] [PMID: 20019280]
[71]
Wu, B.; Gallucci, J.C.; Parquette, J.R. RajanBabu, T.V. Enantioselective desymmetrization of meso-aziridines with TMSN3 or TMSCN catalyzed by discrete yttrium complexes. Angew. Chem. Int. Ed., 2009, 48(6), 1126-1129.
[http://dx.doi.org/10.1002/anie.200804415] [PMID: 19021173]
[72]
Minakata, S.; Murakami, Y.; Satake, M.; Hidaka, I.; Okada, Y.; Komatsu, M. Asymmetric recognition and sequential ring opening of 2-substituted-N-nosylaziridines with (DHQD)2AQN and TMSNu. Org. Biomol. Chem., 2009, 7(4), 641-643.
[http://dx.doi.org/10.1039/b821650a] [PMID: 19194575]
[73]
Moss, T.A.; Fenwick, D.R.; Dixon, D.J. Enantio- and diastereoselective catalytic alkylation reactions with aziridines. J. Am. Chem. Soc., 2008, 130(31), 10076-10077.
[http://dx.doi.org/10.1021/ja8036965] [PMID: 18616245]
[74]
Paixão, M.W.; Nielsen, M.; Jacobsen, C.B.; Jørgensen, K.A. Organocatalytic asymmetric ring-opening of aziridines. Org. Biomol. Chem., 2008, 6(19), 3467-3470.
[http://dx.doi.org/10.1039/b812369a] [PMID: 19082146]
[75]
Forbeck, E.M.; Evans, C.D.; Gilleran, J.A.; Li, P.; Joullié, M.M. A regio- and stereoselective approach to quaternary centers from chiral trisubstituted aziridines. J. Am. Chem. Soc., 2007, 129(46), 14463-14469.
[http://dx.doi.org/10.1021/ja0758077] [PMID: 17973389]
[76]
D’hooghe, M.; Vanlangendonck, T.; Törnroos, K.W.; De Kimpe, N. Novel synthesis of cis-3,5-disubstituted morpholine derivatives. J. Org. Chem., 2006, 71(12), 4678-4681.
[http://dx.doi.org/10.1021/jo060313y] [PMID: 16749806]
[77]
Hale, K.J.; Domostoj, M.M.; Tocher, D.A.; Irving, E.; Scheinmann, F. Enantiospecific formal total synthesis of the tumor and GSK-3 β inhibiting alkaloid, (-)-agelastatin A. Org. Lett., 2003, 5(16), 2927-2930.
[http://dx.doi.org/10.1021/ol035036l] [PMID: 12889910]
[78]
Cossy, J.; Bellosta, V.; Alauze, V.; Desmurs, J-R. Lithium bistrifluoromethanesulfonimidate-mediated regioselective ring opening of aziridines by amines. Synthesis, 2002, 2002, 2211-2214.
[http://dx.doi.org/10.1055/s-2002-34842]
[79]
Vicario, J.L.; Badía, D.; Carrillo, L. Aziridine ring-opening reactions with chiral enolates. Stereocontrolled synthesis of 5-substituted-3-methyl-pyrrolidin-2-ones. J. Org. Chem., 2001, 66(17), 5801-5807.
[http://dx.doi.org/10.1021/jo0103571] [PMID: 11511255]
[80]
Enders, D. Janeck, Carsten F.; Raabe, G. Asymmetric β-aminoethylation of ketones and nitriles with tosylaziridines employing the SAMP-hydrazone method. Eur. J. Org. Chem., 2000, 2000, 3337-3345.
[http://dx.doi.org/10.1002/1099-0690(200010)2000:19<3337:AID-EJOC3337>3.0.CO;2-V]
[81]
Dolfen, J.; Vervisch, K.; De Kimpe, N.; D’hooghe, M. LiAlH4-induced selective ring rearrangement of 2-(2-cyanoethyl)aziridines toward 2-(aminomethyl)pyrrolidines and 3-aminopiperidines as eligible heterocyclic building blocks. Chemistry, 2016, 22(14), 4945-4951.
[http://dx.doi.org/10.1002/chem.201504853] [PMID: 26891167]
[82]
Mollet, K.; Decuyper, L.; Vander Meeren, S.; Piens, N.; De Winter, K.; Desmet, T.; D’hooghe, M. Synthesis of 2-aryl-3-(2-cyanoethyl)aziridines and their chemical and enzymatic hydrolysis towards γ-lactams and γ-lactones. Org. Biomol. Chem., 2015, 13(9), 2716-2725.
[http://dx.doi.org/10.1039/C4OB02615B] [PMID: 25598487]
[83]
Vervisch, K.; D’hooghe, M.; Törnroos, K.W.; De Kimpe, N. Radical-mediated nitrile translocation as the key step in the stereoselective transformation of 2-(4-chloro-2-cyanobutyl)aziridines to methyl cis-(1-arylmethyl-4-phenylpiperidin-2-yl)acetates. Org. Biomol. Chem., 2012, 10(16), 3308-3314.
[http://dx.doi.org/10.1039/c2ob07062f] [PMID: 22410956]
[84]
Druais, V.; Meyer, C.; Cossy, J. Catalytic diastereoselective reduction of α,β-epoxy and α,β-aziridinyl ynones. Org. Lett., 2012, 14(2), 516-519.
[http://dx.doi.org/10.1021/ol203114a] [PMID: 22217034]
[85]
Bisol, T.B.; Bortoluzzi, A.J.; Sá, M.M. Nucleophilic ring-opening of epoxide and aziridine acetates for the stereodivergent synthesis of β-hydroxy and β-amino γ-lactams. J. Org. Chem., 2011, 76(3), 948-962.
[http://dx.doi.org/10.1021/jo102267h] [PMID: 21194209]
[86]
Du, X.; Yang, S.; Yang, J.; Liu, Y. Regio- and stereoselective construction of highly functionalized 3-benzazepine skeletons through ring-opening cycloamination reactions catalyzed by gold. Chemistry, 2011, 17(18), 4981-4985.
[http://dx.doi.org/10.1002/chem.201002502] [PMID: 21438040]
[87]
Zeng, F.; Alper, H. Palladium-catalyzed domino ring-opening/carboxa-midation reactions of N-tosyl aziridines and 2-iodothiophenols: a facile and efficient approach to 1,4-benzothiazepin-5-ones. Org. Lett., 2010, 12(23), 5567-5569.
[http://dx.doi.org/10.1021/ol102394h] [PMID: 21049948]
[88]
Bhadra, S.; Adak, L.; Samanta, S.; Maidul Islam, A.K.M.; Mukherjee, M.; Ranu, B.C. Alumina-supported Cu(II), a versatile and recyclable catalyst for regioselective ring opening of aziridines and epoxides and subsequent cyclization to functionalized 1,4-benzoxazines and 1,4-benzodioxanes. J. Org. Chem., 2010, 75(24), 8533-8541.
[http://dx.doi.org/10.1021/jo101916e] [PMID: 21070034]
[89]
Baktharaman, S.; Afagh, N.; Vandersteen, A.; Yudin, A.K. Unprotected vinyl aziridines: facile synthesis and cascade transformations. Org. Lett., 2010, 12(2), 240-243.
[http://dx.doi.org/10.1021/ol902550q] [PMID: 20017499]
[90]
Ochoa-Terán, A.; Concellón, J.M.; Rivero, I.A. Synthesis of enantiopure trisubstituted piperidines from a chiral epoxyaziridine and α-amino esters. ARKIVOC, 2009, 2009(2), 288-297.
[91]
Prasad, D.J.C.; Sekar, G. An efficient copper-catalyzed synthesis of hexahydro-1H- phenothiazines. Org. Biomol. Chem., 2009, 7(24), 5091-5097.
[http://dx.doi.org/10.1039/b916664e] [PMID: 20024103]
[92]
Wu, Y-C.; Zhu, J. Asymmetric total syntheses of (-)-renieramycin M and G and (-)-jorumycin using aziridine as a lynchpin. Org. Lett., 2009, 11(23), 5558-5561.
[http://dx.doi.org/10.1021/ol9024919] [PMID: 19894720]
[93]
D’Hooghe, M.; Van Nieuwenhove, A.; Van Brabandt, W.; Rottiers, M.; De Kimpe, N. Novel synthesis of 2-aminopentanedinitriles from 2-(bromomethyl)aziridines and their transformation into 2-imino-5-methoxypyrrolidines and 5-methoxypyrrolidin-2-ones. Tetrahedron, 2008, 64, 1064-1070.
[http://dx.doi.org/10.1016/j.tet.2007.03.116]
[94]
Karikomi, M.; D’hooghe, M.; Verniest, G.; De Kimpe, N. Regio- and stereocontrolled synthesis of novel 3-sulfonamido-2,3,4,5-tetrahydro-1,5-benzothiazepines from 2-(bromomethyl)- or 2-(sulfonyloxymethyl)-aziridines. Org. Biomol. Chem., 2008, 6(11), 1902-1904.
[http://dx.doi.org/10.1039/b804246m] [PMID: 18480901]
[95]
Gao, L.; Fu, K.; Zheng, G. Quickly FeCl3-catalyzed highly chemo- and stereo-selective [3 + 2] dipolar cycloaddition of aziridines with isothiocyanates. RSC Adv, 2016, 6, 47192-47195.
[http://dx.doi.org/10.1039/C6RA04923K]
[96]
Pradhan, S.; Chauhan, N.; Shahi, C.K.; Bhattacharyya, A.; Ghorai, M.K. Stereoselective synthesis of hexahydroimidazo[1,2-a]quinolines via SN2-type ring-opening hydroarylation–hydroamination cascade cyclization of activated aziridines with N-propargylanilines. Org. Lett., 2020, 22(20), 7903-7908.
[http://dx.doi.org/10.1021/acs.orglett.0c02801] [PMID: 32985195]
[97]
Saha, A.; Bhattacharyya, A.; Talukdar, R.; Ghorai, M.K. Stereospecific syntheses of enaminonitriles and β-enaminoesters via Domino Ring-Opening Cyclization (DROC) of activated cyclopropanes with pronucleophilic malononitriles. J. Org. Chem., 2018, 83(4), 2131-2144.
[http://dx.doi.org/10.1021/acs.joc.7b03033] [PMID: 29342362]
[98]
Spicer, L.D.; Bullock, M.W.; Garber, M.; Groth, W.; Hand, J.J.; Long, D.W.; Sawyer, J.L.; Wayne, R.S. A new synthesis of 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole. J. Org. Chem., 1968, 33(4), 1350-1353.
[http://dx.doi.org/10.1021/jo01268a009] [PMID: 5641025]
[99]
Baeg, J-O.; Alper, H. Novel palladium(II)-catalyzed cyclization of aziridines and sulfur diimides. J. Am. Chem. Soc., 1994, 116, 1220-1224.
[http://dx.doi.org/10.1021/ja00083a007]
[100]
Butler, D.C.D.; Inman, G.A.; Alper, H. Room temperature ring-opening cyclization reactions of 2-vinylaziridines with isocyanates, carbodiimides, and isothiocyanates catalyzed by. J. Org. Chem., 2000, 65(19), 5887-5890.
[http://dx.doi.org/10.1021/jo000608q] [PMID: 10987917]
[101]
Westland, R.D.; Lin, M.H.; Vandenbelt, J.M. Reactions of aziridines. Preparation and properties of 2-thiazolinium salts. J. Heterocycl. Chem., 1971, 8, 405-409.
[http://dx.doi.org/10.1002/jhet.5570080309]
[102]
Plutecka, A.; Rychlewska, U.; Prusinowska, N.; Gawroński, J. Solid solution of two diastereomers of [3a(R,S),7a(R,S)]-3-[(1'R)-1-phenylethyl]perhydro-1,3-benzothiazol-2-iminium chloride. Acta Crystallogr. B, 2010, 66(Pt 6), 678-686.
[http://dx.doi.org/10.1107/S0108768110040760] [PMID: 21099029]
[103]
Turks, M.; Lugiņina, J. Regioselective ring opening of N-H-aziridines with sulfur nucleophiles in liquid SO2. Synlett, 2016, 28, 939-943.
[http://dx.doi.org/10.1055/s-0036-1588670]
[104]
Nadir, U.K.; Joshi, S. Synthesis of 2-iminothiazolidines through reaction of N-arylsulphonylaziridines with sodium thiocyanate in the presence of tetrabutylammonium hydrogen sulphate. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem., 2003, 42B, 1531.
[105]
Ghorai, M.K.; Shukla, D.; Bhattacharyya, A. Syntheses of chiral β- and γ-amino ethers, morpholines, and their homologues via nucleophilic ring-opening of chiral activated aziridines and azetidines. J. Org. Chem., 2012, 77(8), 3740-3753.
[http://dx.doi.org/10.1021/jo300002u] [PMID: 22448664]
[106]
Ghorai, M.K.; Sahoo, A.K.; Bhattacharyya, A. Syntheses of imidazo-, oxa-, and thiazepine ring systems via ring-opening of aziridines/Cu-catalyzed C-N/C-C bond formation. J. Org. Chem., 2014, 79(14), 6468-6479.
[http://dx.doi.org/10.1021/jo500888j] [PMID: 24955856]
[107]
Ghorai, M.K.; Shahi, C.K.; Bhattacharyya, A.; Sayyad, M.; Mal, A.; Wani, I.A.; Chauhan, N. Syntheses of tetrahydrobenzodiazepines via SN2-type ring-opening of activated aziridines with 2-bromobenzylamine followed by copper-powder-mediated C−N bond formation. Asian J. Org. Chem., 2015, 4, 1103-1111.
[http://dx.doi.org/10.1002/ajoc.201500224]
[108]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M.K. Divergent and stereospecific routes to five to eight-membered 1,3- and 1,4-di-aza-heterocycles via ring-opening cyclization of activated aziridines with aryl amines. ChemistrySelect, 2017, 2, 550-556.
[http://dx.doi.org/10.1002/slct.201602062]
[109]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M.K. Syntheses of tetrahydrobenzoazepinoindoles and dihydrobenzodiazepinoindoles via ring-opening cyclization of activated aziridines with 2-(2-bromophenyl)-1H-indoles. Org. Lett., 2017, 19(13), 3438-3441.
[http://dx.doi.org/10.1021/acs.orglett.7b01397] [PMID: 28613075]
[110]
Shahi, C.K.; Bhattacharyya, A.; Nanaji, Y.; Ghorai, M.K. A stereoselective route to tetrahydrobenzoxazepines and tetrahydrobenzodiazepines via ring-opening and aza-Michael addition of activated aziridines with 2-hydroxyphenyl and 2-aminophenyl acrylates. J. Org. Chem., 2017, 82(1), 37-47.
[http://dx.doi.org/10.1021/acs.joc.6b01919] [PMID: 27704829]
[111]
Shahi, C.K.; Pradhan, S.; Bhattacharyya, A.; Kumar, R.; Ghorai, M.K. Accessing quinoxalines by ring-opening/cyclization/detosylation/aromatiza-tion of activated aziridines with 2-bromoanilines: synthesis of tyrphostin AG 1296. Eur. J. Org. Chem., 2017, 2017, 3487.
[http://dx.doi.org/10.1002/ejoc.201700506]
[112]
Bhattacharyya, A.; Shahi, C.K.; Pradhan, S.; Ghorai, M.K. Stereospecific synthesis of 1,4,5,6-tetrahydropyrimidines via domino ring-opening cyclization of activated aziridines with α-acidic isocyanides. Org. Lett., 2018, 20(10), 2925-2928.
[http://dx.doi.org/10.1021/acs.orglett.8b00986] [PMID: 29738257]
[113]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Ghorai, M.K. Stereoselective synthesis of 3-spiropiperidino indolenines via SN2-type ring opening of activated aziridines with 1H-indoles/Pd-catalyzed spirocyclization with propargyl carbonates. Chem. Commun. (Camb.), 2018, 54(62), 8583-8586.
[http://dx.doi.org/10.1039/C8CC04249G] [PMID: 29951688]
[114]
Bhattacharyya, A.; Das, S.; Chauhan, N.; Biswas, P.K.; Ghorai, M.K. Facile synthesis of oxime amino ethers via Lewis acid catalyzed SN2-type ring opening of activated aziridines with aryl aldehyde oximes. Synlett, 2020, 31, 708-712.
[http://dx.doi.org/10.1055/s-0039-1691596]
[115]
Wani, I.A.; Bhattacharyya, A.; Sayyad, M.; Ghorai, M.K. Temperature-modulated diastereoselective transformations of 2-vinylindoles to tetrahydrocarbazoles and tetrahydrocycloheptadiindoles. Org. Biomol. Chem., 2018, 16(16), 2910-2922.
[http://dx.doi.org/10.1039/C8OB00228B] [PMID: 29619472]
[116]
Bhattacharyya, A. Synthetic routes to 1,4,5,6-tetrahydropyrimidines: An overview and recent advances. Curr. Org. Chem., 2019, 23, 1843-1856.
[http://dx.doi.org/10.2174/1385272823666191007163310]
[117]
Bailey, T.; Seden, T.P.; Turner, R.W. A new route to 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole, a broad spectrum anthelmintic. J. Heterocycl. Chem., 1969, 6, 751-752.
[http://dx.doi.org/10.1002/jhet.5570060526]
[118]
Minakata, S.; Hotta, T.; Oderaotoshi, Y.; Komatsu, M. Ring opening and expansion of aziridines in a silica-water reaction medium. J. Org. Chem., 2006, 71(19), 7471-7472.
[http://dx.doi.org/10.1021/jo061239m] [PMID: 16958545]
[119]
Sengoden, M.; Vijay, M.; Balakumar, E.; Punniyamurthy, T. Efficient pyrrolidine catalyzed cycloaddition of aziridines with isothiocyanates, isoselenocyanates and carbon disulfide “on water”. RSC Adv, 2014, 4, 54149-54157.
[http://dx.doi.org/10.1039/C4RA08902B]
[120]
Samzadeh-Kermani, A. A novel three-component reaction involving terminal alkynes, elemental sulfur, and strained heterocycles. Synlett, 2015, 26, 643-645.
[http://dx.doi.org/10.1055/s-0034-1379949]
[121]
Bhattacharyya, A. Tetrabutylammonium hydrogen sulfate. Synlett, 2012, 23, 2142-2143.
[http://dx.doi.org/10.1055/s-0032-1317162]
[122]
Bhattacharyya, A.; Kavitha, C.V.; Ghorai, M.K. Stereospecific synthesis of 2-iminothiazolidines via domino ring-opening cyclization of activated aziridines with aryl- and alkyl isothiocyanates. J. Org. Chem., 2016, 81(15), 6433-6443.
[http://dx.doi.org/10.1021/acs.joc.6b01551] [PMID: 27425856]
[123]
Sengoden, M.; Irie, R.; Punniyamurthy, T. Enantiospecific aluminum-catalyzed (3+2)-cycloaddition of unactivated aziridines with isothiocyanates. J. Org. Chem., 2016, 81(22), 11508-11513.
[http://dx.doi.org/10.1021/acs.joc.6b02190] [PMID: 27731640]
[124]
Ghazanfarpour-Darjani, M.; Khodakarami, A. Organocatalytic one-pot synthesis of functionalized 1,3-oxathiolanes and 1,3-thiazolidines. Monatsh. Chem., 2016, 147, 829-835.
[http://dx.doi.org/10.1007/s00706-015-1543-3]
[125]
Khalaj, A.; Khalaj, M. Organo-catalytic synthesis of 1,3-thiazole derivatives. J. Chem. Res., 2016, 40, 445.
[http://dx.doi.org/10.3184/174751916X14656621014049]
[126]
Meng, Q.; Cheng, J-Y.; Miao, C-B.; Sun, X-Q.; Yang, H-T. Lewis base-catalyzed double nucleophilic substitution reaction of N-tosylaziridino-fullerene with thioureas or guanidines. Tetrahedron Lett., 2017, 58, 2566-2570.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.048]
[127]
Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science, 2019, 364(6439)e9713
[http://dx.doi.org/10.1126/science.aav9713] [PMID: 31048464]
[128]
Ye, Q.; Xu, X.; Cheng, D.; Guan, B.; Ye, H.; Li, X. Synthesis of substituted imid(thi)azolidines by [3+2] cycloaddition of aziridines with nitriles(isothiocyanates) via visible light photocatalysis. ARKIVOC, 2017, 2017(5), 314-326.
[http://dx.doi.org/110.24820/ark.5550190.p010.246 ]
[129]
Dahiya, A.; Ali, W.; Patel, B.K. Catalyst and solvent free domino ring opening cyclization: a greener and atom economic route to 2-iminothiazolidines. ACS Sustain. Chem.& Eng., 2018, 6, 4272-4281.
[http://dx.doi.org/10.1021/acssuschemeng.7b04723]
[130]
Yu, W-L.; Chen, J-Q.; Wei, Y-L.; Wang, Z-Y.; Xu, P-F. Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chem. Commun. (Camb.), 2018, 54(16), 1948-1951.
[http://dx.doi.org/10.1039/C7CC09151F] [PMID: 29326995]
[131]
Alom, N-E.; Rina, Y.A.; Li, W. Intermolecular regio- and stereoselective sulfenoamination of alkenes with thioimidazoles. Org. Lett., 2017, 19(22), 6204-6207.
[http://dx.doi.org/10.1021/acs.orglett.7b03128] [PMID: 29076336]
[132]
Satheesh, V.; Kumar, S.V.; Vijay, M.; Barik, D.; Punniyamurthy, T. Metal-free [3+2]-cycloaddition of thiiranes with isothiocyanates, isoselenocyanates and carbodiimides: synthesis of 2-imino-dithiolane/thiaselenolane/thia-zolidines. Asian J. Org. Chem., 2018, 7, 1583-1586.
[http://dx.doi.org/10.1002/ajoc.201800274]
[133]
Anitha, M.; Swamy, K.C.K. Synthesis of thiazolidine-thiones, imino-thiazolidines and oxazolidines via the base promoted cyclisation of epoxy-sulfonamides and heterocumulenes. Org. Biomol. Chem., 2018, 16(3), 402-413.
[http://dx.doi.org/10.1039/C7OB02915B] [PMID: 29260830]
[134]
Cruz, A.; Contreras, R.; Padilla-Martínez, I.I.; Juárez-Juárez, M. 1,3-Heterazolidines-2-heterounsaturated compounds derived from ephedrines. Tetrahedron Asymmetry, 2006, 17, 1499-1505.
[http://dx.doi.org/10.1016/j.tetasy.2006.05.009]
[135]
Nurkenov, O.A.; Gazaliev, A.M.; Ibraev, M.K.; Turdybekov, D.M.; Sultanov, A.S.; Turdybekov, K.M.; Adekenov, S.M. Synthesis and crystal structure of (4S,5R)-2-[2-(hydroxyethyl)imino]-3,4-dimethyl-5-phenyl-1,3-thiazolidine. Russ. J. Gen. Chem., 2006, 76, 1138-1140.
[http://dx.doi.org/10.1134/S1070363206070231]
[136]
Gazaliev, A.M.; Nurkenov, O.A.; Turdybekov, K.M.; Fazylov, S.D.; Ibraev, M.K.; Turdybekov, D.M.; Issabaeva, M.B. Synthesis and crystal structure of (4S,5R)-3,4-dimethyl-5-phenyl-2-(hydroxyethylimino)-1,3-thiazolidine. Mendeleev Commun., 2006, 16, 243-244.
[http://dx.doi.org/10.1070/MC2006v016n04ABEH002211]
[137]
Mamedov, V.A.; Khafizova, E.A.; Berdnikov, E.A.; Levin, Y.A.; Rizvanov, I.K.; Bauer, I.; Habicher, W.D. Fused polycyclic nitrogen-containing heterocycles 15.* 1,3-bis(4-hydroxy-4-methoxycarbonyl-3,5-diphenylthiazolidin-2-ylideneamino)-benzene in the synthesis of thiazolo[3,4-a]quinoxalines. Russ. Chem. Bull., 2006, 55, 1670-1676.
[http://dx.doi.org/10.1007/s11172-006-0472-z]
[138]
Valdez, S.C.; Leighton, J.L. Tandem asymmetric Aza-Darzens/ring-opening reactions: dual functionality from the silane lewis acid. J. Am. Chem. Soc., 2009, 131(41), 14638-14639.
[http://dx.doi.org/10.1021/ja9066354] [PMID: 19778019]
[139]
Ghorab, M.M.; Al-Said, M.S.; Abdel-Kader, M.S.; Hemamalini, M.; Fun, H-K. Absolute configuration of (1S,2S)-3-methyl-2-phenyl-2,3-dihydro-thia-zolo[2,3-b]quinazolin-5-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68(Pt 4), o927-o928.
[http://dx.doi.org/10.1107/S160053681200832X] [PMID: 22589992]
[140]
Mamedov, V.A.; Zhukova, N.A.; Balandina, A.A.; Kharlamov, S.V.; Beschastnova, T.Y.N.; Rizvanov, I.D.K.; Latypov, S.K. One-pot synthesis of thiazolo[3,4-a]quinoxalines and the related heterocyclic systems using 4-hydroxy-4-alkoxycarbonyl-3,5-diaryl-2-aryliminothia(selena)zolidines as versatile reagents. Tetrahedron, 2012, 68, 7363-7373.
[http://dx.doi.org/10.1016/j.tet.2012.06.084]
[141]
Mir, N.A.; Shah, T.A.; Ahmed, S.; Muneer, M.; Rath, N.P.; Ahmad, M. One pot synthesis of imidazo[2,1-b]thiazoles and benzo[d]thiazolo[3,2-a]imidazoles. Tetrahedron Lett., 2014, 55, 1706-1710.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.085]
[142]
Zabaleta, N.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J.L. Ion-pairing catalysis in the enantioselective addition of hydrazones to N-acyldihydropyrrole derivatives. Chem. Commun. (Camb.), 2018, 54(64), 8905-8908.
[http://dx.doi.org/10.1039/C8CC05311A] [PMID: 30043018]
[143]
Maharramov, A.M.; Duruskari, G.S.; Mammadova, G.Z.; Khalilov, A.N.; Aslanova, J.M.; Cisterna, J.; Cárdenas, A.; Brito, I. Crystal structure and Hirshfeld surface analysis of (E)-5-phenyl-3-((4-(trifluoromethyl)-benzylidene)amino)thiazolidin-2-iminium bromide. J. Chil. Chem. Soc., 2019, 64, 4441-4447.
[http://dx.doi.org/10.4067/S0717-97072019000204441]
[144]
Ji, X.; Tan, M.; Fu, M.; Deng, G-J.; Huang, H. Photocatalytic aerobic α-thiolation/annulation of carbonyls with mercaptobenzimidazoles. Org. Biomol. Chem., 2019, 17(20), 4979-4983.
[http://dx.doi.org/10.1039/C9OB00625G] [PMID: 31062809]
[145]
Xu, J.; Green, N.J.; Gibard, C.; Krishnamurthy, R.; Sutherland, J.D. Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nat. Chem., 2019, 11(5), 457-462.
[http://dx.doi.org/10.1038/s41557-019-0225-x] [PMID: 30936523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy