Review Article

大黄素-甲醚和大黄素-甲醚8-O-β-D-葡萄糖醛苷:具有潜在抗癌活性的天然蒽醌

卷 22, 期 5, 2021

发表于: 13 October, 2020

页: [488 - 504] 页: 17

弟呕挨: 10.2174/1389450121999201013154542

价格: $65

摘要

自古以来,自然界就为药物开发提供了大量的药理活性化合物。 大黄素-甲醚和大黄素-甲醚-O-β-D-吡喃葡萄糖苷(PG)是具有生物活性的天然蒽醌,具有抗炎和抗癌特性,且副作用很小或没有副作用。此外,大黄素-甲醚还具有抗微生物和保肝作用,而PG则具有防腐作用以及对痴呆症的改善作用。这篇综述的目的是强调大黄素-甲醚和PG的天然来源和抗癌活性,以及相关的作用机理。在文献的基础上,大黄素-甲醚和PG通过调节细胞周期,蛋白激酶,microRNA,转录因子和凋亡相关蛋白的各种调节剂来调节多种细胞信号传导途径,从而有效地杀死了癌细胞以及在体外。体内。两种化合物均有效抑制转移,此外,大黄素-甲醚可以作为6PGD的抑制剂,并在化学增敏中起重要作用。这篇综述文章认为,大黄素-甲醚和PG是有效的抗癌药物候选者,但是必须进一步研究它们的作用机理和临床前试验,以便了解这些天然癌症杀手在抗癌疗法中的全部潜力。

关键词: 大黄素-甲醚,大黄素-甲醚-O-β-D-吡喃葡萄糖苷,天然产物,蒽醌,抗癌剂,化学致敏作用。

图形摘要

[1]
Fatima I, Kanwal S, Mahmood T. Natural products mediated targeting of virally infected cancer.. Dose Response 2019; 17(1): 1559325818813227.
[http://dx.doi.org/10.1177/1559325818813227] [PMID: 30670935]
[2]
Ram VJ, Kumari S. Natural products of plant origin as anticancer agents. Drug News Perspect 2001; 14(8): 465-82.
[http://dx.doi.org/10.1358/dnp.2001.14.8.858416] [PMID: 12806432]
[3]
Christen P, Cuendet M. Plants as a source of therapeutic and health products. Chimia (Aarau) 2012; 66(5): 320-3.
[http://dx.doi.org/10.2533/chimia.2012.320] [PMID: 22867544]
[4]
Banerjee J, Das A, Sinha M, Saha S. Biological Efficacy of Medicinal Plant Extracts in Preventing Oxidative Damage. Oxid Med Cell Longev 2018; 2018: 7904349.
[http://dx.doi.org/10.1155/2018/7904349] [PMID: 30302174]
[5]
Kumar N, Yadav N, Amarnath N, et al. Integrative natural medicine inspired graphene nanovehicle-benzoxazine derivatives as potent therapy for cancer. Mol Cell Biochem 2019; 454(1-2): 123-38.
[http://dx.doi.org/10.1007/s11010-018-3458-x] [PMID: 30390174]
[6]
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[7]
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14(2): 111-29.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[8]
Qin JJ, Li X, Hunt C, Wang W, Wang H, Zhang R. Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes Dis 2018; 5(3): 204-19.
[http://dx.doi.org/10.1016/j.gendis.2018.07.002] [PMID: 30320185]
[9]
Ren Y, Kinghorn AD. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med 2019; 85(11-12): 802-14.
[http://dx.doi.org/10.1055/a-0832-2383] [PMID: 30658371]
[10]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[11]
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79(3): 629-61.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[12]
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2019.
[PMID: 30633954]
[13]
Catassi A, Cesario A, Arzani D, et al. Characterization of apoptosis induced by marine natural products in non small cell lung cancer A549 cells. Cell Mol Life Sci 2006; 63(19-20): 2377-86.
[http://dx.doi.org/10.1007/s00018-006-6264-7] [PMID: 17006627]
[14]
Schwartsmann G, Da Rocha AB, Mattei J, Lopes R. Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs 2003; 12(8): 1367-83.
[http://dx.doi.org/10.1517/13543784.12.8.1367] [PMID: 12882622]
[15]
da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. Curr Opin Pharmacol 2001; 1(4): 364-9.
[http://dx.doi.org/10.1016/S1471-4892(01)00063-7] [PMID: 11710734]
[16]
Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 2010; 62(1): 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[17]
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel) 2018; 5(3): E93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[18]
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36(4): 705-48.
[http://dx.doi.org/10.1002/med.21391] [PMID: 27111664]
[19]
Wijesekara I, Zhang C, Van Ta Q, Vo TS, Li YX, Kim SK. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol Res 2014; 169(4): 255-61.
[http://dx.doi.org/10.1016/j.micres.2013.09.001] [PMID: 24071573]
[20]
Li Y, Jiang JG. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct 2018; 9(12): 6063-80.
[http://dx.doi.org/10.1039/C8FO01569D] [PMID: 30484455]
[21]
Kremer D, Kosalec I, Locatelli M, Epifano F, Genovese S, Carlucci G. Zovko Koncˇic, M.; Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) Schur and Frangula alnus Mill. bark. Food Chem 2012; 131(4): 1174-80.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.094]
[22]
Hong JY, Chung HJ, Bae SY, Trung TN, Bae K, Lee SK. Induction of Cell Cycle Arrest and Apoptosis by Physcion, an Anthraquinone Isolated From Rhubarb (Rhizomes of Rheum tanguticum), in MDA-MB-231 Human Breast Cancer Cells. J Cancer Prev 2014; 19(4): 273-8.
[http://dx.doi.org/10.15430/JCP.2014.19.4.273] [PMID: 25574462]
[23]
Pan X, Wang C, Li Y, Zhu L, Zhang T. Protective autophagy induced by physcion suppresses hepatocellular carcinoma cell metastasis by inactivating the JAK2/STAT3 Axis. Life Sci 2018; 214: 124-35.
[http://dx.doi.org/10.1016/j.lfs.2018.10.064] [PMID: 30389439]
[24]
Pan X, Wang H, Tong D, et al. Physcion induces apoptosis in hepatocellular carcinoma by modulating miR-370. Am J Cancer Res 2016; 6(12): 2919-31.
[PMID: 28042511]
[25]
Gao F, Liu W, Guo Q, Bai Y, Yang H, Chen H. Physcion blocks cell cycle and induces apoptosis in human B cell precursor acute lymphoblastic leukemia cells by downregulating HOXA5. Biomed Pharmacother 2017; 94: 850-7.
[http://dx.doi.org/10.1016/j.biopha.2017.07.149] [PMID: 28810515]
[26]
Pang MJ, Yang Z, Zhang XL, Liu ZF, Fan J, Zhang HY. Physcion, a naturally occurring anthraquinone derivative, induces apoptosis and autophagy in human nasopharyngeal carcinoma. Acta Pharmacol Sin 2016; 37(12): 1623-40.
[http://dx.doi.org/10.1038/aps.2016.98] [PMID: 27694907]
[27]
Agarwal SK, Singh SS, Verma S, Kumar S. Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 2000; 72(1-2): 43-6.
[http://dx.doi.org/10.1016/S0378-8741(00)00195-1] [PMID: 10967452]
[28]
Moreira TF, Sorbo JM, Souza FO, et al. Emodin, Physcion, and Crude Extract of Rhamnus sphaerosperma var. pubescens Induce Mixed Cell Death, Increase in Oxidative Stress, DNA Damage, and Inhibition of AKT in Cervical and Oral Squamous Carcinoma Cell Lines. Oxid Med Cell Longev 2018; 2018: 2390234.
[http://dx.doi.org/10.1155/2018/2390234] [PMID: 30057674]
[29]
Yoon HK, An HK, Ko MJ, et al. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells. Int J Mol Sci 2016; 17(8): E1246.
[http://dx.doi.org/10.3390/ijms17081246] [PMID: 27490539]
[30]
Mellado M, Madrid A, Peña-Cortés H, López R, Jara C, Espinoza L. Antioxidant activity of anthraquinones isolated from leaves of muehlenbeckia hastulata (J.E. SM.) Johnst. (polygonaceae). J Chil Chem Soc 2013; 58(2): 1767-70.
[http://dx.doi.org/10.4067/S0717-97072013000200028]
[31]
Lee G, Choi TW, Kim C, et al. Anti-inflammatory activities of Reynoutria elliptica through suppression of mitogen-activated protein kinases and nuclear factor-κB activation pathways. Immunopharmacol Immunotoxicol 2012; 34(3): 454-64.
[http://dx.doi.org/10.3109/08923973.2011.619195] [PMID: 21961440]
[32]
Saleh-E-In MM, Roy A, Al-Mansur MA, et al. Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy. Comput Biol Chem 2019; 78: 242-59.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.025] [PMID: 30584950]
[33]
Tamokou JdeD, Tala MF, Wabo HK, Kuiate JR, Tane P. Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J Ethnopharmacol 2009; 124(3): 571-5.
[http://dx.doi.org/10.1016/j.jep.2009.04.062] [PMID: 19464353]
[34]
Ghosh S, Das Sarma M, Patra A, Hazra B. Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn. J Pharm Pharmacol 2010; 62(9): 1158-66.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01151.x] [PMID: 20796195]
[35]
Kim YM, Lee CH, Kim HG, Lee HS. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem 2004; 52(20): 6096-100.
[http://dx.doi.org/10.1021/jf049379p] [PMID: 15453672]
[36]
Fernand VE, Dinh DT, Washington SJ, et al. Determination of pharmacologically active compounds in root extracts of Cassia alata L. by use of high performance liquid chromatography. Talanta 2008; 74(4): 896-902.
[http://dx.doi.org/10.1016/j.talanta.2007.07.033] [PMID: 18371725]
[37]
Dave H, Ledwani L. A review on anthraquinones isolated from Cassia species and their applications. Indian J Nat Prod Resour 2012; 3(3): 291-319.
[38]
Fan JP, Zhang ZL. [Studies on the chemical constituents of Rumex crispus]. Zhong Yao Cai 2009; 32(12): 1836-40.
[PMID: 20432897]
[39]
Bowen L, Li C, Bin L, Ying T, Shijun L, Junxing D. Chemical constituents, cytotoxic and antioxidant activities of extract from the rhizomes of Osmunda japonica Thunb. Nat Prod Res 2020; 34(6): 847-50.
[http://dx.doi.org/10.1080/14786419.2018.1501692] [PMID: 30445844]
[40]
Pan XP, Wang C, Li Y, Huang LH. Physcion induces apoptosis through triggering endoplasmic reticulum stress in hepatocellular carcinoma. Biomed Pharmacother 2018; 99: 894-903.
[http://dx.doi.org/10.1016/j.biopha.2018.01.148] [PMID: 29710489]
[41]
Ana Paula A, Tida D, Narong S, et al. The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites. J Nat Pharm 2010; 1(1): 25-9.
[http://dx.doi.org/10.4103/2229-5119.73583]
[42]
Mueller S O, Schmitt M, Dekant W, et al. Occurrence of emodin, chrysophanol and physcion in vegetables, herbs and liquors. Genotoxicity and anti-genotoxicity of the anthraquinones and of the whole plants Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 1999; 37(5): 481-91.
[43]
Liu SY, Sporer F, Wink M, et al. Anthraquinones in Rheum palmatum and Rumex dentatus (Polygonaceae), and phorbol esters in Jatropha curcas (Euphorbiaceae) with molluscicidal activity against the schistosome vector snails Oncomelania, Biomphalaria and Bulinus. Trop Med Int Health 1997; 2(2): 179-88.
[http://dx.doi.org/10.1046/j.1365-3156.1997.d01-242.x] [PMID: 9472303]
[44]
Zhang C, Li L, Xiao YQ, et al. Two new anthraquinone glycosides from the roots of Rheum palmatum. J Asian Nat Prod Res 2010; 12(12): 1026-32.
[http://dx.doi.org/10.1080/10286020.2010.529612] [PMID: 21128142]
[45]
Feng J, Ren H, Gou Q, Zhu L, Ji H, Yi T. Comparative analysis of the major constituents in three related polygonaceous medicinal plants using pressurized liquid extraction and HPLC-ESI/MS. Anal Methods 2016; 8(7): 1557-64.
[http://dx.doi.org/10.1039/C5AY02941D]
[46]
Xu NG, Xiao ZJ, Zou T, Huang ZL. Ameliorative effects of physcion 8-O-β-glucopyranoside isolated from Polygonum cuspidatum on learning and memory in dementia rats induced by Aβ1-40. Pharm Biol 2015; 53(11): 1632-8.
[http://dx.doi.org/10.3109/13880209.2014.997251] [PMID: 25856718]
[47]
Zhang X, Thuong PT, Jin W, et al. Antioxidant activity of anthraquinones and flavonoids from flower of Reynoutria sachalinensis. Arch Pharm Res 2005; 28(1): 22-7.
[http://dx.doi.org/10.1007/BF02975130] [PMID: 15742803]
[48]
Oleszek M, Kowalska I, Oleszek W. Phytochemicals in bioenergy crops. Phytochem Rev 2019; 18: 893-927.
[http://dx.doi.org/10.1007/s11101-019-09639-7]
[49]
Chen X, Guo H, Li F, Fan D. Physcion 8-O-β-glucopyranoside suppresses the metastasis of breast cancer in vitro and in vivo by modulating DNMT1. Pharmacol Rep 2017; 69(1): 36-44.
[http://dx.doi.org/10.1016/j.pharep.2016.09.012] [PMID: 27768961]
[50]
Ding Z, Xu F, Tang J, et al. Physcion 8-O-β-glucopyranoside prevents hypoxia-induced epithelial-mesenchymal transition in colorectal cancer HCT116 cells by modulating EMMPRIN. Neoplasma 2016; 63(3): 351-61.
[http://dx.doi.org/10.4149/303_150723N405] [PMID: 26925795]
[51]
Li W, Li F, Zhu Y, Song D. Physcion 8-O-β-glucopyranosideregulates cell cycle, apoptosis, and invasion in glioblastoma cells through modulating Skp2. Biomed Pharmacother 2017; 95: 1129-38.
[http://dx.doi.org/10.1016/j.biopha.2017.09.017] [PMID: 28922732]
[52]
Wang Z, Yang H. EMMPRIN, SP1 and microRNA-27a mediate physcion 8-O-β-glucopyranoside-induced apoptosis in osteosarcoma cells. Am J Cancer Res 2016; 6(6): 1331-44.
[PMID: 27429847]
[53]
Geng Q, Wei Q, Wang S, et al. Physcion 8-O-β-glucopyranoside extracted from Polygonum cuspidatum exhibits anti-proliferative and anti-inflammatory effects on MH7A rheumatoid arthritis-derived fibroblast-like synoviocytes through the TGF-β/MAPK pathway. Int J Mol Med 2018; 42(2): 745-54.
[PMID: 29717774]
[54]
Zhao YL, Wang JB, Zhou GD, Shan LM, Xiao XH. Investigations of free anthraquinones from rhubarb against alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats. Basic Clin Pharmacol Toxicol 2009; 104(6): 463-9.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00389.x] [PMID: 19389047]
[55]
Fu WJ, Tang JJ, Wang H, et al. in vivo and in vitro anti-sepsis effects of physcion 8-O-β-glucopyranoside extracted from Rumex japonicus. Chin J Nat Med 2017; 15(7): 534-9.
[http://dx.doi.org/10.1016/S1875-5364(17)30079-1] [PMID: 28807227]
[56]
Khan M, Maryam A, Zhang H, Mehmood T, Ma T. Killing cancer with platycodin D through multiple mechanisms. J Cell Mol Med 2016; 20(3): 389-402.
[http://dx.doi.org/10.1111/jcmm.12749] [PMID: 26648178]
[57]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[58]
Rahmani AH, Alzohairy MA, Khan MA, Aly SM. Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways. Evid Based Complement Alternat Med 2014; 2014: 724658.
[http://dx.doi.org/10.1155/2014/724658] [PMID: 24959190]
[59]
Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther 2003; 99(1): 1-13.
[http://dx.doi.org/10.1016/S0163-7258(03)00042-1] [PMID: 12804695]
[60]
Pumiputavon K, Chaowasku T, Saenjum C, et al. Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complement Altern Med 2017; 17(1): 294.
[http://dx.doi.org/10.1186/s12906-017-1811-3] [PMID: 28583139]
[61]
Sarwar MS, Zhang HJ, Tsang SW. Perspectives of Plant Natural Products in Inhibition of Cancer Invasion and Metastasis by Regulating Multiple Signaling Pathways. Curr Med Chem 2018; 25(38): 5057-87.
[http://dx.doi.org/10.2174/0929867324666170918123413] [PMID: 28925869]
[62]
Zafar M, Sarfraz I, Rasul A, et al. Tubeimoside-1, triterpenoid saponin, as a potential natural cancer killer. Nat Prod Commun 2018; 13(0)
[http://dx.doi.org/10.1177/1934578X1801300530]
[63]
Khan M, Maryam A, Qazi JI, Ma T. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells. Int J Biol Sci 2015; 11(9): 1100-12.
[http://dx.doi.org/10.7150/ijbs.11595] [PMID: 26221076]
[64]
Huang Q, Lu G, Shen HM, Chung MC, Ong CN. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 2007; 27(5): 609-30.
[http://dx.doi.org/10.1002/med.20094] [PMID: 17022020]
[65]
Mullany LE, Herrick JS, Sakoda LC, et al. miRNA involvement in cell cycle regulation in colorectal cancer cases. Genes Cancer 2018; 9(1-2): 53-65.
[http://dx.doi.org/10.18632/genesandcancer.167] [PMID: 29725503]
[66]
Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36(3): 131-49.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[67]
Chen X, Gao H, Han Y, Ye J, Xie J, Wang C. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN. Eur J Pharmacol 2015; 764: 124-33.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.008] [PMID: 26144377]
[68]
Xiong Y, Ren L, Wang Z, Hu Z, Zhou Y. Anti-proliferative effect of physcion on human gastric cell line via inducing ros-dependent apoptosis. Cell Biochem Biophys 2015; 73(2): 537-43.
[http://dx.doi.org/10.1007/s12013-015-0674-9] [PMID: 27352350]
[69]
Han J, Zhao P, Shao W, Wang Z, Wang F, Sheng L. Physcion 8-O-beta-glucopyranoside exhibits anti-leukemic activity through targeting sphingolipid rheostat. Pharmacol Rep 2018; 70(5): 853-62.
[http://dx.doi.org/10.1016/j.pharep.2018.03.003]
[70]
Wang Q, Wang Y, Xing Y, et al. Physcion 8-O-β-glucopyranoside induces apoptosis, suppresses invasion and inhibits epithelial to mesenchymal transition of hepatocellular carcinoma HepG2 cells. Biomed Pharmacother 2016; 83: 372-80.
[http://dx.doi.org/10.1016/j.biopha.2016.06.045] [PMID: 27416558]
[71]
Du Y, Lv Z, Sun D, Li Y, Sun L, Zhou J. Physcion 8-O-β-Glucopyranoside Exerts Anti-Tumor Activity Against Non-Small Cell Lung Cancer by Targeting PPARγ. Anat Rec (Hoboken) 2019; 302(5): 785-93.
[http://dx.doi.org/10.1002/ar.23975] [PMID: 30312015]
[72]
Xie QC, Yang YP. Anti-proliferative of physcion 8-O-β-glucopyranoside isolated from Rumex japonicus Houtt. on A549 cell lines via inducing apoptosis and cell cycle arrest. BMC Complement Altern Med 2014; 14: 377.
[http://dx.doi.org/10.1186/1472-6882-14-377] [PMID: 25283233]
[73]
Wang Q, Yan Y, Zhang J, et al. Physcion 8-O-β-glucopyranoside inhibits clear-cell renal cell carcinoma bydownregulating hexokinase II and inhibiting glycolysis. Biomed Pharmacother 2018; 104: 28-35.
[http://dx.doi.org/10.1016/j.biopha.2018.05.013] [PMID: 29758413]
[74]
Lee SH, Ryu B, Je JY, Kim SK. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation of caspase-3 and p53 expression. Carbohydr Polym 2010; 84(1): 571-8.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.027]
[75]
Chiang JH, Yang JS, Ma CY, et al. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem Res Toxicol 2011; 24(1): 20-9.
[http://dx.doi.org/10.1021/tx100248s] [PMID: 21126053]
[76]
Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407(6805): 770-6.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[77]
Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2(6): 420-30.
[http://dx.doi.org/10.1038/nrc821] [PMID: 12189384]
[78]
Janssen O, Qian J, Linkermann A, Kabelitz D. CD95 ligand--death factor and costimulatory molecule? Cell Death Differ 2003; 10(11): 1215-25.
[http://dx.doi.org/10.1038/sj.cdd.4401305] [PMID: 12894217]
[79]
Zhang Y, Xing D, Liu L. PUMA promotes Bax translocation by both directly interacting with Bax and by competitive binding to Bcl-X L during UV-induced apoptosis. Mol Biol Cell 2009; 20(13): 3077-87.
[http://dx.doi.org/10.1091/mbc.e08-11-1109] [PMID: 19439449]
[80]
Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 2010; 11(4): 1509-26.
[http://dx.doi.org/10.3390/ijms11041509] [PMID: 20480032]
[81]
Gu X, Song X, Dong Y, et al. Vitamin E succinate induces ceramide-mediated apoptosis in head and neck squamous cell carcinoma in vitro and in vivo. Clin Cancer Res 2008; 14(6): 1840-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1811] [PMID: 18347187]
[82]
Letai A. Growth factor withdrawal and apoptosis: the middle game. Mol Cell 2006; 21(6): 728-30.
[http://dx.doi.org/10.1016/j.molcel.2006.03.005] [PMID: 16543140]
[83]
Lancellotti M, Pereira RF, Cury GG, Hollanda LM. Pathogenic and opportunistic respiratory bacteria-induced apoptosis. Braz J Infect Dis 2009; 13(3): 226-31.
[http://dx.doi.org/10.1590/S1413-86702009000300014] [PMID: 20191202]
[84]
Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C. Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 2000; 14(10): 1833-49.
[http://dx.doi.org/10.1038/sj.leu.2401902] [PMID: 11021759]
[85]
Ahsan H, Reagan-Shaw S, Breur J, Ahmad N. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins. Cancer Lett 2007; 249(2): 198-208.
[http://dx.doi.org/10.1016/j.canlet.2006.08.018] [PMID: 17005319]
[86]
Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011; 351(1-2): 41-58.
[http://dx.doi.org/10.1007/s11010-010-0709-x] [PMID: 21210296]
[87]
Zaman S, Wang R, Gandhi V. Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 2014; 55(9): 1980-92.
[http://dx.doi.org/10.3109/10428194.2013.855307] [PMID: 24295132]
[88]
Creagh EM, Martin SJ. Caspases: cellular demolition experts. Biochem Soc Trans 2001; 29(Pt 6): 696-702.
[http://dx.doi.org/10.1042/bst0290696] [PMID: 11709057]
[89]
Wang Q, Jiang Y, Guo R, et al. Physcion 8-O-β-glucopyranoside suppresses tumor growth of Hepatocellular carcinoma by downregulating PIM1. Biomed Pharmacother 2017; 92: 451-8.
[http://dx.doi.org/10.1016/j.biopha.2017.05.110] [PMID: 28570979]
[90]
Liu MD, Xiong SJ, Tan F, Liu Y. Physcion 8-O-β-glucopyranoside induces mitochondria-dependent apoptosis of human oral squamous cell carcinoma cells via suppressing survivin expression. Acta Pharmacol Sin 2016; 37(5): 687-97.
[http://dx.doi.org/10.1038/aps.2015.152] [PMID: 27063218]
[91]
Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000; 10(9): 369-77.
[http://dx.doi.org/10.1016/S0962-8924(00)01803-1] [PMID: 10932094]
[92]
Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74(4): 609-19.
[http://dx.doi.org/10.1016/0092-8674(93)90509-O] [PMID: 8358790]
[93]
Fulda S. Evasion of Apoptosis as a Cellular Stress Response in Cancer Int J Cell Biol 2010.
[http://dx.doi.org/10.1155/2010/370835]
[94]
Lopez J, Tait SW. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 2015; 112(6): 957-62.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[95]
Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 2002; 3(6): 401-10.
[http://dx.doi.org/10.1038/nrm830] [PMID: 12042762]
[96]
Ding S Y, Kim W S, Park S J, Kim S K. Apoptotic effect of physcion isolated from marine fungus Microsporum sp. in PC3 human prostate cancer cells Fish Aquat Sci 2018; 21(22)
[97]
Duiker EW, van der Zee AG, de Graeff P, et al. The extrinsic apoptosis pathway and its prognostic impact in ovarian cancer. Gynecol Oncol 2010; 116(3): 549-55.
[http://dx.doi.org/10.1016/j.ygyno.2009.09.014] [PMID: 19959214]
[98]
Yuan L, Wang J, Xiao H, Xiao C, Wang Y, Liu X. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. Toxicol Appl Pharmacol 2012; 265(1): 83-92.
[http://dx.doi.org/10.1016/j.taap.2012.09.022] [PMID: 23026832]
[99]
Raza H, John A, Benedict S. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells. Eur J Pharmacol 2011; 668(1-2): 15-24.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.016] [PMID: 21722632]
[100]
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8(7): 579-91.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[101]
Choudhary S, Sood S, Donnell RL, Wang HC. Intervention of human breast cell carcinogenesis chronically induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 2012; 33(4): 876-85.
[http://dx.doi.org/10.1093/carcin/bgs097] [PMID: 22307971]
[102]
Kim HS, Lim IK. Phosphorylated extracellular signal-regulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J Biol Chem 2009; 284(23): 15475-86.
[http://dx.doi.org/10.1074/jbc.M808734200] [PMID: 19318349]
[103]
Li K, Gao B, Li J, et al. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 2015; 6(35): 38107-26.
[http://dx.doi.org/10.18632/oncotarget.5646] [PMID: 26497555]
[104]
Jutooru I, Guthrie AS, Chadalapaka G, et al. Mechanism of action of phenethylisothiocyanate and other reactive oxygen species-inducing anticancer agents. Mol Cell Biol 2014; 34(13): 2382-95.
[http://dx.doi.org/10.1128/MCB.01602-13] [PMID: 24732804]
[105]
Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell 2009; 136(4): 586-91.
[http://dx.doi.org/10.1016/j.cell.2009.02.005] [PMID: 19239879]
[106]
Chen Y, Fu LL, Wen X, et al. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis 2014; 19(8): 1177-89.
[http://dx.doi.org/10.1007/s10495-014-0999-7] [PMID: 24850099]
[107]
Feng Y, Wang L, Zeng J, et al. FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370. Mol Cancer Res 2013; 11(8): 834-44.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0007] [PMID: 23576572]
[108]
Zhang X, Zeng J, Zhou M, et al. The tumor suppressive role of miRNA-370 by targeting FoxM1 in acute myeloid leukemia. Mol Cancer 2012; 11: 56.
[http://dx.doi.org/10.1186/1476-4598-11-56] [PMID: 22900969]
[109]
Yungang W, Xiaoyu L, Pang T, Wenming L, Pan X. miR-370 targeted FoxM1 functions as a tumor suppressor in laryngeal squamous cell carcinoma (LSCC). Biomed Pharmacother 2014; 68(2): 149-54.
[http://dx.doi.org/10.1016/j.biopha.2013.08.008] [PMID: 24055400]
[110]
Cao X, Liu D, Yan X, et al. Stat3 inhibits WTX expression through up-regulation of microRNA-370 in Wilms tumor. FEBS Lett 2013; 587(6): 639-44.
[http://dx.doi.org/10.1016/j.febslet.2013.01.012] [PMID: 23333300]
[111]
Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 2010; 31(5): 766-76.
[http://dx.doi.org/10.1093/carcin/bgp250] [PMID: 19843643]
[112]
Lv XB, Jiao Y, Qing Y, et al. miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chin J Cancer 2011; 30(12): 821-30.
[http://dx.doi.org/10.5732/cjc.011.10289] [PMID: 22085528]
[113]
Xia J, Wu Z, Yu C, et al. miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol 2012; 227(4): 470-80.
[http://dx.doi.org/10.1002/path.4030] [PMID: 22450659]
[114]
Zhang M, Coen JJ, Suzuki Y, et al. Survivin is a potential mediator of prostate cancer metastasis. Int J Radiat Oncol Biol Phys 2010; 78(4): 1095-103.
[http://dx.doi.org/10.1016/j.ijrobp.2009.09.007] [PMID: 20231071]
[115]
Kogo R, How C, Chaudary N, et al. The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget 2015; 6(2): 1090-100.
[http://dx.doi.org/10.18632/oncotarget.2836] [PMID: 25473903]
[116]
Doğan M, Çağlı S, Yüce İ, et al. Survivin expression correlates with nodal metastasis in T1-T2 squamous cell carcinoma of the tongue. Eur Arch Otorhinolaryngol 2015; 272(3): 689-94.
[http://dx.doi.org/10.1007/s00405-014-3009-3] [PMID: 24676727]
[117]
Zhang D, Han Y, Xu L. Upregulation of miR-124 by physcion 8-O-β-glucopyranoside inhibits proliferation and invasion of malignant melanoma cells via repressing RLIP76. Biomed Pharmacother 2016; 84: 166-76.
[http://dx.doi.org/10.1016/j.biopha.2016.09.022] [PMID: 27657824]
[118]
Lee S, Goldfinger LE. RLIP76 regulates HIF-1 activity, VEGF expression and secretion in tumor cells, and secretome transactivation of endothelial cells. FASEB J 2014; 28(9): 4158-68.
[http://dx.doi.org/10.1096/fj.14-255711] [PMID: 24928198]
[119]
Lee S, Wurtzel JG, Singhal SS, Awasthi S, Goldfinger LE. RALBP1/RLIP76 depletion in mice suppresses tumor growth by inhibiting tumor neovascularization. Cancer Res 2012; 72(20): 5165-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0468] [PMID: 22902412]
[120]
Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12(8): 895-904.
[http://dx.doi.org/10.1038/nm1469] [PMID: 16892035]
[121]
AlQathama A, Prieto JM. Natural products with therapeutic potential in melanoma metastasis. Nat Prod Rep 2015; 32(8): 1170-82.
[http://dx.doi.org/10.1039/C4NP00130C] [PMID: 26018751]
[122]
Brabletz T, Hlubek F, Spaderna S, et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs (Print) 2005; 179(1-2): 56-65.
[http://dx.doi.org/10.1159/000084509] [PMID: 15942193]
[123]
Bhat FA, Sharmila G, Balakrishnan S, et al. Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. J Nutr Biochem 2014; 25(11): 1132-9.
[http://dx.doi.org/10.1016/j.jnutbio.2014.06.008] [PMID: 25150162]
[124]
Han YT, Chen XH, Gao H, Ye JL, Wang CB. Physcion inhibits the metastatic potential of human colorectal cancer SW620 cells in vitro by suppressing the transcription factor SOX2. Acta Pharmacol Sin 2016; 37(2): 264-75.
[http://dx.doi.org/10.1038/aps.2015.115] [PMID: 26707141]
[125]
Wang W, Guan KL. AMP-activated protein kinase and cancer. Acta Physiol (Oxf) 2009; 196(1): 55-63.
[http://dx.doi.org/10.1111/j.1748-1716.2009.01980.x] [PMID: 19243571]
[126]
Rattan R, Giri S, Singh AK, Singh I. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivovia AMP-activated protein kinase. J Biol Chem 2005; 280(47): 39582-93.
[http://dx.doi.org/10.1074/jbc.M507443200] [PMID: 16176927]
[127]
Thammasit P, Sangboonruang S, Suwanpairoj S, et al. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody. J Cancer 2015; 6(3): 276-86.
[http://dx.doi.org/10.7150/jca.10879] [PMID: 25663946]
[128]
Gao H, Jiang Q, Han Y, Peng J, Wang C. shRNA-mediated EMMPRIN silencing inhibits human leukemic monocyte lymphoma U937 cell proliferation and increases chemosensitivity to adriamycin. Cell Biochem Biophys 2015; 71(2): 827-35.
[http://dx.doi.org/10.1007/s12013-014-0270-4] [PMID: 25260396]
[129]
Ke X, Fei F, Chen Y, et al. Hypoxia upregulates CD147 through a combined effect of HIF-1α and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis 2012; 33(8): 1598-607.
[http://dx.doi.org/10.1093/carcin/bgs196] [PMID: 22678117]
[130]
Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000; 404(6781): 1003-7.
[http://dx.doi.org/10.1038/35010000] [PMID: 10801130]
[131]
Azizi M, Teimoori-Toolabi L, Arzanani MK, Azadmanesh K, Fard-Esfahani P, Zeinali S. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol Ther 2014; 15(4): 419-27.
[http://dx.doi.org/10.4161/cbt.27630] [PMID: 24448385]
[132]
Mudbhary R, Hoshida Y, Chernyavskaya Y, et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 2014; 25(2): 196-209.
[http://dx.doi.org/10.1016/j.ccr.2014.01.003] [PMID: 24486181]
[133]
Brodie SA, Li G, El-Kommos A, et al. Class I HDACs are mediators of smoke carcinogen-induced stabilization of DNMT1 and serve as promising targets for chemoprevention of lung cancer. Cancer Prev Res (Phila) 2014; 7(3): 351-61.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0254] [PMID: 24441677]
[134]
Kim EK, Park JM, Lim S, et al. Activation of AMP-activated protein kinase is essential for lysophosphatidic acid-induced cell migration in ovarian cancer cells. J Biol Chem 2011; 286(27): 24036-45.
[http://dx.doi.org/10.1074/jbc.M110.209908] [PMID: 21602274]
[135]
Devanand P, Kim SI, Choi YW, et al. Inhibition of bladder cancer invasion by Sp1-mediated BTG2 expression via inhibition of DNA methyltransferase 1. FEBS J 2014; 281(24): 5581-601.
[http://dx.doi.org/10.1111/febs.13099] [PMID: 25284287]
[136]
Wang P, Zhu L, Sun D, et al. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2017; 22(3): 325-56.
[http://dx.doi.org/10.1007/s10495-016-1335-1] [PMID: 27988811]
[137]
Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci 2017; 18(7): E1412.
[http://dx.doi.org/10.3390/ijms18071412] [PMID: 28671583]
[138]
Li HY, Zhang J, Sun LL, et al. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis 2015; 6: e1604.
[http://dx.doi.org/10.1038/cddis.2014.543] [PMID: 25611379]
[139]
Liu Y, Zhao L, Ju Y, et al. A novel androstenedione derivative induces ROS-mediated autophagy and attenuates drug resistance in osteosarcoma by inhibiting macrophage migration inhibitory factor (MIF). Cell Death Dis 2014; 5: e1361.
[http://dx.doi.org/10.1038/cddis.2014.300] [PMID: 25101674]
[140]
Zhou X, Seto SW, Chang D, et al. Synergistic effects of chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol 2016; 7: 201.
[http://dx.doi.org/10.3389/fphar.2016.00201] [PMID: 27462269]
[141]
Pan X, Wang C, Zhang T. Physcion Synergistically Enhances the Cytotoxicity of Sorafenib in Hepatocellular Carcinoma Anat Rec (Hoboken) 2019.
[http://dx.doi.org/10.1002/ar.24179]
[142]
Liu W, He J, Yang Y, Guo Q, Gao F. Upregulating miR-146a by physcion reverses multidrug resistance in human chronic myelogenous leukemia K562/ADM cells. Am J Cancer Res 2016; 6(11): 2547-60.
[PMID: 27904770]
[143]
Sarfraz I, Rasul A, Hussain G, et al. 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance. Biofactors 2020; 46(4): 550-62.
[http://dx.doi.org/10.1002/biof.1624] [PMID: 32039535]
[144]
Zheng W, Feng Q, Liu J, et al. Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and lung cancer. Front Pharmacol 2017; 8: 421.
[http://dx.doi.org/10.3389/fphar.2017.00421] [PMID: 28713273]
[145]
Liu R, Li W, Tao B, et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun 2019; 10(1): 991.
[http://dx.doi.org/10.1038/s41467-019-08921-8] [PMID: 30824700]
[146]
Lin R, Elf S, Shan C, et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol 2015; 17(11): 1484-96.
[http://dx.doi.org/10.1038/ncb3255] [PMID: 26479318]
[147]
Elf S, Lin R, Xia S, et al. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin. Oncogene 2017; 36(2): 254-62.
[http://dx.doi.org/10.1038/onc.2016.196] [PMID: 27270429]
[148]
Chen H, Wu D, Bao L, et al. 6PGD inhibition sensitizes hepatocellular carcinoma to chemotherapy via AMPK activation and metabolic reprogramming. Biomed Pharmacother 2019; 111: 1353-8.
[http://dx.doi.org/10.1016/j.biopha.2019.01.028] [PMID: 30841449]
[149]
Guo H, Xiang Z, Zhang Y, Sun D. Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1. Clin Transl Oncol 2019; 21(4): 404-11.
[http://dx.doi.org/10.1007/s12094-018-1937-x] [PMID: 30182212]
[150]
Yang X, Peng X, Huang J. Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol 2018; 20(9): 1145-52.
[http://dx.doi.org/10.1007/s12094-018-1833-4] [PMID: 29340974]
[151]
Ethier C, Tardif M, Arul L, Poirier GG. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS One 2012; 7(10): e47978.
[http://dx.doi.org/10.1371/journal.pone.0047978] [PMID: 23110147]
[152]
Zhou Y, Han Y, Zhang Z, et al. MicroRNA-124 upregulation inhibits proliferation and invasion of osteosarcoma cells by targeting sphingosine kinase 1. Hum Cell 2017; 30(1): 30-40.
[http://dx.doi.org/10.1007/s13577-016-0148-4] [PMID: 27743351]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy