Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Current Perspective and Developments in Electrochemical Sensors Modified with Nanomaterials for Environmental and Pharmaceutical Analysis

Author(s): Jamil A. Buledi, Zia-ul-Hassan Shah, Arfana Mallah and Amber R. Solangi*

Volume 18, Issue 1, 2022

Published on: 06 October, 2020

Page: [102 - 115] Pages: 14

DOI: 10.2174/1573411016999201006122740

Price: $65

Abstract

Background: Over the past few decades, environmental pollution has appeared to be one of the most crucial global problems. The widespread intensification of numerous hazardous pollutants in the environment needs modern researchers to develop viable, reproducible and costeffective determination tools for reliable environmental analysis. The beneficial, as well as perilous, biological compounds, are receiving growing interest due to their variable composition, which produces advantageous and toxic impacts on humans and the environment. Several conventional analytical methods have been established for pharmaceutical and environmental analysis. However, certain drawbacks limited their practices in the modern rapidly growing era of science and technology. The development of electrochemical sensors has emerged as a more beneficial and promising tool against other traditional analytical approaches, in terms of simplicity, cost-effectiveness, sensitivity, stability and reliability. Nonetheless, the over potential and low anodic/cathodic current response are both considered as bottlenecks for the determination of electroactive entities exploiting electrochemical sensors. Interestingly, these problems can be easily resolved by modifying the electrodes with a variety of conductive materials, especially nanostructures.

Objective:This review covers different electrochemical methods reported in the literature for environmental and pharmaceutical analysis through simple and cost-effective nanostructures-based sensors. The electrochemical techniques with different modes and the modification of electrodes with highly conductive and prolific polymeric and nanostructured materials used for the determination of different environmental and pharmaceutical samples are the main prominence of this review. Various kinds of nanomaterials, e.g. metal, metal oxide and their composites, have been synthesized for the fabrication of the sensitive electrodes.

Conclusion: Nanostructures played a pivotal role in the modification of electrodes, which substantially enhanced the capability and sensitivity of electrochemical sensors. The proper modification of electrodes has materialized the swift detection of electroactive compounds at very low limits and offered the feasible determination procedure without any kind of signal fluctuation and over potential. In crux, due to their enhanced surface area and excellent catalytic properties, nanomaterials recently appeared as the most promising candidates in the field of electrode modification and significantly impacted the detection protocols for various environmental pollutants, viz. pesticides, metal ions and drugs.

Keywords: Electrochemical sensors, nanomaterials, modified electrodes, metal oxides, pesticides, heavy metals and drugs.

Graphical Abstract

[1]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[2]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2019, 20(7), 682-692.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[3]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[4]
Amin, S.; Solangi, A.R.; Hassan, D.; Hussain, N.; Ahmed, J.; Baksh, H. Recent Trends in Development of Nanomaterials Based Green Analytical Methods for Environmental Remediation. Curr. Anal. Chem., 2020, 16, 1-11.
[http://dx.doi.org/10.2174/1573411016666200319100707]
[5]
Buledi, J.A.; Amin, S.; Haider, S.I.; Bhanger, M.I.; Solangi, A.R. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. Int., 2021, 28, 58994-59002.
[http://dx.doi.org/10.1007/s11356-020-07865-7] [PMID: 32036535]
[6]
Chu, X-G.; Hu, X-Z.; Yao, H-Y. Determination of 266 pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography-mass selective detection. J. Chromatogr. A, 2005, 1063(1-2), 201-210.
[http://dx.doi.org/10.1016/j.chroma.2004.12.003] [PMID: 15700472]
[7]
Qi, P.; Wang, J.; Wang, X.; Wang, Z.; Xu, H.; Di, S.; Wang, Q.; Wang, X. Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs. RSC Advances, 2018, 8(45), 25334-25341.
[http://dx.doi.org/10.1039/C8RA05022H]
[8]
Arduini, F.; Ricci, F.; Tuta, C.S.; Moscone, D.; Amine, A.; Palleschi, G. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal. Chim. Acta, 2006, 580(2), 155-162.
[http://dx.doi.org/10.1016/j.aca.2006.07.052] [PMID: 17723768]
[9]
Li, B.; He, Y.; Xu, C. Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta, 2007, 72(1), 223-230.
[http://dx.doi.org/10.1016/j.talanta.2006.10.023] [PMID: 19071606]
[10]
Pal, R.; Megharaj, M.; Kirkbride, K.P.; Naidu, R. Illicit drugs and the environment--a review. Sci. Total Environ., 2013, 463-464, 1079-1092.
[http://dx.doi.org/10.1016/j.scitotenv.2012.05.086] [PMID: 22726813]
[11]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[12]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43(5), 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[13]
Uslu, B.; Ozkan, S.A. Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments. Anal. Lett., 2011, 44(16), 2644-2702.
[http://dx.doi.org/10.1080/00032719.2011.553010]
[14]
Saka, C. High-performance liquid chromatography methods to simultaneous determination of anti-retroviral drugs in biological matrices. Crit. Rev. Anal. Chem., 2009, 39(2), 108-125.
[http://dx.doi.org/10.1080/10408340902820759]
[15]
Saka, C. Review of analytical methods for identification and determination of triptans. Crit. Rev. Anal. Chem., 2009, 39(1), 32-42.
[http://dx.doi.org/10.1080/10408340802569522]
[16]
Şentürk, Z.; Saka, C.; Teğin, İ. Analytical methods for determination of selective serotonin reuptake inhibitor antidepressants. Rev. Anal. Chem., 2011, 30(2), 87-122.
[http://dx.doi.org/10.1515/revac.2011.018]
[17]
Saka, C. Analytical strategies for the determination of norepinephrine reuptake inhibitors in pharmaceutical formulations and biological fluids. Crit. Rev. Anal. Chem., 2016, 46(1), 40-66.
[http://dx.doi.org/10.1080/10408347.2014.948679] [PMID: 26857446]
[18]
Akamine, Y.; Sato, S.; Kagaya, H.; Ohkubo, T.; Satoh, S.; Miura, M. Comparison of electrochemiluminescence immunoassay and latex agglutination turbidimetric immunoassay for evaluation of everolimus blood concentrations in renal transplant patients. J. Clin. Pharm. Ther., 2018, 43(5), 675-681.
[http://dx.doi.org/10.1111/jcpt.12686] [PMID: 29679392]
[19]
Kang, J.; Park, Y-S.; Kim, S-H.; Kim, S-H.; Jun, M-Y. Modern methods for analysis of antiepileptic drugs in the biological fluids for pharmacokinetics, bioequivalence and therapeutic drug monitoring. Korean J. Physiol. Pharmacol., 2011, 15(2), 67-81.
[http://dx.doi.org/10.4196/kjpp.2011.15.2.67] [PMID: 21660146]
[20]
Ke, J.; Yancey, M.; Zhang, S.; Lowes, S.; Henion, J. Quantitative liquid chromatographic-tandem mass spectrometric determination of reserpine in FVB/N mouse plasma using a “chelating” agent (disodium EDTA) for releasing protein-bound analytes during 96-well liquid-liquid extraction. J. Chromatogr. B Biomed. Sci. Appl., 2000, 742(2), 369-380.
[http://dx.doi.org/10.1016/S0378-4347(00)00186-9] [PMID: 10901142]
[21]
Liu, Y-M.; Mei, L.; Yue, H-Y.; Shi, Y-M.; Liu, L-J. Highly sensitive chemiluminescence detection of norfloxacin and ciprofloxacin in CE and its applications. Chromatographia, 2010, 72(3-4), 337-341.
[http://dx.doi.org/10.1365/s10337-010-1648-0]
[22]
Barros, J.M.; Bezerra, M.A.; Valasques, G.S.; Do Nascimento, B.B., Jr; Souza, A.S.; De Aragão, N.M. Multivariate optimization of an ultrasound-assisted extraction procedure for Cu, Mn, Ni and Zn determination in ration to chickens. An. Acad. Bras. Cienc., 2013, 85(3), 891-902.
[http://dx.doi.org/10.1590/S0001-37652013000300005] [PMID: 24068081]
[23]
Sitko, R.; Janik, P.; Zawisza, B.; Talik, E.; Margui, E.; Queralt, I. Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal. Chem., 2015, 87(6), 3535-3542.
[http://dx.doi.org/10.1021/acs.analchem.5b00283] [PMID: 25707847]
[24]
Hristozov, D.; Domini, C.E.; Kmetov, V.; Stefanova, V.; Georgieva, D.; Canals, A. Direct ultrasound-assisted extraction of heavy metals from sewage sludge samples for ICP-OES analysis. Anal. Chim. Acta, 2004, 516(1-2), 187-196.
[http://dx.doi.org/10.1016/j.aca.2004.04.026]
[25]
Buledi, J.A.; Ameen, S.; Khand, N.H.; Solangi, A.R.; Taqvi, I.H.; Agheem, M.H.; Wajdan, Z. CuO nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid. Electroanalysis, 2020, 32(7), 1600-1607.
[http://dx.doi.org/10.1002/elan.202000083]
[26]
Muthuraman, G.; Moon, I-S. A review on an electrochemically assisted-scrubbing process for environmental harmful pollutant’s destruction. J. Ind. Eng. Chem., 2012, 18(5), 1540-1550.
[http://dx.doi.org/10.1016/j.jiec.2012.03.021]
[27]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[28]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[29]
Salinas-Torres, D.; Huerta, F.; Montilla, F.; Morallón, E. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim. Acta, 2011, 56(5), 2464-2470.
[http://dx.doi.org/10.1016/j.electacta.2010.11.023]
[30]
Raoof, J.; Ojani, R.; Beitollahi, H.; Hossienzadeh, R. Electrocatalytic determination of ascorbic acid at the surface of 2, 7‐Bis (ferrocenyl ethyl) fluoren-9-one modified carbon paste electrode. Electroanalysis, 2006, 18(12), 1193-1201.
[http://dx.doi.org/10.1002/elan.200503516]
[31]
Chandra, U.; Swamy, B.K.; Gilbert, O.; Pandurangachar, M.; Sherigara, B. Voltammetric resolution of dopamine in presence of ascorbic acid at polyvinyl alcohol modified carbon paste electrode. Int. J. Electrochem. Sci., 2009, 4(10), 1479-1488.
[32]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[33]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153] [PMID: 25952889]
[34]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H.; Hajmohamadi, M.R.; Biparva, P. Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal. Methods, 2011, 3(11), 2637-2643.
[http://dx.doi.org/10.1039/c1ay05031a]
[35]
Li, G.; Xia, Y.; Tian, Y.; Wu, Y.; Liu, J.; He, Q.; Chen, D. Recent developments on graphene-based electrochemical sensors toward nitrite. J. Electrochem. Soc., 2019, 166(12), B881.
[http://dx.doi.org/10.1149/2.0171912jes]
[36]
Li, Q.; Xia, Y.; Wan, X.; Yang, S.; Cai, Z.; Ye, Y.; Li, G. Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater. Sci. Eng. C, 2020, 109110615
[http://dx.doi.org/10.1016/j.msec.2019.110615] [PMID: 32228941]
[37]
Li, G.; Wu, J.; Jin, H.; Xia, Y.; Liu, J.; He, Q.; Chen, D. Titania/electro-reduced graphene oxide nanohybrid as an efficient electrochemical sensor for the determination of allura red. Nanomaterials (Basel), 2020, 10(2), 307.
[http://dx.doi.org/10.3390/nano10020307] [PMID: 32054018]
[38]
Merkoçi, A. Carbon nanotubes: exciting new materials for microanalysis and sensing. Mikrochim. Acta, 2006, 152(3), 155-156.
[39]
Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; Del Valle, M.; Alegret, S. New materials for electrochemical sensing VI: carbon nanotubes. Trends Analyt. Chem., 2005, 24(9), 826-838.
[http://dx.doi.org/10.1016/j.trac.2005.03.019]
[40]
Pourbeyram, S.; Abdollahpour, J.; Soltanpour, M. Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose. Mater. Sci. Eng. C, 2019, 94, 850-857.
[http://dx.doi.org/10.1016/j.msec.2018.10.034] [PMID: 30423771]
[41]
Karim-Nezhad, G.; Khorablou, Z.; Zamani, M.; Dorraji, P.S.; Alamgholiloo, M. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode. J. Food Drug Anal.,, 2017, 25(2), 293-301.
[42]
Amin, S.; Tahira, A.; Solangi, A.R.; Mazzaro, R.; Ibupoto, Z.H.; Fatima, A.; Vomiero, A. Functional nickel oxide nanostructures for ethanol oxidation in alkaline media. Electroanalysis, 2020, 32(5), 1052-1059.
[http://dx.doi.org/10.1002/elan.201900662]
[43]
Rezaeifar, Z.; Rounaghi, G.H.; Es’haghi, Z.; Chamsaz, M. Electrochemical determination of anticancer drug, flutamide in human plasma sample using a microfabricated sensor based on hyperbranchedpolyglycerol modified graphene oxide reinforced hollow fiber-pencil graphite electrode. Mater. Sci. Eng. C, 2018, 91, 10-18.
[http://dx.doi.org/10.1016/j.msec.2018.05.017] [PMID: 30033236]
[44]
Pop, A.; Manea, F.; Flueras, A.; Schoonman, J. Simultaneous voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors (Basel), 2017, 17(9), 2033.
[http://dx.doi.org/10.3390/s17092033] [PMID: 28878151]
[45]
Gai, K.; Qi, H.; Li, L.X.; Liu, X. Detection of residual methomyl in vegetables with an electrochemical sensor based on agce modified with Fe3O4/Ag composite. Int. J. Electrochem. Sci., 2019, 14(1), 1283-1292.
[http://dx.doi.org/10.20964/2019.02.43]
[46]
Tharini, J.; Chen, T-W.; Chen, S-M.; Saraswathi, R.; Elshikh, M.S.; Darwish, N.M.; Rwei, S-P. A mexacarbate electrochemical biosensor on carbon materials based on a functionalized multiwalled carbon nanotube modified GCE. Int. J. Electrochem. Sci., 2019, 14, 8311-8325.
[http://dx.doi.org/10.20964/2019.08.103]
[47]
Tan, X.; Liu, Y.; Zhang, T.; Luo, S.; Liu, X.; Tian, H.; Yang, Y.; Chen, C. Ultrasensitive electrochemical detection of methyl parathion pesticide based on cationic water-soluble pillar [5] arene and reduced graphene nanocomposite. RSC Advances, 2019, 9(1), 345-353.
[http://dx.doi.org/10.1039/C8RA08555B]
[48]
Chekol, F.; Mehretie, S.; Hailu, F.A.; Tolcha, T.; Megersa, N.; Admassie, S. Roll-to-Roll printed PEDOT/PSS/GO plastic film for electrochemical determination of carbofuran. Electroanalysis, 2019, 31(6), 1104-1111.
[http://dx.doi.org/10.1002/elan.201800883]
[49]
Prasad, P.; Sreedhar, N. Effective SWCNTs/Nafion electrochemical sensor for detection of dicapthon pesticide in water and agricultural food samples. Chemical Methodologies, 2018, 2(4), 270-340.
[50]
Costa, D.J.; Santos, J.C.; Sanches-Brandao, F.A.; Ribeiro, W.F.; Salazar-Banda, G.R.; Araujo, M.C. Boron-doped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide. J. Electroanal. Chem. , 2017, 789, 100-107.
[http://dx.doi.org/10.1016/j.jelechem.2017.02.036]
[51]
Salih, F.E.; Achiou, B.; Ouammou, M.; Bennazha, J.; Ouarzane, A.; Younssi, S.A.; El Rhazi, M. Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. J. Adv. Res., 2017, 8(6), 669-676.
[http://dx.doi.org/10.1016/j.jare.2017.08.002] [PMID: 28948047]
[52]
Geto, A.; Noori, J.S.; Mortensen, J.; Svendsen, W.E.; Dimaki, M. Electrochemical determination of bentazone using simple screen-printed carbon electrodes. Environ. Int., 2019, 129, 400-407.
[http://dx.doi.org/10.1016/j.envint.2019.05.009] [PMID: 31152981]
[53]
Li, Y.; Li, Y.; Yu, X.; Sun, Y. Electrochemical determination of carbofuran in tomatoes by a Concanavalin A (Con A) Polydopamine (PDA)-Reduced Graphene Oxide (RGO)-Gold Nanoparticle (GNP)GCE (GCE) with immobilized acetylcholinesterase (AChE). Anal. Lett., 2019, 52(14), 2283-2299.
[http://dx.doi.org/10.1080/00032719.2019.1609490]
[54]
Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Facure, M.H.; Correa, D.S. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Mater. Res. Express, 2019, 7(1)015601
[http://dx.doi.org/10.1088/2053-1591/ab5744]
[55]
Hashemi, P.; Karimian, N.; Khoshsafar, H.; Arduini, F.; Mesri, M.; Afkhami, A.; Bagheri, H. Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides. Mater. Sci. Eng. C, 2019, 102, 764-772.
[http://dx.doi.org/10.1016/j.msec.2019.05.010] [PMID: 31147049]
[56]
Ayyalusamy, S.; Mishra, S.; Suryanarayanan, V. Promising post-consumer PET-derived activated carbon electrode material for non-enzymatic electrochemical determination of carbofuran hydrolysate. Sci. Rep., 2018, 8(1), 13151.
[http://dx.doi.org/10.1038/s41598-018-31627-8] [PMID: 30177713]
[57]
Wang, M.; Huang, J.; Wang, M.; Zhang, D.; Chen, J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem., 2014, 151, 191-197.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.046] [PMID: 24423520]
[58]
Antunović, V.; Ilić, M.; Baošić, R.; Jelić, D.; Lolić, A. Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II). PLoS One, 2019, 14(2)e0210904
[http://dx.doi.org/10.1371/journal.pone.0210904] [PMID: 30726233]
[59]
Nguyen, T.L.; Cao, V.H.; Pham, T.H.Y.; Le, T.G. Platinum nanoflower-modified electrode as a sensitive sensor for simultaneous detection of lead and cadmium at trace levels. J. Chem., 2019, 2019Article ID 6235479
[http://dx.doi.org/10.1155/2019/6235479]
[60]
Atapour, M.; Amoabediny, G.; Ahmadzadeh-Raji, M. Integrated optical and electrochemical detection of Cu2+ ions in water using a sandwich amino acid–gold nanoparticle-based nano-biosensor consisting of a transparent-conductive platform. RSC Advances, 2019, 9(16), 8882-8893.
[http://dx.doi.org/10.1039/C8RA09659G]
[61]
Eksin, E.; Erdem, A.; Fafal, T.; Kıvçak, B. Eco‐friendly Sensors developed by herbal based silver nanoparticles for electrochemical detection of mercury (II) Ion. Electroanalysis, 2019, 31(6), 1075-1082.
[http://dx.doi.org/10.1002/elan.201800776]
[62]
Hassan, K.M.; Elhaddad, G.M.; AbdelAzzem, M. Voltammetric determination of cadmium (II), lead (II) and copper (II) with aGCE modified with silver nanoparticles deposited on poly (1, 8-diaminonaphthalene). Mikrochim. Acta, 2019, 186(7), 440.
[http://dx.doi.org/10.1007/s00604-019-3552-0] [PMID: 31197477]
[63]
He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 2005, 19(2-3), 125-140.
[http://dx.doi.org/10.1016/j.jtemb.2005.02.010] [PMID: 16325528]
[64]
Palisoc, S.; Vitto, R.I.M.; Natividad, M. Determination of heavy metals in herbal food supplements using bismuth/multi-walled carbon nanotubes/nafion modified graphite electrodes sourced from waste batteries. Sci. Rep., 2019, 9(1), 18491.
[http://dx.doi.org/10.1038/s41598-019-54589-x] [PMID: 31811219]
[65]
Ait Tayeb, I.; Razak, K.A. In development of gold nanoparticles modified electrodes for the detection of heavy metal ions. J. Phys. Conf. Ser., 2018, 2018, 1-10.
[66]
Vajedi, F.; Dehghani, H. The characterization of TiO2-reduced graphene oxide nanocomposites and their performance in electrochemical determination for removing heavy metals ions of cadmium (II), lead (II) and copper (II). Mater. Sci. Eng. B, 2019, 243, 189-198.
[http://dx.doi.org/10.1016/j.mseb.2019.04.009]
[67]
Hwang, J-H.; Wang, X.; Pathak, P.; Rex, M.M.; Cho, H.J.; Lee, W.H. Enhanced electrochemical detection of multiheavy metal ions using a biopolymer-coated planar carbon electrode. IEEE Trans. Instrum. Meas., 2019, 68(7), 2387-2393.
[http://dx.doi.org/10.1109/TIM.2019.2908045]
[68]
Üstündağ, İ.; Erkal, A.; Üstündağ, Z.; Solak, A.O. Electrochemical detection of cadmium and lead in rice on manganese dioxide reinforced carboxylated graphene oxide nanofilm. MANAS J. Eng., 2018, 6(2), 96-109.
[69]
Khdaychi, Y.; Idrissi, L.; Souabi, S.; Kadmi, Y. Simultaneous electrochemical analysis of heavy metals in atmospheric deposits. J Mater Environ Sci, 2018, 9(7), 2189-2200.
[70]
He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J.; Chen, D. Sensitive and selective detection of tartrazine based on TiO2-electrochemically reduced graphene oxide composite-modified electrodes. Sensors (Basel), 2018, 18(6), 1911.
[http://dx.doi.org/10.3390/s18061911]
[71]
Chen, Y.; Yin, S.; Chen, Y.; Cen, W.; Li, J.; Yin, H. Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation. Appl. Surf. Sci., 2018, 434, 382-388.
[http://dx.doi.org/10.1016/j.apsusc.2017.10.137]
[72]
Wang, Q.; Lim, K.H.; Yang, S-W.; Yang, Y.; Chen, Y. Atomic carbon adsorption on Ni nanoclusters: A DFT study. Theor. Chem. Acc., 2011, 128(1), 17-24.
[http://dx.doi.org/10.1007/s00214-010-0736-4]
[73]
Kaun, C-C.; Larade, B.; Mehrez, H.; Taylor, J.; Guo, H. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen. Phys. Rev. B , 2002, 65(20)205416
[http://dx.doi.org/10.1103/PhysRevB.65.205416]
[74]
Gooding, J.J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta, 2005, 50(15), 3049-3060.
[http://dx.doi.org/10.1016/j.electacta.2004.08.052]
[75]
Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes--the route toward applications. Science, 2002, 297(5582), 787-792.
[http://dx.doi.org/10.1126/science.1060928] [PMID: 12161643]
[76]
Moraes, F.C.; Tanimoto, S.T.; Salazar‐Banda, G.R.; Machado, S.A.S.; Mascaro, L.H. A new indirect electroanalytical method to monitor the contamination of natural waters with 4‐nitrophenol using multiwall carbon nanotubes. Electroanalysis, 2009, 21(9), 1091-1098.
[http://dx.doi.org/10.1002/elan.200804522]
[77]
Moraes, F.C.; Mascaro, L.H.; Machado, S.A.; Brett, C.M. Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta, 2009, 79(5), 1406-1411.
[http://dx.doi.org/10.1016/j.talanta.2009.06.013] [PMID: 19635377]
[78]
Zhao, X.; Zhang, Y.; Gao, D.; Xiong, H.; Gao, Y.; Li, S.; Li, X.; Yang, Z.; Liu, M.; Dai, J. Electrochemical behavior and determination of four drugs using multi-wall carbon nanotubes modified GCE. Int. J. Electrochem. Sci., 2019, 14, 506-515.
[http://dx.doi.org/10.20964/2019.01.44]
[79]
Pandit, U.J.; Naikoo, G.A.; Sheikh, M.U.D.; Khan, G.A.; Raj, K.K.; Limaye, S.N. Electrochemical determination of an anti-hyperlipidimic drug pitavastatin at electrochemical sensor based on electrochemically pre-treated polymer film modified GCE. J. Pharm. Anal., 2017, 7(4), 258-264.
[http://dx.doi.org/10.1016/j.jpha.2017.03.002] [PMID: 29404047]
[80]
Pattar, V.P.; Nandibewoor, S.T. Electrochemical studies for the determination of an antibiotic drug, d-cycloserine, in pharmaceutical and human biological samples. J. Taibah Univ. Sci., 2016, 10(1), 92-99.
[http://dx.doi.org/10.1016/j.jtusci.2015.05.003]
[81]
Seyidahmet, S.; Dönmez, F.; Yardım, Y.; Şentürk, Z. Simple, rapid, and sensitive electrochemical determination of antithyroid drug methimazole using a boron-doped diamond electrode. J. Indian Chem. Soc., 2019, 16(5), 913-920.
[http://dx.doi.org/10.1007/s13738-018-1562-1]
[82]
Mulik, B.B.; Dhumal, S.T.; Harale, R.R.; Kharat, K.R.; Sathe, B.R. Electrochemical studies of anti‐HIV drug emtricitabine: Oxidative determination and improved antimicrobial activity. ChemElectroChem, 2018, 5(24), 3926-3931.
[http://dx.doi.org/10.1002/celc.201801228]
[83]
Heli, H.; Faramarzi, F.; Sattarahmady, N. Voltammetric investigation and amperometric detection of the bisphosphonate drug sodium alendronate using a copper nanoparticles-modified electrode. J. Solid State Electrochem., 2010, 14(12), 2275-2283.
[http://dx.doi.org/10.1007/s10008-010-1069-x]
[84]
Silva, T. A.; Moraes, F. C.; Janegitz, B. C.; Fatibello-Filho, O. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomat., 2017 2017. Article ID 4571614.
[http://dx.doi.org/10.1155/2017/4571614]
[85]
Vicentini, F.C.; Ravanini, A.E.; Figueiredo-Filho, L.C.; Iniesta, J.; Banks, C.E.; Fatibello-Filho, O. Imparting improvements in electrochemical sensors: Evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim. Acta, 2015, 157, 125-133.
[http://dx.doi.org/10.1016/j.electacta.2014.11.204]
[86]
Arduini, F.; Giorgio, F.D.; Amine, A.; Cataldo, F.; Moscone, D.; Palleschi, G. Electroanalytical characterization of carbon black nanomaterial paste electrode: Development of highly sensitive tyrosinase biosensor for catechol detection. Anal. Lett., 2010, 43(10-11), 1688-1702.
[http://dx.doi.org/10.1080/00032711003653932]
[87]
Materon, E.M.; Wong, A.; Fatibello-Filho, O.; Faria, R.C. Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J. Electroanal. Chem. , 2018, 827, 64-72.
[http://dx.doi.org/10.1016/j.jelechem.2018.09.010]
[88]
Karimi-Maleh, H.; Sheikhshoaie, I.; Samadzadeh, A. Simultaneous electrochemical determination of levodopa and piroxicam using aGCE modified with a ZnO–Pd/CNT nanocomposite. RSC Advances, 2018, 8(47), 26707-26712.
[http://dx.doi.org/10.1039/C8RA03460E]
[89]
Mahmoud, B.G.; Khairy, M.; Rashwan, F.A.; Banks, C.E. Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms. Anal. Chem., 2017, 89(3), 2170-2178.
[http://dx.doi.org/10.1021/acs.analchem.6b05130] [PMID: 28208250]
[90]
Mohamed, M.A.; Saad, A.S.; Koshek, S.H.; El-Ghobashy, M.R. Smart electrochemical sensing platform for the simultaneous determination of psychotic disorder drugs isopropamide iodide and trifluoperazine hydrochloride. New J. Chem., 2018, 42(12), 9911-9919.
[http://dx.doi.org/10.1039/C8NJ01600C]
[91]
Goyal, R.N.; Singh, S.P. Voltammetric determination of paracetamol at C60-modifiedGCE. Electrochim. Acta, 2006, 51(15), 3008-3012.
[http://dx.doi.org/10.1016/j.electacta.2005.08.036]
[92]
Kartal, M. LC method for the analysis of paracetamol, caffeine and codeine phosphate in pharmaceutical preparations. J. Pharm. Biomed. Anal., 2001, 26(5-6), 857-864.
[http://dx.doi.org/10.1016/S0731-7085(01)00527-1] [PMID: 11600297]
[93]
Li, M.; Jing, L. Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim. Acta, 2007, 52(9), 3250-3257.
[http://dx.doi.org/10.1016/j.electacta.2006.10.001]
[94]
Thu, N.T.A.; Duc, H.V.; Hai Phong, N.; Cuong, N.D.; Hoan, N.T.V.; Quang Khieu, D. Electrochemical determination of paracetamol using Fe3O4/reduced graphene-oxide-based electrode. J. Nanomat., 2018 , 2018. Article ID 7619419.
[95]
Tanuja, S.; Kumara Swamy, B.; Vasantakumar Pai, K. Simultaneous electrochemical determination of paracetamol and folic acid at pregabalin modified carbon paste electrode: A cyclic voltammetric study. Ind. Chem., 2018, 4(124), 2.
[96]
Liu, Z.; Jin, M.; Cao, J.; Wang, J.; Wang, X.; Zhou, G.; van den Berg, A.; Shui, L. High-sensitive electrochemical sensor for determination of Norfloxacin and its metabolism using MWCNT-CPE/pRGO-ANSA/Au. Sens. Actuators B Chem., 2018, 257, 1065-1075.
[http://dx.doi.org/10.1016/j.snb.2017.11.052]
[97]
Amin, S.; Hameed, A.; Memon, N.; Solangi, A.R.; Aslam, M.; Soomro, M.T. The efficacy of the Nafion® blended CTAB protected Au nanoparticles for the electrochemical detection of tramadol in wastewater: A parametric investigation. J. Environ. Chem. Eng., 2016, 4(4), 3825-3834.
[http://dx.doi.org/10.1016/j.jece.2016.08.010]
[98]
Amin, S.; Soomro, M.T.; Memon, N.; Solangi, A.R.; Qureshi, T.; Behzad, A.R. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water. Environ. Nanotechnol. Monit. Manag., 2014, 1, 8-13.
[http://dx.doi.org/10.1016/j.enmm.2014.07.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy