Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Microwave-assisted Synthesis of Novel Mannich Base and Conazole Derivatives Containing Biologically Active Pharmacological Groups

Author(s): Yıldız Uygun Cebeci*, Sule Ceylan, Neslihan Demirbas and Şengül Alpay Karaoğlu

Volume 18, Issue 3, 2021

Published on: 16 October, 2020

Page: [269 - 283] Pages: 15

DOI: 10.2174/1570180817999201016154034

Price: $65

Abstract

Background: The aim of this study was to synthesize new mannich bases and conazol derivatives with biological activity by the microwave-assisted method.

Introduction: 1,2,4-Triazole-3-one (3) acquired from tryptamine was transformed to the corresponding carbox(thio)amides (6a-c) via several steps. Compounds 6a-c were refluxed with sodium hydroxide to yield 1,2,4-triazole derivatives (7a-c). Compounds 3 and 7a-c on treatment with different heterocyclic secondary amines in an ambiance with formaldehyde afforded the mannich bases 8-15 having diverse pharmacophore units with biologically active sites. The reaction of compound 3 and 2-bromo-1-(4-chlorophenyl) ethanone in the presence of sodium ethoxide gave the corresponding product 2-substituted-1,2,4-triazole-3-one, 16, which was reduced to 1,2,4-triazoles (17). Synthesis of compounds 18, 19, and 20 was carried out starting from compounds 17 with 4-chlorobenzyl chloride (for 18), 2,4-dichlorobenzyl chloride (for 19), and 2,6-dichlorobenzyl chloride (for 20).

Methods: The conventional technique was utilized for the synthesis of compounds, 3-7, and microwave- assisted technique for the compounds, 8-20. That is, green chemistry techniques were applied during these reactions. The structures of molecules were elucidated on the foundation of 1H NMR, 13C NMR, FT-IR, EI-MS methods, and elemental analysis. Novel synthesized molecules were investigated for their antimicrobial activity using MIC (minimum inhibitory concentration) method.

Results: Aminoalkylation of triazole derivatives 3 and 7a-c with fluoroquinolones such as ciprofloxacin and norfloxacin provided an enhancement to the bioactivity of mannich bases 8-11 against the tested microorganisms. The MIC values ranged between <0.24 and 3.9 μg/mL. Moreover, molecules 10 and 11 exhibited more effects on M. smegmatis than the other compounds by the MIC values of <1 μg/mL. They have shown very good antituberculosis activity.

Conclusion: Most of the synthesized structures were observed to have excellent antimicrobial activity against most microorganisms taken into account. These molecules have better activity than the standard drug ampicillin and streptomycin.

Keywords: 1, 2, 4-triazole, tryptamine, mannich, conazole, antimicrobial activity, antituberculosis activity.

Graphical Abstract

[1]
Yu, D.; Huiyuan, G. Synthesis and antibacterial activity of linezolid analogues. Bioorg. Med. Chem. Lett., 2002, 12(6), 857-859.
[http://dx.doi.org/10.1016/S0960-894X(02)00043-4] [PMID: 11958979]
[2]
Koca, M.; Servi, S.; Kirilmis, C.; Ahmedzade, M.; Kazaz, C.; Ozbek, B.; Otük, G. Synthesis and antimicrobial activity of some novel derivatives of benzofuran: Part 1. Synthesis and antimicrobial activity of (benzofuran-2-yl)(3-phenyl-3-methylcyclobutyl) ketoxime derivatives. Eur. J. Med. Chem., 2005, 40(12), 1351-1358.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.004] [PMID: 16129517]
[3]
Zhang, F.; Wen, Q.; Wang, S.F.; Shahla Karim, B.; Yang, Y.S.; Liu, J.J.; Zhang, W.M.; Zhu, H.L. Design, synthesis and antibacterial activities of 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiol derivatives containing Schiff base formation as FabH inhibitory. Bioorg. Med. Chem. Lett., 2014, 24(1), 90-95.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.079] [PMID: 24332628]
[4]
Demirbas, A.; Sahin, D.; Demirbas, N.; Karaoglu, S.A. Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(7), 2896-2903.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.005] [PMID: 19167136]
[5]
Thomas, K.D.; Adhikari, A.V.; Shetty, N.S. Design, synthesis and antimicrobial activities of some new quinoline derivatives carrying 1,2,3-triazole moiety. Eur. J. Med. Chem., 2010, 45(9), 3803-3810.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.030] [PMID: 20542604]
[6]
Solomon, V.R.; Hu, C.; Lee, H. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: A hybrid pharmacophore approach. Bioorg. Med. Chem., 2010, 18(4), 1563-1572.
[http://dx.doi.org/10.1016/j.bmc.2010.01.001] [PMID: 20106668]
[7]
Hu, C.; Solomon, V.R.; Ulibarri, G.; Lee, H. The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. Bioorg. Med. Chem., 2008, 16(17), 7888-7893.
[http://dx.doi.org/10.1016/j.bmc.2008.07.076] [PMID: 18691894]
[8]
Hu, C.; Raja Solomon, V.; Cano, P.; Lee, H. A 4-aminoquinoline derivative that markedly sensitizes tumor cell killing by Akt inhibitors with a minimum cytotoxicity to non-cancer cells. Eur. J. Med. Chem., 2010, 45(2), 705-709.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.017] [PMID: 19945197]
[9]
Kouznetsov, V.V.; Gómez-Barrio, A. Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation. Eur. J. Med. Chem., 2009, 44(8), 3091-3113.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.024] [PMID: 19361896]
[10]
Adamec, J.; Beckert, R.; Weiss, D.; Klimesová, V.; Waisser, K.; Möllmann, U.; Kaustová, J.; Buchta, V. Hybrid molecules of estrone: new compounds with potential antibacterial, antifungal, and antiproliferative activities. Bioorg. Med. Chem., 2007, 15(8), 2898-2906.
[http://dx.doi.org/10.1016/j.bmc.2007.02.021] [PMID: 17321746]
[11]
Polak, A. The past, present and future of antimycotic combination therapy. Mycoses, 1999, 42(5-6), 355-370.
[http://dx.doi.org/10.1046/j.1439-0507.1999.00475.x] [PMID: 10536428]
[12]
Mentese, M.Y.; Bayrak, H.; Uygun, Y.; Mermer, A.; Ulker, S.; Karaoglu, S.A.; Demirbas, N. Microwave assisted synthesis of some hybrid molecules derived from norfloxacin and investigation of their biological activities. Eur. J. Med. Chem., 2013, 67, 230-242.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.045] [PMID: 23871903]
[13]
Liu, H.; Huang, J.; Wang, J.; Wang, M.; Liu, M.; Wang, B.; Guo, H.; Lu, Y. Synthesis, antimycobacterial and antibacterial evaluation of l-[(1R, 2S)-2-fluorocyclopropyl]fluoroquinolone derivatives containing an oxime functional moiety. Eur. J. Med. Chem., 2014, 86, 628-638.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.029] [PMID: 25218911]
[14]
Yolal, M.; Basoglu, S.; Bektas, H.; Demirci, S.; Alpay-Karaoglu, S.; Demirbas, A. Synthesis of eperezolid-like molecules and evaluation of their antimicrobial activities. Bioorg. Khim., 2012, 38(5), 610-620.
[PMID: 23342495]
[15]
Wang, X.; Wei, W.; Wang, P.; Tang, Y.T.; Deng, R.C.; Li, B.; Zhou, S.S.; Zhang, J.W.L. Zhang, Xiao, Z.P.; Ouyang, H.; Zhu, H.L. Novel 3-arylfuran-2(5H)-one-fluoroquinolone hybrid: Design, synthesis and evaluation as antibacterial agent. Bioorg. Med. Chem. Lett., 2014, 22, 3620-3628.
[http://dx.doi.org/10.1016/j.bmc.2014.05.018]
[16]
Zhou, F.W.; Lei, H.S.; Fan, L.; Jiang, L.; Liu, J.; Peng, X.M.; Xu, X.R.; Chen, L.; Zhou, C.H.; Zou, Y.Y.; Liu, C.P.; He, Z.Q.; Yang, D.C. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(8), 1912-1917.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.010] [PMID: 24684842]
[17]
Jida, M.; Soueidan, M.; Willand, N.; Niedercorn, F.A.; Pelinski, L.; Laconde, G.; Poulain, R.D.; Deprez, B. A facile and rapid synthesis of N-benzyl-2-substituted piperazines. Tetrahedron Lett., 2011, 52, 1705-1708.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.011]
[18]
Basoglu, S.; Ulker, S.; Alpay-Karaoglu, S.; Demirbas, N. Microwave-assisted synthesis of some hybrid molecules containing penicillanic acid or cephalosporanic acid moieties and investigation of their biological activities. Med. Chem. Res., 2014, 23, 3128-3143.
[http://dx.doi.org/10.1007/s00044-013-0898-4] [PMID: 24719549]
[19]
Carter, D.S.; Cai, H.Y.; Lee, E.K.; Iyer, P.S.; Lucas, M.C.; Roetz, R.; Schoenfeld, R.C.; Weikert, R.J. 2-Substituted N-aryl piperazines as novel triple reuptake inhibitors for the treatment of depression. Bioorg. Med. Chem. Lett., 2010, 20(13), 3941-3945.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.008] [PMID: 20570146]
[20]
Wei, Q.L.; Zhang, S.S.; Gao, J.; Li, W.H.; Xu, L.Z.; Yu, Z.G. Synthesis and QSAR studies of novel triazole compounds containing thioamide as potential antifungal agents. Bioorg. Med. Chem., 2006, 14(21), 7146-7153.
[http://dx.doi.org/10.1016/j.bmc.2006.06.065] [PMID: 16875828]
[21]
Gupta, A.K.; Sauder, D.N.; Shear, N.H. Antifungal agents: an overview. Part II. J. Am. Acad. Dermatol., 1994, 30(6), 911-933.
[http://dx.doi.org/10.1016/S0190-9622(94)70112-1] [PMID: 7619094]
[22]
Georgopapadakou, N.H.; Walsh, T.J. Antifungal agents: Chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother., 1996, 40(2), 279-291.
[http://dx.doi.org/10.1128/AAC.40.2.279] [PMID: 8834867]
[23]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. Med. Chem. Comm., 2012, 3, 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[24]
van der Heijden, G.; Ruijter, E.; Orru, R.V.A. Efficiency, diversity and complexity with multicomponent reactions. Synlett, 2013, 24, 666-685.
[http://dx.doi.org/10.1055/s-0032-1318222]
[25]
Hulme, C.; Ayaz, M.; Martinez-Ariza, G.; Medda, F.; Shaw, A. Small Molecule Medicinal Chemistry: Strategies and Technologies; Czechtizky, W; Hamley, P., Ed.; Wiley: Weinheim, Germany, 2015, pp. 145-187.
[http://dx.doi.org/10.1002/9781118771723.ch6]
[26]
Gollner, A. The Frequent Application of Multicomponent and Cycloaddition Reactions for the Synthesis of Potent MDM2-p53 Inhibitors. Synlett, 2015, 26, 426-431.
[http://dx.doi.org/10.1055/s-0034-1379947]
[27]
Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three “one-pot” operations. Angew. Chem. Int. Ed. Engl., 2009, 48(7), 1304-1307.
[http://dx.doi.org/10.1002/anie.200804883] [PMID: 19123206]
[28]
Ziyaei Halimehjani, A.; Marjani, K.; Ashouri, A. Synthesis of dithiocarbamate by Markovnikov addition reaction in aqueous medium. Green Chem., 2010, 12, 1306-1310.
[http://dx.doi.org/10.1039/c004711b]
[29]
Wahba, A.E.; Hamann, M.T. New one-pot methodologies for the modification or synthesis of alkaloid scaffolds. Mar. Drugs, 2010, 8(8), 2395-2416.
[http://dx.doi.org/10.3390/md8082395] [PMID: 20948914]
[30]
Vaxelaire, C.; Winter, P.; Christmann, M. One-pot reactions accelerate the synthesis of active pharmaceutical ingredients. Angew. Chem. Int. Ed. Engl., 2011, 50(16), 3605-3607.
[http://dx.doi.org/10.1002/anie.201100059] [PMID: 21374777]
[31]
Zhao, W.; Chen, F.E. One-pot synthesis and its practical application in pharmaceutical industry. Curr. Org. Synth., 2012, 6, 873-897.
[http://dx.doi.org/10.2174/157017912803901619]
[32]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, S.P.N. An efficientsynthesis of β-amino ketone compounds through one-pot three-component Mannich type reactionsusing bismuth nitrate as catalyst. J. Saudi Chem. Soc., 2015, 19, 379-386.
[http://dx.doi.org/10.1016/j.jscs.2012.04.008]
[33]
Indira, S.; Vinoth, G.; Bharathi, M.; Shanmuga Bharathi, K. Synthesis, spectral, electrochemical, in-vitro antimicrobial and antioxidant activities of bisphenolic mannich base and 8-hydroxyquinoline based mixed ligands and their transition metal complexes. J. Mol. Struct., 2019, 1198,126886.
[http://dx.doi.org/10.1016/j.molstruc.2019.126886]
[34]
Holla, B.S.; Udupa, K.V. Synthesis of Novel 5-Mercapto-s-triazolo[3,4-c]-as-triazino[5,6-b]indoles and Their Mannich Bases. Heterocycles, 1991, 32, 1081-1088.
[http://dx.doi.org/10.3987/COM-90-5571]
[35]
Hosam, S. Synthes is of some pyridyloxymethyloxadiazoles, thiazoles and triazoles of expected pharmacological activity. Indian J. Chem., 1996, 35, 980-984.
[36]
Bhawsar, S.B.; Mane, D.V.; Shinde, D.B.; Shingare, M.S.; Deokate, A.S.; Gangawane, L.V. Syntheses of 8-[(6′-Substıtuted-1′,3′-Benzothıazol-2′-Yl) Amınomethyl]-Substıtuted Hydrooxycoumarıns And Their Antimicrobial Activity. Indian J. Heterocycl. Chem., 1996, 6, 135-138.
[37]
Holla, B.S.; Poojary, K.N.; Kalluraya, B.; Gowda, P.V. 5-Substituted-1,3,4-oxadiazoline-2-thiones. Indian J. Heterocycl. Chem., 1996, 5, 273-276.
[38]
Chabner, B.A. In defense of cell-line screening. J. Natl. Cancer Inst., 1990, 82(13), 1083-1085.
[http://dx.doi.org/10.1093/jnci/82.13.1083] [PMID: 2359129]
[39]
Giorgioni, G.; Claudi, F.; Ruggieri, S.; Ricciutelli, M.; Palmieri, G.F.; Di Stefano, A.; Sozio, P.; Cerasa, L.S.; Chiavaroli, A.; Ferrante, C.; Orlando, G.; Glennon, R.A. Design, synthesis, and preliminary pharmacological evaluation of new imidazolinones as L-DOPA prodrugs. Bioorg. Med. Chem., 2010, 18(5), 1834-1843.
[http://dx.doi.org/10.1016/j.bmc.2010.01.041] [PMID: 20153654]
[40]
Sriram, D.; Yogeeswari, P.; Reddy, S.P. Synthesis of pyrazinamide Mannich bases and its antitubercular properties. Bioorg. Med. Chem. Lett., 2006, 16(8), 2113-2116.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.064] [PMID: 16464574]
[41]
Pandeya, S.N.; Sriram, D.; Nath, G.; DeClercq, E. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4′-chlorophenyl)thiazol-2-yl] thiosemicarbazide. Eur. J. Pharm. Sci., 1999, 9(1), 25-31.
[http://dx.doi.org/10.1016/S0928-0987(99)00038-X] [PMID: 10493993]
[42]
Joshi, S.; Khosla, N.; Tiwari, P. In vitro study of some medicinally important Mannich bases derived from antitubercular agent. Bioorg. Med. Chem., 2004, 12(3), 571-576.
[http://dx.doi.org/10.1016/j.bmc.2003.11.001] [PMID: 14738966]
[43]
Chodosh, L.A.; Fire, A.; Samuels, M.; Sharp, P.A. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem., 1989, 264(4), 2250-2257.
[PMID: 2914905]
[44]
Welage, L.; Berardi, R.R. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J. Am. Pharm. Assoc., 2000, 40, 52-62.
[http://dx.doi.org/10.1016/S1086-5802(16)31036-1] [PMID: 10665250]
[45]
Billups, S.J.; Carter, B.L. Mibefradil: A new class of calcium-channel antagonists. Ann. Pharmacother., 1998, 32(6), 659-671.
[http://dx.doi.org/10.1345/aph.17323] [PMID: 9640486]
[46]
Yadav, M.; Mishra, N.; Sharma, N.; Chandra, S.; Kumar, D. Microwave assisted synthesis, characterization and biocidal activities of some new chelates of carbazole derived Schiff bases of cadmium and tin metals. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 733-742.
[http://dx.doi.org/10.1016/j.saa.2014.04.185] [PMID: 24929756]
[47]
Singh, R.V.; Chaudhary, P.; Chauhan, S.; Swami, M. Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(2), 260-268.
[http://dx.doi.org/10.1016/j.saa.2008.09.017] [PMID: 19027354]
[48]
Mermer, A.; Demirbas, N.; Uslu, H.; Demirbas, A.; Ceylan, S.; Sirin, Y. Synthesis of novel Schiff bases using green chemistry techniques;antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. J. Mol. Struct., 2019, 1181, 412-422.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.114]
[49]
Renyu, Q.; Nian, C.; Yuchao, L.; Qiong, C.; Guangfu, Y. An Efficient Synthesis of functionalized 6-Arylsubstituted salicylates via microwave irradiation. Youji Huaxue, 2017, 37(5), 1266-1272.
[http://dx.doi.org/10.6023/cjoc201612049]
[50]
Qu, R.Y.; Liu, Y.C.; Wu, Q.Y.; Chen, Q.; Yang, G.F. An efficient method for syntheses of functionalized 6-bulkysubstituted salicylates under microwave irradiation. Tetrahedron, 2015, 71(42), 8123-8130.
[http://dx.doi.org/10.1016/j.tet.2015.08.040]
[51]
Huang, Z.Y.; Yang, J.F.; Song, K.; Chen, Q.; Zhou, S.L.; Hao, G.F.; Yang, G.F. One-pot approach to N-quinolyl 3′/4′-biaryl carboxamides by microwave-assisted Suzuki-Miyaura coupling and N-boc deprotection. J. Org. Chem., 2016, 81(20), 9647-9657.
[http://dx.doi.org/10.1021/acs.joc.6b01725] [PMID: 27649420]
[52]
Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mat. Today Nano, 2020, 11,100076.
[53]
Liu, Y.C.; Qu, R.Y.; Chen, Q.; Wu, Q.Y.; Yang, G.F. Efficient synthesis of functionalized 6-substituted-thiosalicylates via microwave-promoted Suzuki cross-coupling reaction. Tetrahedron, 2014, 70(17), 2746-2752.
[http://dx.doi.org/10.1016/j.tet.2014.02.085]
[54]
Huang, Z.Y.; Yang, J.F.; Chen, Q.; Cao, R.J.; Huang, W.; Hao, G.F.; Yang, G.F. An efficient one-pot access to N-(pyridin-2-ylmethyl) substituent biphenyl-4-sulfonamides through water-promoted, palladium-catalyzed, microwave-assisted reactions. RSC Adv., 2015, 5(92), 75182-75186.
[http://dx.doi.org/10.1039/C5RA13302E]
[55]
Ceylan, S.; Bayrak, H.; Demirbaş, A.; Ulker, S.; Karaoğlu Alpay, S.; Demirbas, N. Synthesis of Some New Hybride Molecules Containing Several Azole Moieties and Investigation of Their Biological Activities. Russ. J. Bioorganic Chem., 2014, 40, 314-329.
[http://dx.doi.org/10.1134/S1068162014030145]
[56]
Uygun Cebeci, Y.; Ceylan, S.; Demirbas, N.; Alapay Karaoglu, S. Conventional and microwave assisted synthesis of novel 1,2,4-triazole derivatives containing tryptamine skeleton and investigation of antimicrobial activity. Lett. Org. Chem., 2020. in print.
[57]
Willanova, P.A. National Committee for Clinical Laboratory Standard, NCCLS Document M7-A3 1993, 1
[58]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[59]
Basoglu, S.; Demirbas, A.; Ulker, S.; Alpay-Karaoglu, S.; Demirbas, N. Design, synthesis and biological activities of some 7-aminocephalosporanic acid derivatives. Eur. J. Med. Chem., 2013, 69, 622-631.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.040] [PMID: 24095755]
[60]
Johnson, M.; Bundgaard, H. Synthesis and hydrolysis of some pivaloyloxymethyl and pivaloyl derivatives of phenolic compounds. Arch. Pharm. Chem. Sci, 1982, 10, 104-110.
[61]
Ozdemir, S.B.; Cebeci, Y.U.; Bayrak, H.; Mermer, A.; Ceylan, S.; Demirbas, A.; Karaoglu, S.A.; Demirbas, N. Synthesis and antimicrobial activity of new piperazine-based heterocyclic compounds. Heterocycl. Commun., 2017, 23(1), 43-54.
[62]
Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in vitro activity of 1,2,4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur. J. Med. Chem., 2013, 60, 128-134.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.040] [PMID: 23287058]
[63]
Wang, B.L.; Liu, X.H.; Zhang, X.L.; Zhang, J.F.; Song, H.B.; Li, Z.M. Synthesis, structure and biological activity of novel 1,2,4-triazole mannich bases containing a substituted benzylpiperazine moiety. Chem. Biol. Drug Des., 2011, 78(1), 42-49.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01132.x] [PMID: 21521489]
[64]
Suresh Kumar, G.V.; Rajendra Prasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M. Synthesis and pharmacological evaluation of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and mannich bases as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2010, 45(11), 5120-5129.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.023] [PMID: 20797808]
[65]
Shivarama Holla, B.; Veerendra, B.; Shivananda, M.K.; Poojary, B. Synthesis characterization and anticancer activity studies on some mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2003, 38(7-8), 759-767.
[http://dx.doi.org/10.1016/S0223-5234(03)00128-4] [PMID: 12932907]
[66]
Ozyanık, M.; Demirci, S.; Bektas, H.; Demirbas, N.; Demirbas, A.; Alpay-Karaoglu, S. Preparation and antimicrobial activity evaluation of some quinoline derivatives containing an azole nucleus. Turk. J. Chem., 2012, 36, 233-246.
[http://dx.doi.org/10.3906/kim-1109-9]
[67]
Fandaklı, S.; Basoglu, S.; Bektas, H.; Yolal, M.; Demirbas, A.; Alpay-Karaoglu, S. Reduction, mannich reaction, and antimicrobial activity evaluation of some new 1,2,4-triazol-3-one derivatives. Turk. J. Chem., 2012, 36, 567-582.
[http://dx.doi.org/10.3906/kim-1103-23]
[68]
Althagafi, I.I.; Shaaban, M.R. Microwave assisted regioselective synthesis of novel pyrazoles and pyrazolopyridazines via fluorine containing building blocks. J. Mol. Struct., 2017, 1142, 122-129.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.047]
[69]
Ozdemir, S.B.; Demirbas, N.; Demirbas, A.; Ayaz, F.A.; Çolak, N. Microwave‐Assisted Synthesis, Antioxidant, and Antimicrobial Evaluation of Piperazine‐Azole‐Fluoroquinolone Based 1,2,4-Triazole Derivatives. J. Heterocycl. Chem., 2018, 55, 2744.
[http://dx.doi.org/10.1002/jhet.3336]
[70]
Loupy, A. Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C. R. Chim., 2004, 7, 103-112.
[http://dx.doi.org/10.1016/j.crci.2003.10.015]
[71]
Grewal, A.S.; Kumar, K.; Redhu, S.; Bhardwaj, S. Microwave Assited Synthesis: A Green Chemistry Approach. Int. Res. J. Pharm. App. Sci., 2013, 3, 278-285.
[72]
Bayrak, H.; Demirbas, A.; Karaoglu, S.A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(3), 1057-1066.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.019] [PMID: 18676062]
[73]
Bayrak, H.; Demirbas, A.; Demirbas, N.; Karaoglu, S.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(11), 4362-4366.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.022] [PMID: 19647352]
[74]
Demirci, S.; Basoglu, S.; Bozdereci, A.; Demirbas, N. Preparation and antimicrobial activity evaluation of some new bi- and triheterocyclic azoles. Med. Chem. Res., 2013, 22, 4930-4945.
[http://dx.doi.org/10.1007/s00044-013-0498-3]

© 2024 Bentham Science Publishers | Privacy Policy