Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Quercetin and MicroRNA Interplay in Apoptosis Regulation in Ovarian Cancer

Author(s): Khushbukhat Khan, Zeeshan Javed*, Haleema Sadia, Javad Sharifi-Rad*, William C. Cho * and Claudio Luparello*

Volume 27, Issue 20, 2021

Published on: 19 October, 2020

Page: [2328 - 2336] Pages: 9

DOI: 10.2174/1381612826666201019102207

Price: $65

Abstract

The multifaceted nature of ovarian cancer has severely hampered the development of effective therapeutics over the years. The complicate nature of ovarian cancer makes it therapeutically challenging, therefore, there has been a renewed interest in phytochemistry. Phytochemicals have emerged as a potential therapeutic option due to less side effects. Moreover, the signaling inhibition properties have also been studied extensively in recent times. A growing number of data obtained via high-throughput technologies has started to delineate the complex oncogenic signaling networks, thus broadening the therapeutic opportunities. Within the network, microRNAs (miRNAs) have been shown to play a versatile role in the regulation of cancer. Quercetin has been in the spotlight over the years because of its high pharmacological values and substantial evidence has demonstrated its anti-proliferative effect against various types of cancers. Despite the versatility of quercetin, little is known about its anti-proliferative potential towards ovarian cancer. This review sheds some light on quercetin as an alternative therapeutic approach to cancer. Furthermore, we also addresss the interplay between miRNAs and quercetin in the regulation of apoptosis in ovarian cancer.

Keywords: Quercetin, ovarian cancer, chemo-preventive agent, apoptosis, miRNAs, phytochemicals.

[1]
Salani R, Neuberger I, Kurman RJ, et al. Expression of extracellular matrix proteins in ovarian serous tumors. Int J Gynecol Pathol 2007; 26(2): 141-6.
[http://dx.doi.org/10.1097/01.pgp.0000229994.02815.f9] [PMID: 17413980]
[2]
Farooqi AA, Yaylim I, Ozkan NE, Zaman F, Halim TA, Chang H-W. Restoring TRAIL mediated signaling in ovarian cancer cells. Arch Immunol Ther Exp (Warsz) 2014; 62(6): 459-74.
[http://dx.doi.org/10.1007/s00005-014-0307-9] [PMID: 25030086]
[3]
Bast RC Jr, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 2009; 9(6): 415-28.
[http://dx.doi.org/10.1038/nrc2644] [PMID: 19461667]
[4]
Horak P, Pils D, Haller G, et al. Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 2005; 3(6): 335-43.
[http://dx.doi.org/10.1158/1541-7786.MCR-04-0136] [PMID: 15972852]
[5]
Li S, Zhang L, Yao Q, et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 2013; 501(7466): 242-6.
[http://dx.doi.org/10.1038/nature12436] [PMID: 23955153]
[6]
Pearson JS, Giogha C, Ong SY, et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 2013; 501(7466): 247-51.
[http://dx.doi.org/10.1038/nature12524] [PMID: 24025841]
[7]
Newson JPM, Scott NE, Yeuk WCI, et al. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Mol Cell Proteomics 2019; 18(6): 1138-56.
[http://dx.doi.org/10.1074/mcp.RA118.001093] [PMID: 30902834]
[8]
Xu C, Liu X, Zha H, et al. A pathogen-derived effector modulates host glucose metabolism by arginine GlcNAcylation of HIF-1α protein. PLoS Pathog 2018; 14(8): e1007259.
[http://dx.doi.org/10.1371/journal.ppat.1007259] [PMID: 30125331]
[9]
Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. J Ovarian Res 2019; 12(1): 55.
[http://dx.doi.org/10.1186/s13048-019-0530-4] [PMID: 31202269]
[10]
Liu H, Lee JI, Ahn T-G. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet Gynecol Sci 2019; 62(4): 242-8.
[http://dx.doi.org/10.5468/ogs.2019.62.4.242] [PMID: 31338341]
[11]
Yang Y, Wang T, Chen D, et al. Quercetin preferentially induces apoptosis in KRAS-mutant colorectal cancer cells via JNK signaling pathways. Cell Biol Int 2019; 43(2): 117-24.
[http://dx.doi.org/10.1002/cbin.11055] [PMID: 30203888]
[12]
Kim SG, Sung JY, Kim J-R, Choi HC. Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway. Korean J Physiol Pharmacol 2020; 24(1): 69-79.
[http://dx.doi.org/10.4196/kjpp.2020.24.1.69] [PMID: 31908576]
[13]
Roslan J, Giribabu N, Karim K, Salleh N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother 2017; 86: 570-82.
[http://dx.doi.org/10.1016/j.biopha.2016.12.044] [PMID: 28027533]
[14]
Ola MS, Ahmed MM, Shams S, Al-Rejaie SS. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J Biol Sci 2017; 24(6): 1186-94.
[http://dx.doi.org/10.1016/j.sjbs.2016.11.017] [PMID: 28855811]
[15]
Chien S-Y, Wu Y-C, Chung J-G, et al. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol 2009; 28(8): 493-503.
[http://dx.doi.org/10.1177/0960327109107002] [PMID: 19755441]
[16]
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 2006; 136(11): 2715-21.
[http://dx.doi.org/10.1093/jn/136.11.2715] [PMID: 17056790]
[17]
Cheng S, Gao N, Zhang Z, et al. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax. Clin Cancer Res 2010; 16(23): 5679-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1565] [PMID: 21138867]
[18]
Farooqi AA, Jabeen S, Attar R, Yaylim I, Xu B. Quercetin-mediated regulation of signal transduction cascades and microRNAs: Natural weapon against cancer. J Cell Biochem 2018; 119(12): 9664-74.
[http://dx.doi.org/10.1002/jcb.27488] [PMID: 30187968]
[19]
Hu SA, Cheng J, Zhao WH, Zhao HY. Quercetin induces apoptosis in meningioma cells through the miR-197/IGFBP5 cascade. Environ Toxicol Pharmacol 2020; 80: 103439.
[http://dx.doi.org/10.1016/j.etap.2020.103439] [PMID: 32585423]
[20]
Guo S, Sun J, Zhuang Y. Quercetin alleviates lipopolysaccharide-induced inflammatory responses by up-regulation miR-124 in human renal tubular epithelial cell line HK-2. Biofactors 2020; 46(3): 402-10.
[http://dx.doi.org/10.1002/biof.1596] [PMID: 31804760]
[21]
Manouchehri JM, Turner KA, Kalafatis M. Trail-induced apoptosis in trail-resistant breast carcinoma through quercetin cotreatment. Breast Cancer (Auckl) 2018; 12: 1178223417749855.
[http://dx.doi.org/10.1177/1178223417749855] [PMID: 29434473]
[22]
Zou H, Zheng YF, Ge W, Wang SB, Mou XZ. Synergistic Anti-tumour Effects of Quercetin and Oncolytic Adenovirus expressing TRAIL in Human Hepatocellular Carcinoma. Sci Rep 2018; 8(1): 2182.
[http://dx.doi.org/10.1038/s41598-018-20213-7] [PMID: 29391509]
[23]
Jacquemin G, Granci V, Gallouet AS, et al. Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin’s lymphoma B cells. Haematologica 2012; 97(1): 38-46.
[http://dx.doi.org/10.3324/haematol.2011.046466] [PMID: 21933852]
[24]
Ren MX, Deng XH, Ai F, Yuan GY, Song HY. Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Exp Ther Med 2015; 10(2): 579-83.
[http://dx.doi.org/10.3892/etm.2015.2536] [PMID: 26622357]
[25]
Yi L, Zongyuan Y, Cheng G, Lingyun Z, Guilian Y, Wei G. Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci 2014; 105(5): 520-7.
[http://dx.doi.org/10.1111/cas.12395] [PMID: 24612139]
[26]
Gong C, Yang Z, Zhang L, Wang Y, Gong W, Liu Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther 2017; 11: 17-27.
[http://dx.doi.org/10.2147/OTT.S147316] [PMID: 29317830]
[27]
Brito AF, Ribeiro M, Abrantes AM, et al. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr Med Chem 2015; 22(26): 3025-39.
[http://dx.doi.org/10.2174/0929867322666150812145435] [PMID: 26264923]
[28]
Yano S, Wu S, Sakao K, Hou D-X. Involvement of ERK1/2-mediated ELK1/CHOP/DR5 pathway in 6-(methylsulfinyl)hexyl isothiocyanate-induced apoptosis of colorectal cancer cells. Biosci Biotechnol Biochem 2019; 83(5): 960-9.
[http://dx.doi.org/10.1080/09168451.2019.1574206] [PMID: 30730256]
[29]
Maheu E, Cadet C, Marty M, et al. Randomised, controlled trial of avocado-soybean unsaponifiable (Piascledine) effect on structure modification in hip osteoarthritis: the ERADIAS study. Ann Rheum Dis 2014; 73(2): 376-84.
[http://dx.doi.org/10.1136/annrheumdis-2012-202485] [PMID: 23345601]
[30]
Kim JY, Kim EH, Park SS, Lim JH, Kwon TK, Choi KS. Quercetin sensitizes human hepatoma cells to TRAIL-induced apoptosis via Sp1-mediated DR5 up-regulation and proteasome-mediated c-FLIPS down-regulation. J Cell Biochem 2008; 105(6): 1386-98.
[http://dx.doi.org/10.1002/jcb.21958] [PMID: 18980244]
[31]
Yang Z, Liu Y, Liao J, et al. Quercetin induces endoplasmic reticulum stress to enhance cDDP cytotoxicity in ovarian cancer: involvement of STAT3 signaling. FEBS J 2015; 282(6): 1111-25.
[http://dx.doi.org/10.1111/febs.13206] [PMID: 25611565]
[32]
Teekaraman D, Elayapillai SP, Viswanathan MP, Jagadeesan A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem Biol Interact 2019; 300: 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[33]
Michalcova K, Roychoudhury S, Halenar M, et al. In vitro response of human ovarian cancer cells to dietary bioflavonoid isoquercitrin. J Environ Sci Health B 2019; 54(9): 752-7.
[http://dx.doi.org/10.1080/03601234.2019.1633214] [PMID: 31271108]
[34]
Yamauchi K, Mitsunaga T, Afroze SH, Uddin MN. Structure-Activity Relationships of Methylquercetin on Anti-migration and Anti-proliferation Activity in B16 Melanoma Cells. Anticancer Res 2017; 37(4): 1575-9.
[http://dx.doi.org/10.21873/anticanres.11487] [PMID: 28373417]
[35]
Yamauchi K, Afroze SH, Mitsunaga T, et al. 3,4′,7-O-trimethylquercetin Inhibits Invasion and Migration of Ovarian Cancer Cells. Anticancer Res 2017; 37(6): 2823-9.
[PMID: 28551617]
[36]
Afroze SH, Yamauchi K, Zawieja DC, Keuhl TJ, Erlandson LW, Uddin MN. Differential Mechanism of Action of 3, 4′, 7-O-trimethylquercetin in Three Types of Ovarian Cancer Cells. Anticancer Res 2018; 38: 5131-7.
[http://dx.doi.org/10.21873/anticanres.12835]
[37]
Kolesarova A, Roychoudhury S, Klinerova B, et al. Dietary bioflavonoid quercetin modulates porcine ovarian granulosa cell functions in vitro. J Environ Sci Health B 2019; 54(6): 533-7.
[http://dx.doi.org/10.1080/03601234.2019.1586034] [PMID: 30947605]
[38]
Tarko A, Štochmal’ová A, Jedličková K, et al. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Arch Tierzucht 2019; 62(1): 345-51.
[http://dx.doi.org/10.5194/aab-62-345-2019] [PMID: 31807645]
[39]
Sirotkin AV, Štochmaľová A, Alexa R, et al. Quercetin directly inhibits basal ovarian cell functions and their response to the stimulatory action of FSH. Eur J Pharmacol 2019; 860: 172560.
[http://dx.doi.org/10.1016/j.ejphar.2019.172560] [PMID: 31344364]
[40]
Ferry DR, Smith A, Malkhandi J, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 1996; 2(4): 659-68.
[PMID: 9816216]
[41]
Xu G, Li B, Wang T, et al. Enhancing the anti-ovarian cancer activity of quercetin using a self-assembling micelle and thermosensitive hydrogel drug delivery system. RSC Advances 2018; 8: 21229-42.
[http://dx.doi.org/10.1039/C8RA03274B]
[42]
Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: problems and promises. Curr Med Chem 2013; 20(20): 2572-82.
[http://dx.doi.org/10.2174/09298673113209990120] [PMID: 23514412]
[43]
Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. J Sci Food Agric 2019; 99(4): 1980-9.
[http://dx.doi.org/10.1002/jsfa.9396] [PMID: 30270448]
[44]
Patra A, Satpathy S, Shenoy AK, Bush JA, Kazi M, Hussain MD. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomedicine 2018; 13: 2869-81.
[http://dx.doi.org/10.2147/IJN.S153094] [PMID: 29844670]
[45]
Tiwari H, Karki N, Pal M, et al. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf B Biointerfaces 2019; 178: 452-9.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.037] [PMID: 30921680]
[46]
Nakano H, Yamada Y, Miyazawa T, Yoshida T. Gain-of-function microRNA screens identify miR-193a regulating proliferation and apoptosis in epithelial ovarian cancer cells. Int J Oncol 2013; 42(6): 1875-82.
[http://dx.doi.org/10.3892/ijo.2013.1896] [PMID: 23588298]
[47]
Zhuang R-J, Bai X-X, Liu W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol Ther 2019; 20(6): 897-911.
[http://dx.doi.org/10.1080/15384047.2019.1579960] [PMID: 30862230]
[48]
Mezzanzanica D, Canevari S, Cecco LD, Bagnoli M. miRNA control of apoptotic programs: focus on ovarian cancer. Expert Rev Mol Diagn 2011; 11(3): 277-86.
[http://dx.doi.org/10.1586/erm.11.1] [PMID: 21463237]
[49]
Jiang JH, Lv QY, Yi YX, Liao J, Wang XW, Zhang W. MicroRNA-200a promotes proliferation and invasion of ovarian cancer cells by targeting PTEN. Eur Rev Med Pharmacol Sci 2018; 22(19): 6260-7.
[PMID: 30338796]
[50]
Kong F, Sun C, Wang Z, et al. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. J Huazhong Univ Sci Technolog Med Sci 2011; 31(4): 543.
[http://dx.doi.org/10.1007/s11596-011-0487-z] [PMID: 21823019]
[51]
Chen W, Du J, Li X, Zhi Z, Jiang S. microRNA-137 downregulates MCL1 in ovarian cancer cells and mediates cisplatin-induced apoptosis. Pharmacogenomics 2020; 21(3): 195-207.
[http://dx.doi.org/10.2217/pgs-2019-0122] [PMID: 31967512]
[52]
Li X, Chen W, Zeng W, Wan C, Duan S, Jiang S. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br J Cancer 2017; 116(1): 66-76.
[http://dx.doi.org/10.1038/bjc.2016.379] [PMID: 27875524]
[53]
Chen YN, Ren CC, Yang L, et al. MicroRNA let‑7d‑5p rescues ovarian cancer cell apoptosis and restores chemosensitivity by regulating the p53 signaling pathway via HMGA1. Int J Oncol 2019; 54(5): 1771-84.
[http://dx.doi.org/10.3892/ijo.2019.4731] [PMID: 30816441]
[54]
Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep 2012; 27(2): 594-8.
[PMID: 22076535]
[55]
Nwaeburu CC, Bauer N, Zhao Z, et al. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 2016; 7(36): 58367-80.
[http://dx.doi.org/10.18632/oncotarget.11122] [PMID: 27521217]
[56]
Du F, Feng Y, Fang J, Yang M. MicroRNA-143 enhances chemosensitivity of Quercetin through autophagy inhibition via target GABARAPL1 in gastric cancer cells. Biomed Pharmacother 2015; 74: 169-77.
[http://dx.doi.org/10.1016/j.biopha.2015.08.005] [PMID: 26349981]
[57]
Fawzy IO, Hamza MT, Hosny KA, Esmat G, El Tayebi HM, Abdelaziz AI. miR-1275: A single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett 2015; 589(17): 2257-65.
[http://dx.doi.org/10.1016/j.febslet.2015.06.038] [PMID: 26160756]
[58]
Liao B, Hu Y, Brewer G. RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation. J Biol Chem 2011; 286(36): 31145-52.
[http://dx.doi.org/10.1074/jbc.M111.263913] [PMID: 21757716]
[59]
Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018; 20(3): 285-95.
[http://dx.doi.org/10.1038/s41556-018-0045-z] [PMID: 29476152]
[60]
Mizutani R, Imamachi N, Suzuki Y, et al. Oncofetal protein IGF2BP3 facilitates the activity of proto-oncogene protein eIF4E through the destabilization of EIF4E-BP2 mRNA. Oncogene 2016; 35(27): 3495-502.
[http://dx.doi.org/10.1038/onc.2015.410] [PMID: 26522719]
[61]
Gutschner T, Hämmerle M, Pazaitis N, et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 2014; 59(5): 1900-11.
[http://dx.doi.org/10.1002/hep.26997] [PMID: 24395596]
[62]
Shaalan YM, Handoussa H, Youness RA, et al. Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat Prod Res 2018; 32(18): 2217-20.
[http://dx.doi.org/10.1080/14786419.2017.1366478] [PMID: 28817968]
[63]
Yang J, Qin T, Liu S, Tang H, Liu M, Wang Q. Interaction analysis of miR-1275/IGF2BP1/IGF2BP3 with the susceptibility to hepatocellular carcinoma. Biomarkers Med 2020; 14(4): 283-92.
[http://dx.doi.org/10.2217/bmm-2019-0332] [PMID: 32134323]
[64]
Fawzy IO, Hamza MT, Hosny KA, Esmat G, Abdelaziz AI. Abrogating the interplay between IGF2BP1, 2 and 3 and IGF1R by let-7i arrests hepatocellular carcinoma growth. Growth Factors 2016; 34(1-2): 42-50.
[http://dx.doi.org/10.3109/08977194.2016.1169532] [PMID: 27126374]
[65]
Nwaeburu CC, Abukiwan A, Zhao Z, Herr I. Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer. Mol Cancer 2017; 16(1): 23.
[http://dx.doi.org/10.1186/s12943-017-0589-8] [PMID: 28137273]
[66]
Tao SF, He HF, Chen Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol Cell Biochem 2015; 402(1-2): 93-100.
[http://dx.doi.org/10.1007/s11010-014-2317-7] [PMID: 25596948]
[67]
Zhang X, Guo Q, Chen J, Chen Z. Quercetin enhances cisplatin sensitivity of human osteosarcoma cells by modulating microRNA-217-KRAS axis. Mol Cells 2015; 38(7): 638-42.
[http://dx.doi.org/10.14348/molcells.2015.0037] [PMID: 26062553]
[68]
Zhao J, Fang Z, Zha Z, et al. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur J Pharmacol 2019; 847: 11-8.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.006] [PMID: 30639311]
[69]
Zhang C, Hao Y, Sun Y, Liu P. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J Pharmacol Sci 2019; 140(2): 128-36.
[http://dx.doi.org/10.1016/j.jphs.2019.03.005] [PMID: 31257059]
[70]
Wu H, Xiao Z, Wang K, Liu W, Hao Q. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem Biophys Res Commun 2013; 441(4): 693-700.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.053] [PMID: 24157791]
[71]
Moran-Jones K, Gloss BS, Murali R, et al. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer. Oncotarget 2015; 6(42): 44551-62.
[http://dx.doi.org/10.18632/oncotarget.6082] [PMID: 26575166]
[72]
Li X, Chen W, Jin Y, et al. miR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes. Biochem Pharmacol 2019; 161: 98-112.
[http://dx.doi.org/10.1016/j.bcp.2019.01.009] [PMID: 30639456]
[73]
Zhang S, Pei M, Li Z, Li H, Liu Y, Li J. Double-negative feedback interaction between DNA methyltransferase 3A and microRNA-145 in the Warburg effect of ovarian cancer cells. Cancer Sci 2018; 109(9): 2734-45.
[http://dx.doi.org/10.1111/cas.13734] [PMID: 29993160]
[74]
Dong R, Liu X, Zhang Q, et al. miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget 2014; 5(21): 10816-29.
[http://dx.doi.org/10.18632/oncotarget.2522] [PMID: 25333261]
[75]
Zuberi M, Mir R, Khan I, et al. The promising signatures of circulating microRNA-145 in epithelial ovarian cancer patients. MicroRNA (Shariqah, United Arab Emirates) 2019.
[http://dx.doi.org/10.2174/2211536608666190225111234]
[76]
Hua M, Qin Y, Sheng M, et al. miR‑145 suppresses ovarian cancer progression via modulation of cell growth and invasion by targeting CCND2 and E2F3. Mol Med Rep 2019; 19(5): 3575-83.
[http://dx.doi.org/10.3892/mmr.2019.10004] [PMID: 30864742]
[77]
Zhou J, Gong J, Ding C, Chen G. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145. Mol Med Rep 2015; 12(2): 3127-31.
[http://dx.doi.org/10.3892/mmr.2015.3679] [PMID: 25937243]
[78]
Fulda S, Meyer E, Debatin K-M. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 2002; 21(15): 2283-94.
[http://dx.doi.org/10.1038/sj.onc.1205258] [PMID: 11948412]
[79]
Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 2005; 7(2): 167-78.
[http://dx.doi.org/10.1016/j.ccr.2005.01.008] [PMID: 15710329]
[80]
Reimer D, Hubalek M, Riedle S, et al. E2F3a is critically involved in epidermal growth factor receptor-directed proliferation in ovarian cancer. Cancer Res 2010; 70(11): 4613-23.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3551] [PMID: 20460525]
[81]
Giopanou I, Bravou V, Papanastasopoulos P, et al. Metadherin, p50, and p65 expression in epithelial ovarian neoplasms: an immunohistochemical study. BioMed research international 2014.
[http://dx.doi.org/10.1155/2014/178410]
[82]
Chen X, Dong C, Law PT, et al. MicroRNA-145 targets TRIM2 and exerts tumor-suppressing functions in epithelial ovarian cancer. Gynecol Oncol 2015; 139(3): 513-9.
[http://dx.doi.org/10.1016/j.ygyno.2015.10.008] [PMID: 26472353]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy